Cross-language Program Slicing in the .NET

Framework
Krisztian Pécza Mihaly Bicz6 Zoltan Porkolab
E6tvés Lorand University E6tvés Lorand University E6tvés Lorand University
Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of
Programming Languages and Programming Languages and Programming Languages and
Compilers Compilers Compilers
Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c.
H-1117, Budapest, Hungary H-1117, Budapest, Hungary H-1117, Budapest, Hungary
kpocza@kpocza.net mihaly.biczo@axelero.hu gsd@elte.hu
ABSTRACT

Dynamic program slicing methods are very attractoredebugging, because many statements can beeidjno
the process of localizing a bug. Although languageroperability is a key concept in modern deveaiept
platforms, current slicing techniques are stilltriesed to a single language. In this paper a clasguage
dynamic program slicing technique is introduced tfeg .NET environment. The method is utilizing BeR
Debugging Services API, hence it can be applieddal size multi-language applications.

Keywords

Program slicing, dynamic slicing, cross-languaggrgj, .NET Framework

1. INTRODUCTION contributing statements as the program slice with
respect to slicing criterio@.

At the end of the seventies, when programming Since the original article of Weiser [Wei84a], many
languages reached the level of maturity to directly slightly different notions and algorithms have been
support the construction of large software systems, developed to calculate program slices. As
urging need for the extension of debugging, reverseProgramming languages and existing technologies
engineering and software maintenance capabilitiesevolved, new features such as procedures, pointers,
emerged. Science’s answer to this challenge wasPolymorphism, inter-process communication
program slicing [Tip95a]. The original goal of capabilities were also introduced invalidating iearl
program slicing was to map mental abstractions madedefinitions.

by programmers during debugging to a reduced set ofweiser's original method is based on calculating
statements in source code. As a consequence, it hasonsecutive sets of indirectly relevant statements
always been highly desirable to integrate ‘program based on control flow and data dependency analysis
slicers’ to existing debugging environments. [Kri03a, Wei84a, Tip95a]. Later more advanced

A program slice contains all statements that might methods have been introduced by Ottenstein et al.
directly or indirectly affect the values of variablin ~ calculating slices based on solving a reachability

a setv at a program locatiop. TheC=(p,V) pairis ~ Problem in the program dependency graph (PDG)
usually referred to as a slicing criterion, and the [Ott84a]. A PDG is a directed graph with statements

and control predicates in its vertices and edges
Permission to make digital or hard copies of alpart of corresponding to data and control dependences. A
this work for personal or classroom use is gramteétout slicing criterion can be represented as a vertekeén

fee provided that copies are not made or distribute PDG, and a slice with respect to this criterion

profit or commercial advantage and that copies llegr . . .
notice and the full citation on the first page. Topy contains all those vertices from which the vertéx o

otherwise, or republish, to post on servers oethistribute] interest can be reached.

to lists, requires prior specific permission andidee. What Weiser's and the PDG approach have in
NET Technologies'200%onference proceedings, common i§ that they completely rely ‘Hﬁtica”).’
ISBN 80-903100-4-4 available information to calculate program slices,

Copyright UNION Agency — Science Press, Plzen, BRepublic therefore this method is calledatic slicing. Static
slices have been specifically proposed for

maintenance and program understanding: one is abléHowever, there was no standard way to implement a
to use static slices to observe only parts of the debugger until Java Platform Debugger Architecture
program that may be relevant from one specific poin (JPDA) introduced in JDK 1.3. Besides having all
of view [Bes0la]. However, making no assumptions primitives necessary to implement a debugger, JPDA
regarding the program’s input has a degrading effec also supports a number of debugging modes
on the precision of the obtained slice. Besides including in-process and out-of-process debugging.
statements that actually affected the value of theJPDA is an advanced APl with many features similar
variable under consideration, those that only could to ones present in .NET.

possibly have are also included in the slice. Altjio
obtained with relatively small effort, the main
disadvantage of slicing statically is usually tiee f
the slice.

While static slicing neglects actual program input,
dynamic dlicing [Agr91a, Bes0Ola, Tip95a, Zha03a] L ,)
takes it into consideration. Static slicing can be !N the remaining of this paper we propose a pilot
simply thought of as a method which calculates solution for cross-language dynamic slicing in the

statements possibly affecting the value of a végiab -NET Framework. Our main goal was to develop a
of interest. The notion of dynamic slicing is much dynamic slicing algorithm that takes advantagehef t

closer to running the program against a specifit te sophisticated debugging capabilit?es of the .NET
case in a unit test: only dependences along afapeci Platform. We also managed to implement a test
execution path are regarded. This approach implies@PPlication that is capable of dynamically slicing
that different occurrences of the same statemere ha Multi-module programs written in a C#-Visual Basic
to be considered. As a consequence, unlike a static -NET mixed language environment.

or classical — slicing criterion, a dynamic slicing

criterion consists of a tripl€I, o, V), wherel

stands for program inpug is the occurrence of a 2. OVERVIEW OF THE .NET
statement_andv is the set of variables under ARCHITECTURE FROM THE
consideration. POINT OF PROGRAM SLICING

As previously mentioned, a wide range of

applications of program slicing have already been .)]]]
studied, but the highest potential is probably in /N this section we give a brief overview of
debugging applications, where dynamic slicing is of Microsoft's .NET architecture and inspect why itais .
great importance. One of the emerging concepts ofP€rfect candidate for cross-language dynamic
modern real-world software systems is that they areProgram slicing. We introduce the key concepts
built of a set of modules not necessarily writtenlie ~ necessary to thoroughly understand the debugging
same programming language. During the whole capabilities of the framework.

lifecycle of such a system new features are added.NET was originally designed to compete with the
regularly as new modules, and existing legacy partsJava platform in the enterprise sector. As beiransu
can also be refactored or integrated in such a way.NET offers all advantages of Java along with
Therefore, given a framework that directly supports language neutrality. All .NET languages use theesam
cross-language programming, one has the capabilityfully object oriented runtime library. The philodop

to effectively slice real-world programs. behind this idea is the observation that it is e@sy

Introduced in 2001, designed with language learn a new programming language, the hard_part is
interoperability as the key concept in mind, th&€N when programmers are forced to learn many different
Framework is a platform where not only the widely €lass libraries and also legacy APIs. Using .NET o
studied inter-procedural, but also cross-module andiS given the freedom to choose any of the 20+
cross-language dynamic slicing techniques can beSuPpPorted languages and can get on with only one
established. One of the most promising candidate fo common library. This makes it easy to modify,
implementing a tool with this kind of capabilitytise ~ transform or even integrate legacy systems.

.NET Debugging Services API. However, some sophisticated machinery is needed to

Until now, the dynamic slicing community used the deliver these special features. To keep thing.s Isimp

Java platform as its primary environment. Many We propose a bottom-up overlook of the architecture

interesting approaches have already been proposedhe Common Language Runtime (CLR) is the

including slicing at bytecode level [UmeO3a], managed code lattice that everything else is louilt

bytecode transformation and JVM hacking. .NET uses just-in-time (JIT) compiled bytecode
similar to HotSpot mechanism in Java.

The success of JPDA in slicing motivated us in
introducing a similar approach in the .NET

environment, because .NET Debugging Services
extends the features present in JPDA with cross-
language capabilities.

Before JIT After JIT interfaces for their enterprise level applications.
Modules are written separated in time and space,

Object using different tools and compilers. In a later sgha
they are integrated, ideally in a seamless way.
Unfortunately, in practice this is rarely the cage.
multi-language development platform supporting a
large number of programming languages completed
with a cross language and dynamic slicing capable
debugger is a large step towards automatic — or at
least seamless system integration.

. o In addition, with the help of cross-language progra
Figure 1: An assembly before and after jitting slicers programmers are able to identify bugs more
precisely and at a much earlier stage. With thp bél

its sophisticated, carefully designed architeciame

support for multi-language features, the Common outstanding debugging capabilities, .NET is the
y platform that probably most closely matches the

Type System (CTS) provides basic value types, possible solution. In the case of program slicing,

reference types, type safety, objects, interfaaes, ih :) biosis. Slici .
delegates. It serves as a framework that helps the ere 15 a two way SymbiosiS. Slcing Improves

establishment of cross-language interoperabilitg an ?Eﬁwsrlze_l_quality,_anclzl_ impl_ro_vedtfeatlljresl oftLoIatfsth
type safety along with rapid execution capabilities IKe . may simplify slicing to a level where the

power of its practical application appears.
The Common Language Specification (CLS) is the I . . .
smallest subset of the CTS that every IanguagesHowe_Ver’ it is not only the technlgal side .that htig
supported by the framework need to share. Forb(:"m:"ﬁ.t from .such.aframework. M|cro§0ﬂ 's devoted
example, two .NET languages can share values off© satisfy scientific needs as well with Rotor. Our

non-CLS types, but there will be languages whieh ar approach focuses mainly on the possibilities of
unable to unde'rstand them debugging from the scientific aspect. Debuggers are

not toys, they are in fact serious tools in thechah
programmers. With the advanced features of .NET a
new generation of slicing capable debuggers iseclos
than ever before.

code

Being also a fundamental part of the runtime’s

BCL BaseClassLibrary

Common Type System 3. TECHNICAL OUTLOOK

Common Language Spec.

With the release of .NET Microsoft also published a

Common Language Runtime new Debugging API and scripting strategy. Replacing
previous approaches, script engines can now compile

or interpret code for the Microsoft Common

Figure 2: Overview of the .NET architecture Language Runtime (CLR) instead of integrating
debugging capabilities directly into apps through

Active Scripting [Pell]. .NET Debugging Services is

Al .NET languages compile to an intermediate not only able to debug every code compiled to IL
language code called Common Intermediate written in any high level language, but it also

Language (CIL). The compiled code is organized into provides debugging capabiliies for all modern
assemblies. Assemblies are portable executables tanguages.

similar to dlI's - with the important difference ah
assemblies are populated with .NET metadata an
CIL code instead of normal object code. The process
how assemblies are used and jitters work is shown i
Figure 1.

dThe CLR supports two types of debugging modes: in-
process and out-of-process. In-process debuggers ar
used for inspecting the run-time state of an
application and collect profiling information. Thes
kinds of debuggers do not have the ability to aaintr
Figure 2 shows the details of the teChnOlOgy weshav the process or handle events like Stepping’

covered so far. breakpoints, etc.

Companies tend to develop their specific solutitins Out-of-process debuggers run in a separate process
a given problem, build custom libraries and user providing common debugger functionality.

The CLR Debugging Services are implemented as amentioned earlier, querying run-time information of
set of some 70+ COM interfaces, which include the program elements is another important application.
design-time application, the symbol manager, the

: ; We generated the call trace of our programs usiag t
publisher and theprofiler.

CLR debugger. First we set a breakpoint to theyentr
of our application and we stepped along until the. e
The step (or step in) debugging operation goesgalon
sequence points in the original source code. Seguen
points which can be identified using metadata &ed t
program database divide the statements in high-leve
¢ languages. We also used ICorDebug to query the

Symbol
Manager

function call stack at every step.

Design time
ICorDebug has not been standardized yet and dtis n
¢ likely to be. According to Mike Stall [Stall] it nkas
) more sense to standardize the compiler's output
Profiler <—>-<—>- (metadata, symbols, IL format). We have also stlidie
the other two significant .NET implementations
Figure 3: CLR Debugging architecture namely Microsoft's SSCLI (Rotor) and Mono

sponsored by Novell. Rotor has the same debugging

o) _ _ architecture as the Microsoft .NET Framework so it
The design-time interface is responsible for handling \,ouid be easy to compile and run our existing trace

debugging events. It is implemented separated fromgppication on that platform. On the other hand,
the CLR while the host application must reside in a \ono developers decided against implementing the
different process. The application is interpretgdab debugging API provided by the .NET CLR and Rotor
script and has a separate thread for receivinggnd have their own debugging mechanism.
debugger events that run in the context of the portynately the module generating call trace actsoun
debugged application. When a debug event occursiy, only a very small part of our dynamic slicing

(assembly loaded, thread started, breakpoint réache famework so it would take relatively small effaet
etc.) the application halts and the debugger threadport it to Mono.

notifies the debugging service through callback
functions.

The symbol manager is responsible for interpreting 4 ARCHITECTURE & ALGORITHM
the program database (PDB) files, which contaim dat

used to describe code for the modules being

executed. The debugger also uses assembly metadata this section we will review the architecture gFi
which also holds useful information from the paifit ~ 4) of our dynamic slicing framework. It consists of
debugging. The PDB files contain debugging two phases calleBhase 1 andPhase 2. While Phase
information and are generated only when the 1 executes mainly preprocessing steps; Phase 2 runs
compiler is explicitly forced to do so. Besides the slicing algorithm. The whole framework was
enabling the unique identification of program developed and compiled using Microsoft Visual
elements like classes, functions, variables and Studio 2005 beta.

statements, the metadata and the program databasgne first step ofhase 1 is beautification where the
can also be used to retrieve their original positiv giginal source code of modules to be sliced is

the source code. processed line-by-line. The lines are then sptingl
The publisher is responsible for enumerating all sequence points. Afterwards, we compile the
running managed processes in the system. beautified source files by calling the C# compiler

csc.exe with the /debug+ switch to generate
debugging output. The last step of Phase 1 is the
i] building of the call trace which is written to aal

The CLR Debugging Services API callgor Debug text file. We trace information of every single
[Stall] is implemented by COM interfaces. It can be siatement reached during the execution of our
directly reached from managed or unmanaged codeprogram using .NET Debugging Services API. As we
but there are also higher level managed wrapperhaye already mentioned, théCorDebugStepper
classes used by MDbg [Stall]. Using these integace interface is used to step along the applicatioreaih

we can start a process for debugging and regisier o step a triple of data is stored, namely:
managed or unmanaged callback functions. As

The profiler tracks application performance and
resources used by running managed processes.

1. The name of the source file name we are in

2. The exact line number in the source file where The original source code is shown in Figure 6.

the statement of interest resides
3. The state of the call stack at that point

The next step is to parse traced source filesvierye
assembly the program contains. Being similar to

Each element of the triple holds meaningful existing dynamic slicing algorithms in this aspect

information for our dynamic slicing algorithm.

Phase 2 first loads the call trace file produced in
Phase 1. A typical call trace can be seen in Igstin

Although in a real application we store fully qtiaki

Source code
Beautification

Recompile in
Debug mode

Generate Call
Trace

Call trace

Dynamic slicing
algorithm

Cross-language
slice

Figure 4: Architecture

[BesOla, XuOla, ZhaO3a], our approach also
necessitates storing referenced and defined vasabl
at every statement. This is illustrated in thedaihg
code fragment.

int n = askuser();

ROoOWVWoONO VTR WN R
— ~ .

=

console.WriteLine(sum);

Listing 2: Simple C# code fragment

Line 2 defines variable, line 5 references andn,
line 7 definessum and referencesum andi, line 11
referencesum.

Start

1N
Ay

(TN TN
8 9)

;T
\1/ N2/ 2

Figure5: Control Dependence Graph

While parsing source files, €ontrol Dependence
Graph (CDG) [Kri03a] is also created. Control

names, for the sake of clarity we have used jependence describes the ability of a program
abbreviations in Listing 1,

MainNameSpace.MainClass.Main,

MainNameSpace.MainClass.RecursiveProdSum,
for othermodule.Functions.Add andP for prod.

idx01:
idx02:
idx03:
idx04:
idx05:
idx06:
idx07:
idx08:
idx09:
idx10:
jdx11:
jdx12:
jdx13:
jdx14:
jdx15:

MainClass.cs 10
MaincClass.cs 11
MainClass.cs 12
MaincClass.cs 13
MainClass.cs 14
MaincClass.cs 20
MainClass.cs 22
Functions.cs 10
Functions.cs 11
MaincClass.cs 23
Functions.cs 15
Functions.cs 16
MainClass.cs 24
MaincClass.cs 25
MainClass.cs 20

T »»

EEIEEEEEEEEEEXREER

AN AONAOANRN

~

Listing 1: Call Trace

soM stands for

statement to affect the execution of another progra
statement. If node is control dependent on nodet
means that there is an edge fromo m. Figure 5
illustrates the CDG of the code fragment given in
Listing 2.

For example, nodes 1,2,3,4,5,11 and 7,8,9 are
neighbors, 7,8,9 are control dependent on 5.

The call trace for our example program is the
following in regular expression style:
"1,2,3,4(,5,7,8,9)4},5,11". The slicing criterion is
(<n=2>, 1T, {sum}).

At this point we have all information necessary to
develop our backward dynamic slicing algorithm.
First we will show it in anntra-procedural form then
extend it to the more interestinigter-procedural
version.

Toopcond- 1

varstore-[J

foreach var[]{s1icing_crit_vars} Toop

varstore-varstore] (var,Rref)
end foreach

foreach stmt in {backward call trace} do
if stmt is Assignment then
found-false

foreach var[]{stmt.definedvars} do

if (var,Ref)[]varstore then
varstore[(var,Ref)]«(var,Def)
found<true
end if
end foreach
if found then
slice:=sTice [] {stmt}
addTtovarStoreAndLoopCond(stmt)
end if
else
if stmt is control statement then

if stmt[]]oopcond then

slice-slice [{stmt}
addTtovarStoreAndLoopCond(stmt)
end if
end if
end loop

proc addTovarstoreAndLoopCond(stmt)
foreach var[]{stmt.referencedvars} do

varstore~var5tore[] (var,Ref)

end foreach

foreach parstmt in {stmt.parents} do

700pcondL7oopcond[] parstmt
end foreach
end proc

Listing 3: Intra-procedural version of our
dynamic dlicing algorithm

We have a set (calledarstore) whose elements are
(Variable, Action) pairs whereAction can be
either Def or Ref.varstore is responsible for
storing thelast Action for every variable of interest.
Def means variable definition, similarly Ref means
referencing that variable.

When the algorithm starts;arstore contains all
variables of interest with Refction. For the

Action is changed to Def. (We are not interested in
assignments defining a variable with Def action,
because the earlier definition would be killed
anyway.) TheAction of referenced variables with
Def Action is changed to Ref. Referenced variables
not already invarstore are added with Ref
Action. (For example, encounterinig+ would first
change thection of i to Def and then Ref).

After processing a statement we always add itsnpare
according to the CDG to another set called
Joopcond. Loopcond stores those control flow
statements (loop or condition) that have to be ddde
to the slice during the first visit. When a contflolw
statement is encountered, we check whether it is in
Toopcond. In this case we process it similar to
assignments (set Ref variables, add parents to
Toopcond, increase dynamic slice).

The outcome of the algorithm run against code
fragment in Listing 2 is shown in Table 1.

The algorithm is linear in the number of lines le t
call trace; memory usage is also linear with resfec
the number of variables warstore.

trace Varstore loop- | Slice
cond
11 (sum,Ref) - -
5 (sum,Ref) - -
9 (sum,Ref) 5 -
8 (sum,Ref) 5 -
7 (sum,Ref),(i,Ref) 5 7
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7
9 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
8 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
7 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
4 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
3 (sum,Def),(i,Ref),(n,Ref) - 3,5,7,9
2 (sum,Def),(i,Def),(n,Ref) - 2,3,5,7,9
1 (sum,Def),(i,Def),(n,Def) - 1,2,3,5,7,9

Table 1: Algorithm example

The algorithm starts exactly the same way in the
inter-procedural case as the previously introduced
intra-procedural version. However, when the las li

of a function (eg. in Listing 1 Functions.cs ling) is
reached, the line from where the function was dalle
have to be identified even in the case of multipe
recursive calls (eg. in Listing 1 MainClass.cs I#8).
Also, all local variables that are parameters & th
called function have to be localized.

The calling statement can be found in linear time i
the call trace so the algorithm would become
quadratic. However some preprocessing can be done
to preserve the linearity of our algorithm. A urgqu

previous example: (sum, Ref). When a variable with |5 'is given to every function call. Note that the

Ref action is encountered on the left side of an blocks of the same

assignment, the line number is added to the dynamic
slice (if not already in) and the variable’'s Ref

ID-runs do not have to be
continuous (eg. for Listing 1 this would be
1,1,1,1,1,2,2,3,3,2,4,4,2,2,5,...). At a given blo¢k o

IDs the ending index of the previous block of the according to their order. Now we can recursively ca
same IDs can be stored (eg. for statemeritdatl0 our dynamic slicing algorithm by setting up a new
we storeidx7, for idx13 storeidx10 as shown in varstore with all formal parameters of interest with
Listing 1). So we can find the calling statementlin RefAction. When the algorithm returns to the caller
step even for multiple or recursive calls. we can identify all formal input parameters (nothin
In order to achieve constant-cost retrieval of the OF ref in C#)referenced from the generated slice by
index that marks the end of the previous block with Checking thevarstore of the called function and
the same IDs, aimdexing data structure should be determine their actual parameter pairs. We consider

created and populated in a preprocessing step. them as referenced variables from the caller’s tpoin

. . of view. So they are added to therstore with Ref
At this point we are aware of the statement th#6ca ctjon or theiraction value is changed to Ref if

the fl_Jnction and can fu_rther investigate the in/out already invarstore. We modify Toopcond in the
(ref in C#) and outdut in C#) actual parameters. gyactly similar way as in the case of assignments a

The algorithm selects parameter variables of the ot oo rse also add the function call to the slice.
caller function with Refaction in varstore (we

call themformal parameters of interest). If there is |t can be seen that we store uniquerstore and
no variable satisfying this criterion we can safely 0opcond information for every function call.
disregard the whole function. Since functions can b In the screen shot shown in Figure 6 we used glicin
identified based on the signature of the calling criterion (<h=42>, 13, {sum}).

statement, formal parameters can be identified

=10/ x|

MainClass. cs | FunctiDnS.CSI

1. Using Swstem; - Phasze 1 |

. namespace MainMameSpace

2

3

4 1

5. public class Mainclass FMm
[

r

g

public static woid Main()

int

int i

int

int

Mainharm .MainClass.Recursiverrodsumiret sum, ref pr
consale.writeline(suml;

1

public static woid RecursiweProdsum(ref int s, ref int p, i

11+3 : N
Mainhame 55 . RecursiveFrodsumiref s,

ref p

=0l x|

1. using System; Phasze 1 |
2.
3. namespace OtherModule
4.
5. public class Functions Fm
B
7.
g. public static woid Addiref int x, int wall Phaze 2 |
9.
11. 1
1z.
13. public static woid Mul(ref int x, int wal]
14. {
15. wF= val;
1&. 1
17.
16. 1
19. }
E it

Figure 6: Examplerun of our dicing framework

[Hor90a] S. B. Horwitz, T. W Reps, D. Binkley.

5. CONCLUSION AND FURTHER Inter-procedural slicing using dependence

WORK graphs. ACM Transactions on Programming
Languages and Systems, 12(1): 26-60, January
1990.

In this paper we have shown how to utilize the .NET
Debugging Services API in dynamic program slicing.
Motivated by the Java Platform Debugger
Architecture, our pilot solution can be effectively
used to investigate dynamic dependences amondMar03a] K. Maruyama, M. Terada, Timestamp
modules compiled from any CLS-compliant Based Execution Control for C and Java
language. We have also shown that by directly = Programs, AADEBUG, 2003

supporting cross-language programming, the .NET [OhaO1a] F. Ohata, K. Hirose, M. Fuijii, K. Inouge.

Framework offers significant surplus over JPDA. slicing method for object-oriented programs
NET-languages, mainly C#, VB.NET and managed using lightweight dynamic information. In Proc.
C++ have some very noteworthy elements such as of the &' Asia-Pacific Software Engineering

[Kri03a] J. Krinke, Advanced Slicing of Sequential
and Concurrent Programs, PhD Thesis,
Universitat Passau, April 2003

delegates, the foreach loop, different kinds of Conference, 2001.

parameter passing methods and the lock statementOtt84a] K. J. Ottenstein, L. M. Ottenstein. The
which worth further research in connection withtbot program dependence graph in software
static and dynamic program analysis. development environment. ACM SIGPLAN

Notices volume 19(5), pages 177-184, 1984.

[Pel02a] M. Pellegrino. Improve Your Understanding
of .NET Internals by Building a Debugger for
Managed Code. MSDN Magazine, issue
November 2002.
http://msdn.microsoft.com/msdnmag/issues/02/1
1/clrdebugging/

[Rep94a] T. Reps, S. Horwiz, M. Sagiv, G. Rosay.
Speeding up slicing. ACM SIGSOFT Software

REFERENCES Engineering Notices 19, pages 11-20.

[Stall] Mike Stall's .NET Debugging Blog,
http://blogs.msdn.com/imstgll2004-2005

[Tip95a] F. Tip, A survey of program slicing
techniques. Journal of Programming Languages,
3(3):121-189, Sept. 1995.

[Ume03a] F. Umemori, K. Konda, R. Yokomori, K.
Inoue, Design and Implementation of Bytecode-
based Java Slicing System, SCAM 2003

[Wei84a] M. Weiser. Program Slicing. IEEE

i Transactions on Software Engineering. SE-
10(4):352-357, 1984.

[XuOla] B. Xu, Z. Chen. Dependence Analysis for
Recursive Java Programs. In SIGPLAN Notices
No. 12, Pages 70-76.

[zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
dynamic slicing algorithms. Proc. International
Conference on Software Engineering, pages 319-
329, 2003.

C# language and .NET Framework are dynamically
flaring. In Microsoft .NET Framework version 2.0 we
intend to investigate generics, anonymous methods,
partial types, yield keyword, nullable types andoal
some functional language implementations like
Scheme [Bre04a] and Clean [Her04a].

[Agr91a] H. Agrawal and J. R. Horgan. Dynamic
program slicing. In SIGPLAN Notices No. 6,
pages 246-256, 1990.

[BesOla] A. Beszédes, T. Gergely, Zs. M. Szabo, J.
Csirik, T. Gyiméthy. Dynamic slicing method for
maintenance of large C programs, CSMR 2001,
pages 105-113.

[BreO4a] Bres,Y., Serpette,P., Serrano,M. et al.
Compiling Scheme programs to the .NET
Common Intermediate Language, "2
International Workshop on .NET Technologies,
May 2004

[Her04a] Z. Hernyak, Z. Horvath, V. Zso6k. Design of
Language Elements for Dynamic Distributed
Computation of Clean Expressions on Clusters.
Submitted to TFP 2004 Fifth Symposium on
Trends in Functional Programming, Ludwig-
Maximilians University, Munich, Germany,
2004.

