Towards Effective Runtime Trace Generation
Techniques in the .NET Framework *

Krisztian P6cza Mihaly Biczé Zoltan Porkolab

E6tvos Lorand University E6tvos Lorand University E6tvos Lorand University

Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of
Programming Lang. and CompilersProgramming Lang. and CompilersProgramming Lang. and Compilers

Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c.
H-1117, Budapest, Hungary H-1117, Budapest, Hungary H-1117, Budapest, Hungary

kpocza@kpocza.net mihaly.biczo@axelero.hu gsd@elte.hu

ABSTRACT

Effective runtime trace generation is vital for emstanding, analyzing, and maintaining large sapfd@ications.
In this paper two cross-language trace generatiethads are introduced for the .NET platform. The&-no
intrusive methods are based on the .NET DebuggiddPaofiling Infrastructure; consequently, neitheditional
development tools, nor the .NET Framework SDK guieed to be installed on the target system. Bagthods
are applied to a test set of real-size executabidscompared by performance and applicability.

Keywords

Runtime trace generation, .NET, Debugger, Profflesgram slicing

1. INTRODUCTION more complicated is that in the case of progrants an
components that run on a deployment server or a
client computer incompatibility issues might also
arise. Further problematic situations include cases
when the deployment servers are in a Network Load
Balancing (NLB) Cluster, or the isolation level thre

IIS web server is too restrictive.

Generating and analyzing runtime traces for large
scale enterprise applications is a common task to
investigate the cause of arising malfunctions and
accidental crashes.

Using a debugger application, examining the
application log or the event log of the operating
system in order to find the erroneous instructiand
the variables getting incorrect values in the paoyr
can be very useful. However, there are man
situations where a simple debugger fails to find th
erroneous instructions and variables. One common
example is when the error occur in a production
environment where we are not allowed to install a
development environment to detect the bug
[Mar03a]. Furthermore, multithreaded applications o
applications producing incorrect behavior only unde In this article we show two different methods for
heavy load often may not be debugged correctly ongenerating source code statement level runtimedrac
the development machines. What make things evenfor applications hosted by the Microsoft .NET
Framework 2.0. In their current form our solutions

The most common research area where low level
runtime traces are used in the academic world is
dynamic program slicing [Agr91a, Bes0la, P6c05a,
Tip95a, ZhaO3a]. The result of program slicing can
Ybe used in the industry also. The original goal of
program slicing was to map mental abstractions made
by programmers during debugging to a reduced set of
statements in source code. With the help of program
slicing programmers are able to identify bugs more
precisely and at a much earlier stage.

Permission to make digital or hard copies of alpart of are incompatible with older versions (1.0, 1.1Ytodf
this work for personal or classroom use is gramteétout

fee provided that copies are not made or distribute NET Framework but .they can be por_ted back..l\llone
profit or commercial advantage and that copies tesr ©Of our methods requires us to modify the original
notice and the full citation on the first page. Topy source code nor the Runtime. Consequently, these
otherwise, or republish, to post on servers oethistribute  solutions do not depend on either Rotor (the Shared
to lists, requires prior specific permission andidee. Source implementation of the .NET Framework),

NET Technologies 2006 Mono, or any other open source software.

Copyright UNION Agency — Science Press, None of the methods requires the installation of
Plzen, Czech Republic.

* Supported by GVOP-3.2.2.-2004-07-0005/3.01



neither the development tools nor the Microsoft TNE
Framework SDK on the target machine, and since
.NET is a cross-language programming environment,

they can be used to generate trace for programs

written in any .NET programming language.

The first trace generating method uses the .NET
Debugger which we presented in [P6c05] in order to
utilize it in our dynamic slicing algorithm, whildne
second approach exploits the capabilities of tHET.N

Profiling APl and IL code rewriting [Mik03]. It wil
clear up that only the second method is suitabte fo
large scale multithreaded applications, and thst fir
method is sufficient only for toy programs.

In the next section we will describe the main cqtse
and the architecture of theNET Debugging and
Profiling Infrastructure. In the & section we will
describe the method that uses tNET Debugger to
generate trace, while in thé" 4ection the second
solution based on theNET Profiler and IL code
rewriting technique will be presented. In thd' 5

section we compare these methods and presen

performance figures with different applications. We
will primarily focus on tracing statements of the
original source code that appear in the execution
path, and will not give detailed description on how
identify variables. However, in the last section we

Symbol
Manager

v

r Design time

Profiler

Figure 1. CLR Debugging architecture

.NET Debugging Services is not only able to debug
every code compiled to IL written in any high level
language, but it also provides debugging capadsliti
for all modern Object Oriented languages.

The .NET CLR supports two types of debugging
modes: out-of-process and in-process.

Out-of-process debuggers run in a separate process
providing common debugger functionality.

In-process debuggers are used for inspecting tie ru
Pme state of an application and for collecting
profiling information. These kinds of debuggers
(profilers) do not have the ability to control the
process or handle events like stepping, breakpoints
etc.

The CLR Debugging Services are implemented as a

show some ways how the prepared solutions can beset of some 70+ COM interfaces, which include the

complemented to identify variables.

2. .NET DEBUGGING AND
PROFILING INFRASTRUCTURE

All 20+ .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL) or simply Intermediate Language
(IL). The compiled code is organized into assemblies.
Assemblies are portable executables - similar ite dl

- with the important difference that assemblies are
populated with .NET metadata and IL code instead of
normal native code. The .NET metadata holds
information about the defined and referenced
assemblies, types, methods, class member variable
and attributes [ECMA]. IL is a machine-independent,
programming language independent, low level,
assembly-like language using a stack to transfex da
among IL instructions. The IL code is jitted by the
.NET CLR (Common Language Runtime) to
machine-dependent instructions at runtime.

In the Microsoft world, with the release of .NET, a
new Debugging API has also been introduced. Script
engines can now compile or interpret code for the
Microsoft Common Language Runtime (CLR)
instead of integrating debugging capabilities diyec
into applications through Active Scripting [Pell].

design-time application, the symbol manager, the
publisher and theprofiler.

The design-time interface is responsible for handling
debugging events. It is implemented separated from
the CLR while the host application must reside in a
different process. The application has a separate
thread for receiving debugger events that run & th
context of the debugged application. When a debug
event occurs (assembly loaded, thread started,
breakpoint reached, etc.) the application haltsthad
debugger thread notifies the debugging service
through callback functions.

The symbol manager is responsible for interpreting

the program database (PDB) files that contain data
ysed to describe code for the modules being
executed. The debugger also uses assembly metadata
that also holds useful information described some
paragraphs before. The PDB files contain debugging
information and are generated only when the
compiler is explicitly forced to do so. Besides
enabling the unique identification of program
elements like classes, methods, variables and
statements, the metadata and the program database
can also be used to retrieve their original posifio

the source code.

The publisher is responsible for enumerating all
running managed processes in the system.



The profiler tracks application performance and In the implementation first we create the process t
resources used by running managed processes. Thee run but do not start it. A Debugger event isedi
profiler runs in-process of the inspected applarati at every module load. When the module containing
and can be used to handle events like module andhe user entry point (Main method) is loaded weaset
class loading/unloading, jitting, method calls, ®ge  breakpoint at this entry point. After loading the
related to exceptions and garbage collection process and setting the breakpoint we let the

performance. application to run. At this point the process iallye
created and th@©nCreateProcess event is raised by
3. .NET DEBUGGER WAY TO the Debugger. In the handler of this event we Iset t
INSTRUMENT APPLICATIONS state of the application being debugged to running

and start a while loop which is allowed to run whil

, . the application is alive. When the breakpoint
To employ theDebugger first we set a breakpoint to previously set is encountered th@nBreakPoint

the entry point of our application and we step glon debug event is raised. In the handler of this debug

eflch.exedcutt)lng _statement tyntll the emlj. The step (o event anAutoResetEvent called eventComplete is set
S e_p-m)_ ebugging operation goes along SeqUeNnce,,q \ye \yaijt forventModtate to be set. The handler
points in the original source code. Sequence points

f lete D ly th
which can be identified using metadata and theo OnStepComplete Debugger event does exactly the

L o same.
program database divide the statements in high-leve ) ) ) )
programming languages. Afterwards the while loop is doing the following

The CLR Debugger AP calleCorDebug [Stal] is ~ Tee things: o
implemented by native COM interfaces. It can be 1. Waits for theeventComplete event which is
directly reached from managed or unmanaged code set by the Debugger event handlers

but there are also higher level managed wrapper 2. doStepin operation is called as described later
classes used by MDbg [Stall], the managed debugger

part of the Microsoft .NET Framework 2.0 SDK with _ -
full source code. Between setting theventComplete event and waiting

for the eventModSate event thedoSepln method

Using t.hese mterches we can start a process foruns which requires/sets the following informatin
debugging and register our managed or unmanage very step:

callback functions. As mentioned earlier, querying ) ) )
run-time information of program variables is anothe 1. The IL instruction pointer

3. Sets theeventModSate event

important application. 2. The current function token and module
The structure of our solution: 3. Which sequence point belongs to the current IL
1. Low level managed COM Wrapper instruction
2. High level managed API of the previous 4. The target of the next step
3. Application employing the previous to generate The IL instruction pointer, the function token ahet
runtime execution trace module can be easily queried from tBerFrame

object which can be queried from the current thread
The sequence points are required to output thelctu
source line and source column to the trace and to
define the next step using ti8epRange method of
The low level managed COM Wrapper®(layer) CorSepper. The sequence points and the target of the
represents a COM marshaling code that is usedlto ca next step are static properties therefore we cache
native Debugging API functions and is written in IL  them so that they can be queried by the
It resides in the corapi2 folder in MDbg's souroeet GetSeguencePoints and GetRanges method of the

The high level managed API1'(layer) provides an qurrentla/mboIMethod inte.rface according!y. At the
easy-to-use higher level managed wrapper to thefirst a}nd last sequence point of.each functionoged
underlying layer and it is written in C# 2.0. function enter and leave event in the trace.
Sometimes it uses properties instead of methodks, an Unfortunately, this approach is not able to colyect
dispatches native debugging events as managedandle multithreaded application because we are not
events. It resides in the corapi folder of MDbg’'s able to step from one thread to another and the
source tree. debugger does not notify us about thread switches.

Our application based on these APIs is downloadable
from http://avalon.inf.elte.hu/src/netdebug/

The F' and the ¥ layer of our solution is not
implemented by us rather we borrowed it from MDbg
that is freely usable and provided by Microsoft.




4. NET PROFILERWAY TO sequence point in the source code, the fifth pat@me

INSTRUMENT APPLICATIONS represents the unique function identifier and the
action code (1 for E(nter), 2 for L(eave)). Because

) ) ~ the tracer is prepared for multithreaded applicagjo
Basically, this approach explores all sequencetpoin e |ock on a static object and output the unique
in all methods of all classes and all modules ef th managed thread identifier at every step. At intra-
application being profiled and inserts trace method f,nction sequence points the trace method gets only
calls defined in an outer assembly at every seqienc the first four parameters and does not output any
point at IL code level [MikO03]. function identifier and action code.

The .NET Profiler provides a COM interface called
ICorProfilerCallback2 exposing a set of callbacks
which can be implemented as a COM class. The
implementer is not allowed to use any managed
programming language, otherwise the Profiler would
profile itself. Consequently we have chosen the C++
language to demonstrate this approach.

If we are intended to call a method placed in aterou
module we have to reference the assembly containing
that method, the class and the method itself. We
decided not to modify the original program in any
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The
best place to do this is thkloduleLoadFinished

We have used some other COM interfaces also likeProfiler event.

ISymUnmanagedReader, |SymUnmanagedMethod,
IMetaDatalmport and ICorProfilerinfo2 while the
standard classes implementing these interfaces wer
instantiated using Microsoft's ATL (Active Template
Library).

Through the DefineAssemblyRef method of the
dMetaDataAssemblyEmit  interface, ~and  the
DefineTypeRefByName and the DefineMember Ref
methods ofl MetaDataEmit2 interface we are able to
add these references to the in-memory metadata of
From the 70+ Profiler events provided by the assemblies and receive thaivken values. When
ICorProfilerCallback2 interface we have used only adding these references they are specified simply b

two: ModuleLoadFinished andClassLoadFinished. their names, the function token is used to call the
belonging function at the corresponding sequence
4.1. Tracing Methods. | mplementation points.

and Referencing _ )
In this section we will discuss what tracing method 4.2. Internal Representation of Native

we are using, how they log and the way we are NET Primitives

referencing them. In this section we will give a general overviewtbé
_ ) ) _ _ internal representation of .NET methods, IL
public  static void DoFunc( uint startLine, . . . .
uint startColumn, uint endLine,  uint endColumn, instructions and Exception Handllng Clauses
uint functionID, uint action) [MikOS]
{ .
try

4.2.1. Internal representation of .NET methods

lock (lockObj) Every .NET method has a header, IL code and may
char act= 'E'; have extra padding bytes to maintain DWORD
o EEEWES) alignment. Optionally, it may have an SEH
sw.WriteLine( "{BYT{EHAHO}{1}-{2}{3}" ; (Structured Exception Handling) header and
startLine, startColumn, endLine, . .
endColumn, act, functionID, EXCEptIOﬂ Handllng Clause.
Thread .CurrentThread.ManagedThreadld); .
} Tiny method FAT method
catch {}

Listing 1: Trace method
We created a module (assembly) called

TracerModule and placed a static class callB@cer Heade
in it containing only static methods. IL Code
o . SEH Heade
Listing 1 illustrates the trace method executed at Ex. Hand. Clauss
every method entry (first sequence point executed) Paddincbyte
and leave (last sequence point, which is always Figure 2: Method formats
executed unless exception has been thrown). A .NET method can be ifiny and inFat format. A

Tiny method is smaller than 64 bytes, its stacktldep

The first four parameters represent the positiothef : .
does not exceed 8 slots, contains no local vasable



structures
. Upgrading method and instruction format

4.2.2. IL instruction types 3.
IL instructions can be divided into several catéggpor
based on the number and type of parameters they use 4

- have no parameter (dup: duplicates the element : P
on top of the stack; Idc.i4.-1,...ldc.i4.8: load an 5. Storing new representation in binary format
integer on stack (-1,...8)) 4.3.1. Parsing binary method data

has one integer (8, 16, 32, 64 bits long) At first we determine thg sequence points. of the
parameter (Idc.i4 <int>: load the integer Method being parsed using ti@tSequencePoints

specified by <int> on stack; br <param>, br.s method ofl SymUnmanagedMethod. This procedure
<reloff>: long or short jump to the relative determines the IL- and original source code-level

address specified by <reloff>) start and end offsets for every sequence point. The
first byte of the header describes whether the ageth
- has one token parameter (call <token>: calls the

o is tiny or fat, the function is parsed using this
method specified by <token>; box <token>: box

g ’ . information.
a value type with type <token> into an object; i
|dfld <token>: load the field Specified by The IL-level offsets of sequence p0|nts were
<token> of the stack-top class on stack) determined previously, now the binary data haseto b

) ] . ] assigned to them and the IL instructions have to be
- multi-parameter instructions (switch <count> jyentified based on the binary data at every sezgien
<reloff1>...<reloffcount>: based on the stack- pint Every category of IL instructions featured i
top value representing the relative offset 455 s aple to parse itself and determine its
parameter index jumps to the chosen relative norameters (integer value, token value, multiple
offset) parameters). Furthermore it can also generate &oth
4.2.3. Exception Handling Clauses hgman readable _and a binary representation (along
Every Fat method can have one or more exception With its length) of it.
handlers. Every EHC (Exception Handling Clause) static
has a header and specifiestitsandhandler starting
(absolute) offset and length. An EHC can be also in
Tiny andFat format based on the number of bytes the
offset and length properties are used to describe. }
Obviously each EH offset and length specifies a ;
sequence point beginning and ending position in the
IL code-flow.

SEH header and exception handlers. Fat methods
overrun one or more of these criterions. 2

Insertion of instrumentation code to the IL code-
flow
Recalculating offsets and lengths

bool IsFirstLess( int valuel, int value2)

if (valuel < value2)

Console .WriteLine(
return  true ;

"Yes, first is less" );

return  false ;

Listing 2: Simple C# Method

- Consider the simple method in Listing 2. In Table 1
4.3. Let the Game Begin: IL Code the corresponding sequence points are shown

Rewriting identified by their IL offset, the start and endsets
Our goal is to change the IL Code of methods beforeby line and column numbers.

they are jitted to native code. We have chosen ther—-95¢ IL offset Start offset End offset
ClassLoadFinished Profiler event to perform this -
operation because in this early stage we are able t Q Q 25'3 25",
enumerate all methods (with th&numMethods 1 1 26.< 26,2¢
method ofIMetaDatalmport interface) of the class g 192 Oxf§$f3ee,1 Oxf§$f4ee,1
just loaded and rewrite the IL code of a whole thunc 4 13 28‘7 >3 ’47
of methods. The binary data of a method can be 5 54 29’7 29’1(
retrieved by the GetlLFunctionBody method of 6 >3 31’5 31’1E
ICorProfilerInfo2. After IL code rewriting, necessary 7 37 32:] 32”2

space for the new binary data can be allocatedyusin
the Alloc method oflMethodMalloc and the binary
data can be set with tHgetlL FunctionBody method

of CorProfilerInfo2.

Single-method binary data operations and IL code
rewriting can be divided to five steps:

1. Parsing binary data and storing it in custom data

Sequence point at index 2 petted FeeFee does not
have a real source code level offset just helptous
jump out if the predicate fails.

The IL code in Listing 4 illustrates the internal
representation of method in Listing 2. The numiggrin
on the left indicates the IL offsets while the narb

Table 1: Sequence Point Offsets




right to the branch instructionsbrfrue.s, br.s) array to store binary data which can be easilyquhrs
represents absolute target offset, relative tastjsét, and stored in the same type of container where the
target sequence point and target instruction iratex original instructions are stored.

the target sequence point. Parametetssif andcall The parameters of the method to be called are tbade
instructions are of type string and functions taken 4, the stack using thédc.i4 instruction (opcode

respectively. The absolute target offset of branch 0x20) in order of parameters and theken ID of
instructions identified by target IL instructionsh&o method is given as the parametercall instruction
be calculated from the instruction offset and the (opcode 0x28). The possible instruction (Idc.i%t
relative target offset. Idc.i4.2) at index 25 surely having a one byte afgco
If exist, the EHCs are also parsed [Mik03]. (0x17 or 0x18) loads 1 for enter or 2 for leave on

ay— stack respectively.

0

1:Idarg O

2:ldarg 1 BYTE insertFuncinst[31];

Siclt insertFuncinst[0] = 0x20; INdc.i4, start line

5: Idc.i4 0 insertFuncinst[5] = 0x20; /lldc.i4, start column

6: ceq insertFuncinst[10] = 0x20; /Ndc.i4, end line

8: stloc 1 insertFuncinst[15] = 0x20; /Ndc.i4, end column

9: ldloc 1 . insertFuncinst[20] = 0x20; // dc.i4, func. id

ig: %téue.s 28 (16) [tsp: 6, til: 0] insertFuncinst[25] = 0x0; // ldc.i4.1 or Idc.i4.2
; insertFunclinst[26] = 0x28; Il call

13: Idstr 1879048193 *((DWORD *)(insertFunclnst+27)) =

18: call 167772181 tracerDoFuncMethodTokenlD;

23: nop
23 ldeia Listing 3: Binary representation of trace method call
32 Eﬁfé(“) 08 7 R The above parameters are dynamically substituted
29: stloc 0 ; .
e e ) [tsp: 7. il 0] dependmg_ on the da_ta of the current sequence point
32: Idloc 0 and a unique function ID (generated by an own
33 ret counter) while the function token can be presetesin
Listing 4: Human Readable Output of Internal itis module (and not function) dependent.

Method Fepresentatic In the intra-function sequence points only the dita
4.3.2. Upgrading method and instruction format sequence points is substituted and the thread ID is
In case ofTiny method format the header is upgraded queried at each step, the function ID and other
to represent aat format because we can easily information are irrelevant here. The substituted
overrun the limitations ofiny format. binary data is parsed and converted to IL instomsti
and inserted into the beginning of the IL code

The short branch instructions (brtrue.s, br.s, logs, : :
container of every sequence point.

etc.) are converted to their long pairs (brtrue, br
bge.un, etc.) because we cannot guarantee that thg 3 4, Recalculating offsets and lengths

relative branch lengths will remain within the gince the IL instruction flow is altered by insegi
numeric representation barriers after inserting&om eyra instructions the target offsets of branch
instrumentation instructions between the branch jnstryctions and the start offset and length proger
instructions and their targets. of Exception Handling Clauses have to be
Tiny Exception Handling Clauses are also upgradedrecalculated.

to store offset and length values in DWORD format p target offset of a branch instruction can pointte
because the limitation of original WORD (offsetdan first instruction of a sequence point and can ptont
BYTE (length) can be easily overrun after oiher than the first instruction. If the originatach
instrumentation code insertion. target offset pointed to the first instruction of a
4.3.3. Instrumentation code insertion sequence point th_en we change th_e target off¢beto
Now we have theToken IDs of Trace methods, _newly creat_ed first |r_15truct|on in order to_ run
queried the IL and source code level offsets andiNStrumentation after jumps also. If the original
lengths of sequence points and converted the binaryPr@nch target pointed to other then the first
data to upgraded IL instruction flow. Now we !nstruct!on then we leave it to target to the same
examine how the methods callBFunc (in Listing instruction as before.

1) and its pair calledoTrace can be parameterized Any IL instruction in our representation can cadtal
and called. While DoFunc is intended to use at its length, so we can easily recalculate the ndsets
method enter and leave, DoTrace handles intra-of IL instructions and sequence points for the bhan
function sequence points. targets also.

As we have mentioned earlier, IL instructions are The offset and length properties of Exception
able to parse themselves therefore we create a BY TEHandling Clauses can be calculated similarly.



0: Idc.i4 25 112: Idc.i4 47
5:ldc.i4 1 117: call 167772194
10: Idc.i4 25 122: dstr 1879048193
15: Idc.i4 2 127: call 167772181
20: Idc.i4 3 132: nop

25: Idc.i4 1 133: Idc.i4 29

26: call 167772195 138: Idc.i4 7

31: nop 143: Idc.i4 29
32:1dc.i4 26 148: Idc.i4 19
37:1dc.i4 3 153: call 167772194
42:1dc.i4 26 158: Idc.i4 1

47: 1dc.i4 23 159: stloc O

52: call 167772194 160: br 197 (32)
57:Idarg 0 165: Idc.i4 31

58: Idarg 1 170: Idc.i4 3

59: clt 175: Idc.i4 31

61: Idc.i4 0 180: Idc.i4 16

62: ceq 185: call 167772194
64: stloc 1 190: Idc.i4 0

65: Idloc 1 191: stloc O

66: brtrue 165 (94) 192: br 197 (0)
71:Idc.i4 27 197: Idc.i4 32

76: Idc.i4 3 202: Idc.i4 1

81: Idc.i4 27 207: Idc.i4 32

86: Idc.i4 4 212:|dc.i4 2

91: call 167772194 217:1dc.i4 3

96: nop 222:|dc.i4 2

97: Idc.i4 28 223: call 167772195
102: Idc.i4 7 228: Idloc O

107: Idc.i4 28 229: ret

Listing 5: Altered IL code of IsFirstLess method
4.3.5. Soring the instrumented method

Now we have the instrumented method represented in

our data structures. The job is to store the dadialla
code back in binary format following the
specification. The binary data can be restoreché¢o t
CLR by using the method described in 4.3.

5. COMPARISON OF METHODSAND
TEST RESULT

In the previous sections we have presented two
different methods for generating runtime execution
trace of .NET-based applications.

None of the methods require us to modify the
applications being tested. Both methods can be
accomplished to produce trace information about the
value of accessed variables of any type, and ifyenti
reference variables. With the help of the Debugger,
reference variables can be identified by their ©bje
Id, but obtaining this Id requires many time
consuming operations [Stall]. Using the Profildit’s
code rewriting capabilities it is also possible to
identify reference variables, and much faster than
with the Debugger. A value type variable is always
identifiable by the sequence point occurrence i wa
created in.

The Debugger is unable to notify us about thread
switches and the step-in operation is unable tgpjum
through threads therefore it is not possible todhan
multithreaded applications. To the contrary, ughnme
Profiler we are able to log the thread’'s ID at gver
sequence point of the application.

In order to make the Debugger work we have to
attach it to the process we intend to instrumewt. T

use the Prdfiler, it is required to register itaa€OM
component using theegsvr32 command and set two
environment variables in the process, user or Byste
context to enable the Profiler in that context. Set
Cor_Enable Profiling to Ox1 andCor_Profiler to the
GUID or ProglD of our object implementing the
ICorProfilerCallback2 interface.

We demonstrate the performance of the methods
through four applications. The first two use orgyf
class library calls so they are intended to meathee
pure performance. The third application uses much
more but very short, while the last one uses maidy a
long class library calls.

The character of the four applications:

1. Counter is a simple application that calculates the
sum of numbers from 1 to 10000 and prints a dot
at each step on the screen by implementing the
addition in a separate function and uses only few
class library calls, but a lot of integer operasion
which are implemented by native IL instructions.

ITextSharp is an open source PDF library. In our
test we created a basic PDF document. It uses
very few class library calls and a lot of string
operations which are implemented by native IL
instructions.

DiskReporter recursively walks the directory tree
from a previously specified path and creates an
XML report. In our test 3141 directories and

12257 files were enumerated. It uses more, but
short library calls (xml node and attribute

operations, file property query).

2.

3.

4. Mohican is a small HTTP server using multiple
threads for serving requests. In our test Mohican
served a 1.3MB HTML document referencing 20
different pictures. It uses many and long class

library calls (mainly network and file access).

Profiler
trace

00:01.34
02:33:50

00:11.74

Debugger

No. of SPs|
trace

App. name |Normal rur

Counter | 00:00.1
ITextSharp00:01:02

Disk-  |00:05.46
Reporte

Mohican

01:53:92
98:11.32

24:04.42

110,034
2,825,242

316,196

00:01.3Y n/a |00:01.89175,434
Table 2: Test results

Table 2 shows the performance comparison of the
normal application run, the run under the control o
the Debugger and the Profiler in mm:ss.ii formdie T
last column contains the number of source code
statements executed.

It can be seen that applications containing fevgscla
library calls perform poor under the control of fot
the Debugger and the Profiler, while applications
containing many class library calls perform better.



ioixi

= -
Load — [5358 =

S ourceitohicanyMohicanCore\RequestParsercs  ©\SourceiMohicanitohicanCommon\ResponseBase.cs I S ource\MohinaniM ohicanCore\Respor 4 | |

Time3pan diff = DateTime.Now.Subtract(StartTime) ;
if(diff.TotcalMilliseconds > ConfigInformation.3endTimedutInMilliSeconds)

return SendRetVal.TimeOutExceeded;
¥

Fendielect.Clear(]:
Sendfelect.iddin_3Socker):

try{Socket.Select{null, SendSelect, null, 500%1000);}
catchireturn SendRet¥al.SocketException:} J

if(%endfelect.Count == 1}
int sentnow = 0;

try
catch {return %endRetVal.3ocketException:}

if(sentnow > 0)
dtartTime = DateTime.Naow:

TotalSent+= sentnow;
}

¥

H

catch
{
return SendRetVal.UnknownException;

}

return SendRet¥al.OK:
5 -
«| | JIJ

Figure 3: Visualizing the trac
Applications containing long class library callgé which we currently do not support like exceptions,
any real world enterprise application) perform well nested classes, anonymous methods, generic types
under the control of the Profiler. Unfortunatelyeth and methods, application domains.
Debugger could not be tested (because of
multithreading). 7. REFERENCES

The runtime trace generated by the Profiler can be )
visualized using a Winform application as shown in [Agrola] H. Agrawal and J. R. Horgan. Dynamic
Figure 3 (the trace of Mohican). The code fragment ~ Program slicing. In SIGPLAN Notices No. 6,
in green (darker) shows the statement executed at a _Pages 246-256, 1990. )
arbitrary step of the application. Statements ifoye  [Bes0la] A. Beszedes, T. Gergely, Zs. M. Szabg, J.

(lighter) have already been executed, while white  Csirk, T. Gyiméthy. Dynamic slicing method for
statements have not yet been traversed. maintenance of large C programs, CSMR 2001,
pages 105-113.

6. CONCLUSTION AND FURTHER [ECMA] ECMA C# and Common Language
WORK Infrastructure Standards
http://msdn.microsoft.com/netframework/ecma/

. o [Mar03a] K. Maruyama, M. Terada, Timestamp
In this paper we have shown how to utilize the .NET Based Execution Control for C and Java

Debugging and Profiling Infrastructure to generate Programs, AADEBUG, 2003

r“”tl'me de’t‘)e‘;r‘:“o” trt]rage of large appncapodr;; a”O: [Mik03] A. Mikunov, Rewrite MSIL Code on the Fly
analyzed LOth method using programs Of dIfferent = .4, 1he  NET Framework Profiling API, MSDN

characteristic. We can conclude that although the magazine, issue September 2003,

method based on. thg Debugger is .ea3|er to http://msdn.microsoft.com/msdnmag/issues/03/0
implement, the Profiler is much more suitable for 9/NETProfilingAPI/

tracing large scale, multithreaded applications. [P6c05] K. Pocza, M. Biczo, Z. Porkolab. Cross-
Therefore, we plan to advance on the Profiler way. language Program Slicing in the .NET
The first and most important thing is to extend our Framework, Journal of .NET Technologies, 2005
framework to identify variables in the order asdbc [Stalll Mike Stall's .NET Debugging Blog,
variables, method arguments and class variables http://blogs.msdn.com/jmstall2004-2006

appear. We can insert instrumentation code aftgr an [Tip95a] F. Tip, A survey of program slicing
variable load and before any variable store opmmnati technigues. Journal of Programming Languages,
The on-stack-top variables can be duplicated by the — 3(3):121-189, Sept. 1995.

dup IL instruction in order to consume them in the [zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
parameter of a trace method call. dynamic slicing algorithms. Proc. International

There are some language elements and CLR features Conference on Software Engineering, pages 319-
329, 2003




