Improving concept checking in Boost

Istvan Zoélyomi and Zoltan Porkolab

Department of Programming Languages and Compilers, E5tvos Lorand University
Pazmany Péter sétany 1/C H-1117 Budapest, Hungary
{scamel, gsd}@elte.hu

Abstract. To ensure the correctness of template based constructions in
C++, constraints on template parameters are especially useful. Though
C++ does not directly support checking requirements on template pa-
rameters, several solutions address this problem. Boost provides a com-
prehensive concept checking library that could be further advanced in
many areas. In this paper we propose a different structure and an ex-
tended feature set to improve the Boost concept checking library into a
general template introspection library. Our recommended solution takes
the advantages of previous solutions, such as REQUIRE-like macros and
static interfaces.

On the lowest level, we suggest an orthogonal construction of elementary
concepts instead of a predefined set of complex constraints. These basic
concepts should return a boolean results instead of aborting compilation
immediately, thus any metaprogramming tool could use the result of the
check. Based on these building blocks, it is possible to express highly
complex constraints using arbitrary logical expressions instead of the
implicit conjunction used in all current concept checking libraries.

In this article we introduce a possible implementation detailed to the
source-level. Our implementation is non-intrusive, relies only on standard
C-++ language features and implies no runtime overhead.

Note that this is a shortened version of our paper "Towards a general tem-
plate introspection library’ for GPCE’04 which can be downloaded from
http://gsd.web.elte.hu/Publications/GPCE_04/introspection.pdf.

1 Introduction

Generic programming in C++ is characterized by the use of template parameters
to represent abstract data types (or “concepts”’). However, the C++ language
itself does not provide a mechanism for the writer of a class or function template
to explicitly state what concept the user-supplied template argument should
model (or conform to).

The Boost Concept Checking Library provides:

— A mechanism for inserting compile-time checks of template parameters.

— A framework for specifying concept requirements though concept checking
classes.

— A mechanism for verifying that concept requirements cover the template.



— A suite of concept checking classes and archetype classes that match the
concept requirements in the C++ Standard Library.

Templates in C++ have many unique properties unlike other constructs of
the language. By definition, every part of the template is instantiated only when
used in the code. Unfortunately, this may cause a surprising behavior of our
code during the development process. For instance, if we add a legal method call
on an object of a template class, our previously accepted code may not compile
anymore. This is a result of lazy instantiation: defects in the parameter type of
the template are encountered only during instantiation of the required feature.

There is no builtin language support in C++ to ensure that features of a
template type parameter exist, template arguments are not constrained in any
way. Instead, all type checking is postponed to template instantiation time. The
lack of language support is intentional (see [7]). According to Stroustrup, the
flexibility of the C++ template construct makes concepts unnecessary. He con-
sidered concept checking to be even harmful. Indeed, lazy instantiation strategy
allows a larger number of types to be used as parameter for a given template:
our code will be valid (also for otherwise illegal types) as long as we do not try
to instantiate any nonexisting member of that parameter type.

To improve reliability and maintainance of libraries, there were heavy efforts
to implement concept checking on template parameters since the introduction
of templates in C++. It is especially essential to detect wrong or incomplete
implementations in the Standard Template Library, where some limited solutions
are widely used, e.g. for iterators. These are based on enforcing the instantiation
of templates manually, thus drawbacks of lazy instantiation can be avoided.
This forms the base also for the current solution in Boost. Further in the article,
we will refer to this solution as REQUIRE-like macros or traditional concept
checking.

Another approach was presented by Smaragdakis and McNamara [1]. They
introduced a framework called static interfaces, which is based on explicitly
specifying concepts that a class conforms to. This is very similar to interfaces
in e.g. Java, but has the advantage that checks do not raise errors, but return
compile time constants which can be inspected and used later in the code.

In this paper we aim to provide a general and comprehensive, non-intrusive
framework for expressing orthogonal basic concepts in C+-+. Our checks result
compile time constants instead of compile errors, thus allowing metaprogram-
ming techniques to be used. The structure of our framework is intended to be
orthogonal. Later, based on these building blocks we present a way of concept
checking that tries to take the advantages of both traditional concepts and static
interfaces.

2 Introspection library design

A standard, well designed and comprehensive concept checking library would
largely increase the chance of early detection of many conceptional errors in our



program design. Despite the heavy efforts, there are still many deficiencies in
current works on concept checking.

Firstly, most concept checking libraries (e.g. boost::concept [9]) raise compile
time errors when the inspected type does not meet its requirements. Introspec-
tion and feature detection on type parameters (returning compile time constants
instead of raising errors) would allow us to use compile time adaptation or any
other metaprogramming algorithms, e.g. utilizing boost: :mpl (see [10]). As an
advantage of compile time adaptation techniques, e.g. a container would be able
to store comparable types in a binary tree for efficient access, while it could
store other types in a vector. Algorithmic strategies also could be decided, e.g.
a sort method could use quicksort for random access containers, while a merge
sort could be used otherwise.

Furthermore, based on boolean results, we would be able to express rela-
tionship between existing concepts using arbitrary logical operations. Note that
current libraries use an implicit and connection between all conditions. For exam-
ple, a type could be serialized to cout if it has operator<< or member function
print (). Another example can be a type having no public constructor (e.g.
singletons).

Secondly, most of the previous works were concentrating on checking particu-
lar concepts, but no comprehensive work was made on implementing elementary
concepts themselves. Most examples verify the existence of a member type (e.g.
T::iterator) or a simple function (e.g. comparision operator) in a type param-
eter. We can easily implement such checks for a single function, but without
reusable basic concepts, they must be completely rewritten for any other func-
tion, even similar ones. (E.g. concepts EqualityCheckable and LessThanCompa-
rable are verifying operators with the same signature, but using current libraries,
they both have to be written from scratch if they are not already implemented).

Thirdly, despite having several concept libraries, there are many concepts
that seemingly cannot be implemented in C++. Such a concept is already men-
tioned above, when a type should have no public constructor. Note that Boost is
able to require its existence, but negation of this condition (e.g. for singletons) is
impossible. We have to address to implement as many basic concepts as possible
to provide a complete, orthogonal set of basic concepts.

Therefore, we suppose the following strategies for a well-designed concept
library:

1. Introspection of code and actions based on check results should be sep-
arated: check failures should not be bound to aborting compilation. In-
stead, an elementary action should be provided to interrupt compilation (like
BOOST_STATIC_ASSERT) with custom error message if needed. Of course, any
other action also could be triggered, e.g. raise warnings or flag portability
issues, etc.

2. Concept checking should be factorized to orthogonal, elementary conditions.
We should give tools for constructing real life, compound concepts from such
basic conditions.

3. The library should be non-intrusive and extensible.



3 Elementary conditions

In this section we recommend a general solution for several basic conditions.
Note that many specific basic checks already have an appropriate solution. These
checks vary from checking the modifiers of the type of a variable (pointer, ref-
erence, const, etc.) to verifying the presence of a nested type in a class. We do
not intend to reinvent the wheel. Instead, we concentrate on concepts that still
do not have a comprehensive or general solution.

The following set of basic concepts is aimed to be orthogonal. Having a type
parameter, we have language support to use the type itself, reference to one of
its nested types or its members. Accordingly, we support the following atomic
concepts:

— Constraints on the type, e.g. size, modifiers, etc!
— Existence of a nested name for
e nested types
e members
— For an existing name, the exact type for that name for
e nested types
e member functions (both static and non-static)
e attributes (both static and non-static)

We can see that this list is far from being complete. Because of difficulties of
implementation, we are still unable to checks if a type is abstract, if a function is
virtual, etc. There are many concepts that would be useful to have, but seemingly
impossible to implement using current language features.

3.1 Attributes

Solutions based on partial template specialization exist for checking whether a
type is reference or const, discussed in [4] and [3]. In a similar manner we can
check the ezact type of an attribute. In this part we introduce our solution for this
problem, which is based on function overloading instead of partial specialization.

Based on techniques discussed above, we can check the exact type for any
member (being static or non-static member) in the following way:

template <class VarType>

struct Attribute

{
// --- Check static member
static Yes Static(VarType*);

// --- Rescue for static member
static No Static(...);

! These constraints already have an appropriate solution presented in several works,
e.g. [4] and [3], hence we do not discuss them here.



// --- Check non-static member
template <class Class>
static Yes NonStatic(VarType Class::*);

// --- Rescue functions for non-static member
static No NonStatic(...);
template <class> static No NonStatic(...);

};

// --- Example of usage (results false)
bool result = CONFORMS( Attribute<int>::NonStatic( &list<int>::size ) );

The functionality of Attribute consists of two main parts: checking static
and non-static members2. To understand how the above described programming
techniques work altogether, let us explain the compilation steps of the usage
example in the last line:

1. Classes Attribute<int> and list<int> are instantiated.

2. A member pointer is set to list<int>::size. However, it still has a cur-
rently unknown type since it can be either a member function or a data
member. (Note that if size is a static member, a conventional pointer is
gained instead)

3. Attribute<int>::NonStatic() is chosen according to overloading rules. If
type of the pointed member matches the type parameter of the Attribute
template (actually int), our template function is preferred; otherwise the
NonStatic(...) rescue function is found.

4. The sizeof operator is applyied on the result type of the previous function
call by the CONFORMS macro, while the function itself is not actually called.
We gain the size of class Yes or No.

5. The result size is checked and a compile time boolean constant is finally
achieved.

For a deeper understanding of class Attribute, we introduce all different
functionalities of the class through examples.

struct Base { int var; };
struct Derived : public Base {};

// --- Possible forms of calls (without CONFORMS to save space)

Attribute<const int>::Static( &Derived::var ); // --- results No
Attribute<int>::NonStatic( &Derived::var ); // --- results Yes
Attribute<int>::NonStatic<Base>( &Derived::var ); // --- results Yes

Function Static() returns true only if the parameter is a static member
of its class, non-static members are checked the same way by NonStatic().
However, this does not limit the usability of our class: if we do not care whether

% Global and namespace variables (and later, functions) could also be checked using
function Static()



the member is static or non-static, we can check both and connect the results
with a logical or (e.g. operator ||).

Function NonStatic() has an interesting feature, shown in the last two exam-
ples. Since it is a template function, we do not need to specify its type parameter,
it is automatically deduced by the compiler. We allow the examined attribute to
be a member of any class this way. Though we do not have to, we may explicitly
specify the type parameter of NonStatic(). In this case we check whether the
inspected attribute is a member of the specified class.

Note that as a consequence of our implementation technique, this solution
has an important property: we have to specify all type modifiers when inspecting
types, because they are part of the exact type to be checked. If we check whether
an attribute of type const int is type of int, we get false as result. We must
always specify the ezxact type to be checked.

3.2 Implement attributes, get functions for free

Checking the exact type of functions is a more complicated, but still very similar
problem to checking attributes as in 3.1. Functions have a more complex type:
they have a return type, a signature and may have several qualifiers (const,
etc). However, syntaxes for defining the type of a data member and a member
function are similar and closely related. Here, we can make a great advantage
of this fact: the exact type of a function can be inspected using the very same
method as with attributes. We use only a typedef on our previous Attribute
class to create Function and change nothing inside the class. Now we can make
the following checks:

struct Base {
static string classId();
double calc(double);

};

struct Derived : public Base {
void f(int, int);

}

// --- All examples return type Yes

Function<string ()>::Static( &Derived::classID );
Function<void (int,int)>::NonStatic( &Derived::f );
Function<double (double)>::NonStatic( &Derived::calc );

Though we have changed nothing in the implementation of our class, it also
can be used for functions in a consistent manner. (Because there is no difference
between the implementation of checking functions and attributes, we decided to
join classes Attribute and Function into a Member class in our final solution.)
The only difference occurs when we’re parameterizing our template: we specify
function types instead of attribute types. Function qualifiers, such as const,
naturally fit into this construction:



// --- const signature
typedef void Signature(int) const;

struct S {

Signature f; // --- also can be written as void S::f(int) const
};
// --- Example resulting true

bool result = CONFORMS( Function<Signature>::Member<S>(&S::f) );

The type definition may be surprising: keyword const is meaningless except
for member functions. However, the language standard allows such definitions
so as member functions can be defined later, such as £() in class S. (Note that
despite the standard, many compilers do not accept such type definitions). Ex-
ploiting possibilities of this feature, we gain a consistent way to check function
signatures with modifiers.

Unfortunately this construction leads to compile time errors in some cases.
If a function has several overloaded instances, and none of them matches the
required signature, the compiler flags the function pointer (e.g. &S::f) to be
ambiguous. The solution for this limitation needs further work.

3.3 Types

It is often required for a template parameter to define a (nested) type, e.g. a con-
tainer should have a dependent iterator type. This concept can be implemented
using the SFINAE rule®. Because the name of the type must not be hardwired
in a general solution, we are forced to use macros to solve the problem. One
macro is required to ease the definition of the checker functions, the other is to
provide readable and comfortable usage.

// ----- Macros for easier definition

#define PREPARE_TYPE_CHECKER(NAME) \

template <class T> \

typename enable_if< sizeof (typename T::NAME), Yes >::Result \
check_##NAME (Type2Type<T>); \

\

No check_##NAME(...)

// ----- Macro for easier usage
#define TYPE_IN_CLASS(NAME,TYPE) check_##NAME( Type2Type<TYPE>() )

// --- Definition in global or accessable namespace
PREPARE_TYPE_CHECKER (iterator) ;

// --- Call check anywhere where variables can be defined
bool result = CONFORMS( TYPE_IN_CLASS(iterator, MyContainer) );

3 A similar solution for this problem was already introduced in [3], but it was usable
only for a predefined name and had to be rewritten for each other name.



Class Type2Type is part of the Loki library [4], and is used to differentiate
between overloaded function variants without instantiating objects of the pa-
rameter type, what may have huge costs and unknown side effects. Type2Type
provides a lightweight type holder with a typedef inside and allows argument
type deduction the same way as a conventional parameter.

We use class enable_if to provide return type Yes for every conforming
case. For the first argument of enable_if, we have to specify a boolean tem-
plate parameter, hence we use sizeof () to "convert" the inspected type into an
integer value, which can be interpreted as a boolean.

Because a checker function for each type name must be declared before it can
be used, the PREPARE_TYPE_CHECKER macro must be called in advance with the
name to be checked as an argument, at any place in the program where global
functions can be defined. After preparation, the check can be made similarly to
other checks using the TYPE_IN_CLASS macro. In the last line of the example,
we check whether our container class has a nested type with name iterator.

3.4 Member names

Unfortunately all of our previously implemented data member and member func-
tion checks were based on the assumption that at least the name of the inspected
member exists in the class. Otherwise, a compile time error occurs since the refer-
enced member (e.g. &Derived: : var) cannot be found inside the class. Therefore
it is essential to check the existence of member names, i.e. the existence of a
attribute or function (of any type) with a given name.

The solution for this problem is very similar to the one for inspecting nested
types in 3.3. The only difference is in the conversion to a boolean parameter
for enable_if. For functions and attributes, we are able to use the address
operator&* instead of sizeof(). For nested types, sizeof () was our only
choice, because pointers cannot be set to types.

Based on the very same principles, we can define our functions to check
member names:

/== Macros for easier definition

#define PREPARE_MEMBER_CHECKER (NAME) \
template <class T> \

typename enable_if< &T::NAME, Yes >::Result \
checkName_##NAME ( Type2Type<T> ); \

\

No checkName_##NAME(...)

/] ----- Macro for easier usage
#define MEMBER_IN_CLASS(NAME, CLASS) \
checkName_##NAME( Type2Type<CLASS>() )

// --- Definition in global or accessable namespace

4 Note that in C++, all pointers are accepted as true except for null pointers.



PREPARE_MEMBER_CHECKER (size) ;

// --- Call check anywhere where variables can be defined
bool result = CONFORMS( MEMBER_IN_CLASS(size, MyContainer) );

In the last line, we are able to check whether our container class has a function
or attribute with name size.

4 Usage

4.1 Elementary Concepts

Checking atomic concepts is quite user friendly. Still, inspecting dependent
names require some macro magic:

// --- Defines checker functions
PREPARE_TYPE_CHECKER (iterator) ;

// --- Call checker function later
bool result = CONFORMS( TYPE_IN_CLASS(iterator, MyContainer) );

In the first call we prepare our checker function: the macro is expanded into
a function definition that searches for a dependent type with name iterator.
Because we have to define a new checker function for each inspected name, we
think this is the most confortable way to provide such definitions. Certainly,
this has to be done only once, before making any calls. Later a call to the
defined checker can be done. In the example we verify if our container class has
an iterator defined. We can inspect dependent member names similarly using
macros PREPARE_MEMBER_CHECKER () and MEMBER_IN_CLASS().

If we know that such a dependent name exist, remaining inspections are much
more natural without many macros. E.g. the search for a comparision operator
looks as follows:

bool result = CONFORMS(
Function<bool (const T&, const T&)>::Static(&operator==) );

In the above code, Function<bool (const T&, const T&)> specifies that
we expect to have a function with this signature. We call function Static() on
this type indicating that we expect to have a global comparision operator. Finally
we specify &operator== as the inspected function. If the function parameter is
exactly the same as we expected, result evaluates to true, otherwise it’s false.
We can verify attribute types similarly.



4.2 Assembling concepts

Elementary concepts are not really useful in themselves. For practical use, we
have to combine several elementary conditions to express the actual requirements
for a type parameter. In this section we present our approach for assembling our
basic conditions into practically used, complex concepts.

Because all of our concept checks result a boolean value, assembly means
a simple application of logical operations in our case. In other libraries there
was an implicit and between listed conditions, what does not necessarily hold
for all the cases. In most cases we use logical and (operator &&), indeed, but
other logical operators, such as operator! and operator | | should be supported,
too. For example, concept LessThanComparable may require that a type must
have a member comparision (T::operator<) or a global comparision operator
: :operator<). Raising an error for check failures, this concept can be expressed
as follows®:

template <class T> struct LessThanComparable

{
enum { Conforms =
// --- Check appropriate type for member
CONFORMS ( Function<bool (const T&) >::NonStatic(&T::operator<) )
I
// --- or global operator
CONFORMS ( Function<bool (const T&, const T&)>::Static(&operator<) )
};
}
// --- Example of usage
template <class Num> struct MyClass
{
BOOST_STATIC_ASSERT( LessThanComparable<Num>::Conforms );
}

We can see that the introspection code and the usage of the result is clearly
separated. In LessThanComparable, we define our introspection criterias and
calculate the result. In MyClass, we define our action utilizing the result, which
is raising a compile time error in our case. We could also define any other action,
e.g. use compile time adaptation techniques depending on the result.

4.3 Further Improvements

Based on discussed methods, we can check the exact type for members. How-
ever, we often do not care about the exact type in practice. Instead, we want

® Note that we did not consider the case when name operator< does not exist. A
check failure leads to compilation error anyway because of the static assertion.



to know if a variable is usable (i.e. convertable®), which cannot be expressed
using the Attribute class above. E.g. we would like to require that when we
expect a short, it can be also a long or any class that can be cast to short.
Our framework should support expression of such non-strict conditions. Note
that there is no inheritance relationship between these types; in such cases when
there is, even the conventional tests of our previous Attribute class result the
desired answers. These kind of non-strict expressions should also apply to func-
tion signatures, where a void (long) signature may conform to a void (int)
restriction (such functor conversions are possible in boost: : functor).

We should also get rid of the drawbacks of current implementation, such as
compilation error for ambigous operators. This would require a change in the
library structure, because this drawback is a direct consequence of referencing
members by name when using them as function arguments.

5 Summary

Template introspection would have serious advantages compared to previous
solutions, like requires macros of g++, the concept library of boost [9] or
static interfaces [1].

Boost concept checks forced the instantiation of template features by explicit
calls to required features in predefined concept classes, which yields compile time
errors in cases of missing features. Thus it is impossible to use concept classes in
cooperation with template metaprogramming tools, e.g. boost: :mpl. It forces
the user to partially duplicate functionalities of boost: :concept and possibly
leads to parallel development efforts. Separating execution of actions based on
introspection results a more orthogonal design. In this case, the concept library
consists of of widely reusable elementary plus predefined complex conditions and
libraries (like boost::mpl) are able to utilize introspection results. Naturally,
one action based on introspection results can be abortion of compilation using
BOOST_STATIC_ASSERT.
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