
Improving Size Estimates with .NET Product Metrics

Aleš Živkovič 1, Marjan Heričko1, Uroš Goljat1, Zoltán Porkoláb2
1 University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova 17, SI-2000 Maribor, Slovenia
2 Eötvös Loránd University, Faculty of Informatics,

Pázmány Péter sétány 1/C , H - 1117 Budapest, Hungary
E-mail: ales.zivkovic@uni-mb.si, marjan.hericko@uni-mb.si, gsd@elte.hu

Abstract
Software projects often fail regardless of the
technological changes in recent years. One of the
primary reasons is the intuitive assessment of project
size, effort, costs and duration. Project size is an
independent value where effort, costs and duration are
derived values directly related to project size. For size
estimates, several methodological approaches are
available and in use today. However the Function Point
Analysis (FPA) method tends to be predominant in
practice as well as in research. In this paper, the use of
the FPA method for a project developed in the .NET
environment is briefly discussed and linked with source
code metrics in order to improve size estimates and get
more information related to derived values such as
effort, costs and duration.

1 Introduction
One of the key questions in software development is
software size estimation. Software size is a primitive
measure, through which other important values are
calculated (e.g. effort, costs, productivity and duration).
These values are particularly interesting for project
managers at the beginning of a project. In practice, an
intuitive approach is often used, not a methodological
one. The results are often unsatisfactory. The efficiency
of the intuitive estimates can be indirectly measured via
a software project’s success factors, especially time and
budget overruns.

For systematic software size estimation, different
methods are used [10, 15], all of which have their roots
in the Function Point Analysis (FPA) method. Albrecht
[1, 4] introduced this method in 1979. Since then, it has
become the most important method for software size
estimation. The method introduced a specific way of
representing a software system and distinguished
between data functions and transactional functions. The
method was intended for all domains, although in
practice, its accuracy is different within different
domains. A more detailed empirical analysis of the
method revealed some weaknesses, which include [2, 3,
11, 12]:

• Correlation between elements of the FPA
method.

• The unsuitability of the the Value Adjustment
Factor (VAF) and General System
Characteristic (GSC).

• The violation of the monotony axiom.

From a practical standpoint, it can be concluded that the
FPA method application is more difficult with object-
oriented projects. The elements and constructs of the
FPA method are not directly applicable to object-
oriented concepts also used within the .NET framework.
Therefore, a mapping of object-oriented concepts into
FPA elements is needed. The mapping is not defined
within the FPA method itself and is consequently not
uniform. Different authors have proposed different
mapping functions [2, 3, 13, 17], mostly in the form of
additional rules. Information is gathered from different
diagrams (e.g. Use Case diagrams, class diagrams,
sequence diagrams) which are considered separately.
More detailed research has shown that the weight
factors of the standard FPA method have to be
calibrated for use in object-oriented projects [2, 3, 17].
Consequently, several FPA-like methods were
developed that map object concepts into metrics similar
to function points. Sneed proposed Object Points and
Minkiewicz developed Predictive Object Points. The
results are therefore incomparable to those calculated
within the original FPA method. Additional adjustment
factors are needed that have to be proven statistically.

This paper is divided into four sections. In the next
section, the FPA method and its use in the .NET
projects is briefly presented. The correlation between
estimated size and source code metrics is discussed in
section three. The last section summarizes the findings
and discusses the potential direction for future work.

2 Use of the FPA method for .NET projects
The FPA method is declared as technologically
independent and can be used on artifacts from the late
analysis phase. The use of the method in early stages is
also possible [5, 16] with the use of historical data and
statistics. In this paper, the topic of early estimates is not
discussed. In practice, the use of the FPA method
proved to be more difficult with object-oriented
projects. The reason for that is the gap between object-
oriented concepts and the FPA abstraction of the
software system. The FPA method is based on its own
concepts describing a software system. The abstraction
of the software system is gained by the standard
separation in two parts: one part considers the data’s
influence and another part takes into account the
functionality of the system. Data functions (DF) are
further divided into internal and external logical files

(ILF and EIF) assigning different weights to each data
function type. The transactional functions (TF) describe
functionality through three abstract types, namely:
external inputs (EI), external outputs (EO) and external
inquiries (EQ). To be able to determine the contribution
of the FPA element (ILF, EIF, EI, EO or EQ) to the
final estimated size value, the complexity is assigned to
each element. The complexity is determined by the
number of simple data elements named Data Element
Type (DET) or structured elements named Record
Element Types (RET). To get actual values in Function
Points (FP), the tables defined in the method are used.
The FPA abstraction concept is easily applied to
structured analysis and design artifacts. The mapping of
entities, attributes and processes to FPA elements is
straightforward. With object-oriented design mapping is
not that obvious. Therefore, several researchers [2, 3,
13, 17] proposed additional rules on how to use the FPA
method with object-oriented concepts.
The common mapping of object-oriented concepts to
the FPA abstraction could be further adapted to the
.NET concepts. Table 1 presents the proposed mapping.
To avoid double counting, abstract classes are not
counted, since in order to instantiates such a class, the
concrete class with implemented abstract methods must
be present. The same applies for abstract methods. Since
the property is implemented as a pair of methods for
setting and retrieving attribute values, the concept is
mapped to one or more transactional functions of the
type external input (EI) and external output (EO).

Table 1: Mapping of the .NET to the FPA Concepts
.NET Concept FPA Concept
class data function - ILF
abstract class not counted
interface data function - EIF
method transactional function

(EI, EO, EQ)
abstract method not counted
attribute DET (value type)

RET (reference type)
property transactional function

(EI or EO or both)
virtual method not counted
generic (method)

(class)

transactional function
(EI, EO, EQ)
data function - ILF

method parameter (in) DET (value type)
FTR (reference type)

method parameter (out) DET (value type)
FTR (reference type)

return type DET (value type)
FTR (reference type)

value type DET
reference type RET (for DF)

FTR (for TF)

The concept generic could be used as parameterized
class or method and therefore has different mapping that
depends on the use of the concept. Although .NET has
two types of parameters (in and out) the mapping is
equal for both. The FPA method has only two types of
elements defined for describing parameters - DET and
RET/FTR.
The question of how to map concepts like generic,
property, abstract and virtual methods, abstract classes
and interfaces from the .NET framework to the FPA
method is still an open topic, and has to be examined in
more detail with the empirical evaluation of the
projects. The impact of more detailed classification of
the .NET elements within the size estimation process
has to be tested as well.

Figure 1: NStats GUI Interface

In this initial research, only one project was evaluated.
The project called NStats was developed in C# and
works as a standalone Windows application with a GUI
interface (see Figure 1) although it can be run in the
system console as well. The application examines .NET
projects, generates statistics and plots graphs (see Figure
2).

(a)

(b)

Figure 2: Graphs showing changes in the total number of code
lines - (a) line graph and (b) column graph

The implemented metrics are:

• number of lines of code (LOC),
• number of comment lines,
• number of C# projects in the assembly,
• number of C++ projects in the assembly,
• number of HTML tags in the project and
• number of files for MS Reporting Services.

The project took eleven developer days to complete and
produced 2.468 LOC in C#. The statistic is summarized
in Table 2.

Table 2: Statistics Summary for the NStats Project
Metrics Value
Number of projects 3
Number of files in assembly 36
Total number of classes 29
LOC in C# 2468
Number of commentary lines 2450
Number of HTML tags 0
Total effort (hours) 88
Duration (days) 11
Number of developers involved 2
Estimated project size (FP) 117

To correctly interpret results more projects are needed
and will be evaluated in the future.

3 Function Points and Code Metrics
From the example in Section 2, it is obvious that the
interpretation of the collected data could be difficult
without the appropriate context. Although one could
argue that more data would allow for the correct
interpretation of the results, this might not be the case,
especially if the data is collected from projects that vary

greatly. The properties that may influence the value of
the collected data are (in part):

• project team size,
• code quality,
• level of code reusability,
• portion of reusable code included in the new

code,
• algorithmic complexity of the solution and

others.
For example, if the project has only one developer with
outstanding productivity, the collected data is without
value if it does not note this information. On the other
hand, the low productivity on another project may be
due to the high reusability of the code which is of very
good quality and easy to maintain. The benefits are
visible through the long-time observation of the same
code. The aim of our research is to prove a correlation
between the software size estimates and source code
metrics on the example of the .NET projects.

Size
Estimation

Project
Development

Source Code
Analysis

Evaluation of
Long Term

Benefits

EXISTIN
G

 STEPS
A

D
D

ITIO
N

A
L STEPS

Figure 3: Additional Steps in the Estimation Process

Figure 3 shows the supplemented estimation process
that adds two additional steps. The simplified estimation
process has only two high-level steps. First the size
estimation takes place. It evaluates the artifacts
produced during the requirements gathering phase and
at the beginning of the analysis phase. The project then
proceeds to the development phase. Finally, the
comparison of the size estimate with the actual effort is
done in order to improve future estimates. The purpose
of the two additional steps is to extract additional meta-
data about the project from the source code. The sub-set
of source code metrics is used in this step. However, to
prove the influence of metric values on size estimation,
the project has to be tracked on a long-term basis. The
benefits for future projects, maintenance costs, bug
counts and other metrics are used to prove the

correlation. The outputs from both additional steps
represent a back-loop in order to improve the accuracy
of size estimates calculated in the first step. The back-
loop may improve future estimates, not the estimates for
the on-going project.

4 Conclusion
The .NET framework is one of the most frequently used
advanced development platforms. In this research, it is
used as an example for the fine adjustment of the size
estimation process. The original FPA method, declared
as technology independent, is easier to use after the OO-
to-FPA mapping is defined. A well-defined formal
mapping enables the automation of size estimation
procedures and has a positive impact on estimation
accuracy. However, the research presented in this paper
tends to take the adjustment of the FPA method one step
further. First, it defines the fine tuned mapping for the
.NET framework and then two additional high-level
steps are proposed for the estimation process. In the first
additional step, a sub-set of source code metric is
collected and analyzed. The findings are added to the
project repository for future use. In the second
additional step, the project is monitored through a
complete lifecycle. The potential benefits are compared
with previous findings and updated.
In the future, several initial findings have to be
examined in more detail and upgraded. With more
projects available, the mappings of .NET to FPA
concepts could be improved or upgraded to a more
generalized form like GASS [18]. The broader set of
.NET projects will enable the selection of the most
valuable source code metrics and provide statistical
evidence of their correlation to software size.

References
[1] Albrecht,A., 1979. Measuring Application

Development Productivity, IBM Applications
Development Symposium, pp. 83-92.

[2] Antoniol,G., Lokan,C., Caldiera,G., and Fiutem,R.,
1999. A Function Point-Like Measure for Object-
Oriented Software, Empirical Software
Engineering, 4 (1999), pp. 263-287

[3] Antoniol,G., Fiutem,R., and Lokan,C., 2003.
Object-oriented function points: An empirical
validation, Empirical Software Engineering, 8
(2003), pp. 225-254

[4] IFPUG, 2004. Function Point Counting Practices
Manual, Release 4.2, International Function Point
Users Group, Princeton Junction, USA, January
2004

[5] ISBSG, 2001. Practical Project Estimation, A
toolkit for estimating software development effort
and duration. International Software Benchmarking
Standards Group

[6] ISO, 1998. ISO/IEC TR 14143-1. Information
technology - Software measurement - Functional
size measurement, Part 1: Definition of concepts,
First edition, ISO/IEC

[7] ISO, 2002a. ISO/IEC TR 14143-2. Information
technology - Software measurement - Functional
size measurement, Part 2: Conformity evaluation of
software size measurement methods to ISO/IEC
14143-1:1998, First edition, ISO/IEC

[8] ISO, 2002. ISO/IEC TR 14143-4. Information
technology - Software measurement - Functional
size measurement, Part 4: Reference model, First
edition, ISO/IEC

[9] ISO, 2003. ISO/IEC TR 14143-3. Information
technology - Software measurement - Functional
size measurement, Part 3: Verification of
functional size measurement methods. First edition,
ISO/IEC

[10] Jeffery,D.R., Low,G.C., and Barnes,M., 1993. A
Comparison of Function Point Counting
Techniques, IEEE Transactions on Software
Engineering, 19 (1993), pp. 529-532

[11] Lokan,C., 1999. An empirical study of the
correlations between function point elements,
Proceedings of METRICS '99: Sixth International
Symposium on Software Metrics, pp. 200-206

[12] Lokan,C.J., 2000. An empirical analysis of
function point adjustment factors. Information and
Software Technology, 9 (2000), pp. 649-659

[13] Uemura,T., Kusumoto,S., and Inoue,K., 2001.
Function-point analysis using design specifications
based on the Unified Modelling Language. Journal
of Software Maintenance and Evolution-Research
and Practice, 13 (2001), pp. 223-243

[14] UKSMA, 1998. UKSMA. Mk II Function Point
Analysis, Counting Practices Manual. version 1.31.
United Kingdom Software Metrics Association
(UKSMA)

[15] Živkovič,A., Hericko,M., and Kralj,T., 2003.
Empirical assessment of methods for software size
estimation. Informatica (Ljubljana), 4 (2003), pp.
425-432

[16] Živkovič,A., Hericko,M., Brumen B., Beloglavec
S., Rozman I., 2005a. The Impact of Details in the
Class Diagram on Software Size Estimation,
Informatica (Lithuania), 16 (2), 2005

[17] Živkovič, A., Rozman, I., Heričko, M., 2005b.
Automated Software Size Estimation based on
Function Points using UML Models, Information
& Software Technology, Volume 47, Issue 13,
October 2005, 881 - 890

[18] Heričko, M., Rozman, I., Živkovič, A., A Formal
Representation of Functional Size Measurement
Methods, The Journal of System and Software, 79
(2006), 1341 - 1358

