
On the Complexity of Class

Ákos Fóthi, Judit Nyéky-Gaizler, and Zoltán Porkoláb

Department of General Computer Science
University Eötvös Loránd, Budapest, Hungary

fa@ludens.elte.hu, nyeky@ludens.elte.hu, gsd@ludens.elte.hu

Abstract. Object-oriented programs are constructed with the help of
the same control structures as traditional ones. At first sight, therefore,
their complexity can be measured the same way as the complexity of the
traditional programs. In this case the complexity depends on the nest-
ing level of the control structures, as it has been shown by Piwowarski,
Harrison, Magel, Howatt, Baker etc. [5],[3],[4],[8]. Why do we still have
the feeling that object-oriented programs are more simple than the tra-
ditional ones? To answer this, we have to introduce a new measure of
complexity. The measures mentioned above have a common problem:
each of them evaluates the complexity of a program only from the point
of view of its control structure. Our opinion discussed here is that the
complexity of a program is a sum of three components:
(1) the complexity of its control structure,
(2) the complexity of data types used,
(3) the complexity of the data handling (ie. the complexity of the con-
nection between the control structure and the data types).
We give a suggestion for the measure of complexity of a program. First
we show this measure working well on procedural programs. Then we
extend the measure to object-oriented programs too. This new measure
of complexity is used to argue why good object-oriented programs could
seem more simple.

1 Introduction

There are several methods of measuring program-complexity. The complexity
of programs depends on the number of operators and operands (the software
science measure); on the number of predicates (cyclomatic complexity); but these
measures do not characterize sufficiently the nature of complexity, since n nested
loops or n nested if statements are undoubtedly more complex than the sequence
of n loops, or the sequence of n decisions. The complexity of programs was so
far mostly measured on the basis of its control structure.

Nowadays, one of the most frequently read notion in the literature of pro-
gramming methodology is the ’object-oriented’ one. While constructing great
systems the questions of reusability and extendibility became of key importance.
The more simple a program is the easier it is to understand, later to modify or
reuse some parts of it in the case of the construction of other similar programs.
Followers of object-oriented methodology state that professional software pro-
duction becomes notably simplified using this new technique, which results in
enormous cost decrease.

2 Á. Fóthi, J. Nyéky-Gaizler, Z. Porkoláb

Object-oriented programs contain the same control structures (sequence, if-
and loop statements) as the traditional ones, thus there seems to be no difference
in their complexity.

What is the greatest novelty of this design approach? It draws the atten-
tion to the importance of precise definition and consistent use of abstract data
types. Actually, if we inspect starting from this concept the program complex-
ity measures so far, it will immediately strike us, that none of them takes into
account neither the influence of the technique of hiding (e.g. use of procedures)
on the complexity of programs nor the complexity of data used in the pro-
gram, respectively the complexity of references to objects of different types or
the consequences of hiding the representation and implementation of abstract
data types. Parallelly with the control structures we also have to examine the
structure of data with the help of an appropriate measure to their complexity.

According our original proposal [10], that when counting the complexity of
a program, we should take the complexity of the data used and the complexity
of data handling into consideration, we should see the decreasing of complexity
through hiding techniques.

2 Definitions and notions

We shall define the new measure on the basis of the definitions given to the
complexity of nested control structures. The definitons connected to this come
from the excellently ”rigorous” description of J.Howatt and A. Baker [5].

Definition 2.1. A direct graph G = (N,E) consists of a set of nodes N and a
set of edges E. An edge is an ordered pair of nodes (x,y). If (x,y) is an edge then
node x is an immediate predecessor of node y and y is an immediate successor
of node x. The set of all immediate predecessors of a node y is denoted IP(y)
and the set of all immediate successors of a node x is denoted IS(x). A node
has indegree n if E contains exactly n edges of the form (w,z), similarly a node
has outdegree m if E contains exactly m edges of the form (z,w).

Definition 2.2. A path P in a directed graph G = (N,E) is a sequence
of edges (x1, x2), (x2, x3), . . . (xk−2, xk−1), (xk−1, xk), where ∀i[1 ≤ i < k] ⇒
(xi, xi+1) ∈ E. In this case P is a path from x1 to xk.

Definition 2.3. A flowgraph G = (N,E, s, t) is a directed graph with a
finite, nonempty set of nodes N, a finite, nonempty set of edges E, s ∈ N is the
start node, t ∈ N is the terminal node. For any flowgraph G, the s start node is
the unique node with indegree zero; the t terminal node is the unique node with
outdegree zero, and each node x ∈ N lies on some path in G from s to t. Let N ′

denote the set N − {s, t}.
J.W. Howatt and A.L.Baker define the notion of the basic block for modeling

control flow as follows:

Definition 2.4. A basic block is a sequential block of code with maximal
length, where a sequential block of code in a source program P is a sequence of
tokens in P that is executed strating only with the first token in the sequence, all

On the Complexity of Class 3

the tokens in the sequence are always executed sequentially, and the sequence is
always exited at the end. Namely, it doesn’t contain any loops or if statements.

Definition 2.5. Every node n ∈ N of a flowgraph G = (N,E, s, t) which has
outdegree greater than one is a predicate node. Let Q denote the set of predicate
nodes in G.

The well-known measure of McCabe (cyclomatic complexity) is based only
on the number of predicates in a program:V (G) = p+ 1. The inadequacy of the
measure becomes clear, if we realize that the complexity depends basically on
the nesting level of the predicate nodes. The measures proposed by Harrison and
Magel [3],[4] and Piwowarski [8] proven to be equivalent in principle by Howatt
and Baker [5] take this lack into account.

Definition 2.6. Given a flowgraph G = (N,E, s, t), and p, q ∈ N, node p
dominates node q in G if p lies on every path from s to q. Node p properly
dominates node q in G if p dominates g and p 6= q. Let r ∈ N , node p is the
immediate dominator of node q if (i) p properly dominates q and (ii)if r properly
dominates q then r dominates p.

The formal definition of the scope number is based on the work of Harrison
and Magel.

Definition 2.7. Given a flowgraph G = (N,E, s, t), and p, q ∈ N,, the set
of first occurence paths from p to q, FOP(p,q) is the set of all paths from p to q
such that node q occurs exactly once on each path.

Definition 2.8. Given a flowgraph G = (N,E, s, t), and nodes p, q ∈ N,, the
set of nodes that are on any path in FOP(p,q) is denoted by MP(p,q):

MP (p, q) = {v | ∃P [P ∈ FOP (p.q) ∧ v ∈ P] }

Definition 2.9. In a flowgraph G = (N,E, s, t), the set of lower bounds of a
predicate node p ∈ N is

LB(p) = {v | ∀r∀P [r ∈ IS(p) ∧ P ∈ FOP (r, t) ⇒ v ∈ P]}

Definition 2.10. Given a flowgraph G = (N,E, s, t), and a predicate node
p ∈ N , the greatest lower bound of p in G is

GLB(p) = {q | q ∈ LB(p) ∧ ∀r [r ∈ (LB(p) \ {q})⇒ r ∈ LB(q)]}

Definition 2.11. Given a flowgraph G = (N,E, s, t), and a predicate node
p ∈ N , the set of nodes predicated by node p is

Scope(p) = {n | ∃q [q ∈ IS(p) ∧ n ∈MP (q,GLB(p))] } \ { GLB(p) }

Definition 2.12. Given a flowgraph G = (N,E, s, t), the set of nodes that
predicate a node x ∈ N , is

Pred(x) = {p | x ∈ Scope(p)}

.

4 Á. Fóthi, J. Nyéky-Gaizler, Z. Porkoláb

Definition 2.13. The nesting depth of a node x ∈ N , in a flowgraph
G = (N,E, s, t) is

nd(x) = | Pred(x) |
Thus, the total nesting depth of a flowgraph G was counted as

ND(G) =
∑

n∈N ′
nd(n)

The measure of program complexity given by Harrison and Magel is the sum
of the adjusted complexity values of the nodes. This value can be given - as
proved by Howatt - as the scope number of a flowgraph:

Definition 2.14. The scope number, SN(G) of a flowgraph G = (N,E, s, t)
is

SN(G) = | N ′ | +ND(G)

The main concept behind this definition is, that the complexity of under-
standing a node depends on its nesting depth, on the number of predicates
dominating it. This measure was proved by J.W. Howatt and A.L.Baker to be
equivalent to the ones proposed by Piwowarski or Dunsmore and Gannon, that
is why we shall refer to this in the following.

3 The complexity of procedural programs

As we can see from the above, the software complexity measures did not so far
take the role of procedures into consideration, while the complexity of data used
was completely out of the question.

Our first suggestion is directed towards the introduction of the notion of
procedure . The complexity of programs, decomposed to suitable procedures,
is decreasing. We need a measure which expresses this observation.

Let us represent a program consisting of procedures not with a flowgraph,
but with the help of a set of flowgraphs. Let us define the complexity of a
program as the sum of the complexities of its component flowgraphs!

Definition 3.1. A programgraph P = {G | G = (N,E, s, t) flowgraph} is
a set of flowgraphs, in which each start node is labelled with the name of the
flowgraph. These labels are unique. There is a marked flowgraph in the set,
called the ’main’ flowgraph, and there is at least one flowgraph in the set which
contains a reference to each label except the ’main’ one.

Definition 3.2. The complexity of a programgraph will be measured by the
sum of the scope numbers of its subgraphs

C(P) =
∑

G∈P
SN(G)

This definition shall reflect properly our experience that if we e.g. take a
component out of the graph which does not contain a predicate node to form a
procedure - i.e. a basic block, or a part of it (this means a single node), then
we increase the complexity of the whole program according to our definition.

On the Complexity of Class 5

We extend the definitions that we have used so far: Let the set of nodes of
our flowgraphs be widened by a new kind of node to denote the data! Let us
denote by a small triangle (4) the data nodes in the program. Let us draw to
these nodes special edges, called data reference edge, which surely return to
their origin from each node, where there is a reference to that data.

Definition 3.3. Let N and D be two finite, nonempty sets of control struc-
ture and data nodes respectively. A data reference edge is a triple (x1,x2,x1)
where x1 ∈ N and x2 ∈ D.

Let us redefine the notion of a flowgraph as follows:
Definition 3.4. A data-flowgraph G = (N , E , s, t) is a directed graph with a

finite, nonempty set of nodes N = N
⋃
D, where N represents the nodes belong-

ing to the control structure of the program and D represents the nodes belonging
to the data used in the program, (both of them are nonempty), with a finite,
nonempty set of edges E = E

⋃
R, where E represents the edges belonging to the

control structure of the program, and R represents the set of its data reference
edges. s ∈ N is the start node, t ∈ N is the terminal node. The s start node is
always the unique node with indegree zero for all the data-flowgraphs G,; the t
terminal node is the unique node with outdegree zero, and each node x ∈ N lies
on some path in G from s to t. Let N ′ denote the set N − {s, t}.

d2

d4

mainS

b

t
main

c

P2

a

d

1d1P

3

Fig.1.

6 Á. Fóthi, J. Nyéky-Gaizler, Z. Porkoláb

d2

d4

a

P2

t

s

e

e

b cd3

t
main

mainS

1d1P

Fig.2.

As an example see Fig. 2. constructed from the graph shown on Fig.1.. The
complexity of this program will be 18 opposed to the value 24 obtained for the
program on Fig. 1.

The occurences are of course, in general, not so simple because there can
be several references to the same data. How could we decrease the complexity
of the program in addition to this? One fundamental tool is the decreasing of
the number of small triangles, the number of data used. One possibility for this
is that we draw certain data into one structure, creating data structures from
our data. E.g. if we have to work with a complex number, then we decrease
the complexity of the program if instead of storing its real and imaginary part
separetely in the variables a and b , we draw these to a complex number x
which has operations treating the real and imaginary part appropriately. The
reduction(the decreasing of data nodes) occurs of course only when we hide the
components in the following from the outerworld, since if we do not do this,
this would mean, on the level of the program graph, that we did not merge two
data nodes into one, but created a third one to the previous two.

As a matter of fact we can decrease the complexity of program in connection
with data if and only if we build abstract data types hiding the representa-
tion. In this case the references to data elements will always be references to
data since a data can only be handled through its operations. While computing
the complexity of the whole program we have to take into account not only the
decreasing of the complexity, but also its increase by the added complexity of
determined by the implementation of the abstract data type. Nevertheless this
will only be an additiv factor instead of the previous nested factor.

That is the most important complexity-decreasing consequence of the object
oriented view of programming: the object hides the type from the predicates
(decisions) supervising the use of the object.

On the Complexity of Class 7

4 The complexity of class

We can naturally extend our model to object-oriented programs. In the centre of
the object-oriented paradigm there is the class. Therefore we should first describe
how we measure the complexity of a class. In the base of the previous sections
we can see the class definition as a set of (local) data and a set of methods.

Definition 4.1. An class-graph O = {G | G data−flowgraph} is a finite set
of data-flowgraphs (the member graphs). The set of nodes N = N

⋃
D, where

N represents the nodes belonging the control structure of one of the member
graphs and D represents the data nodes used by the member graphs. We can
call D also as the set of attributes of the class. The set of edges E = E

⋃
R

represents the E edges belonging the control structure of one of the member
graphs and R as the data reference edges of the attributes. As the control nodes
(nodes belonging to the control structure of one of the member graphs) were
unique, there is no path from one member graph to another one. However, there
could be attributes (data nodes) which are used by more than one member graph.
These attributes have data reference edges to different member graphs.

This is a natural model of the class. It reflects the fact, that a class is a
coherent set of attributes (data) and the methods working on the attributes.
Here the methods (member functions) are procedures represented by individual
data-flowgraphs (the member graphs). Every member graph has his own start
node and terminal node, as they are individually callable functions. What does
make this set of procedures more than an ordinary library is the common set of
attributes used by the member procedures. Here the attributes are not local to
one procedure but local to the object, and can be accessed by more procedures.
(In the same time it is still possible to use local data to one procedure. This is
a data node, which has reference edges to only one procedure.)

Definition 4.2. The complexity of a class can be computed in the very
similar way than the complexity of the program:

C(O) = | N ′ | +
∑

G∈O
ND(G)

The complexity is depending on the nodes (both attributes and the ones involved
in the control structure of a member) and the predicates dominating them. As
in the definition of the complexity of a program, we summarise the total nesting
depth of each method, and add the number of nodes of the object (both control
and data nodes). When we define the Pred(x) set of an attribute x, we involve
the nodes from all the member graphs which predicate x. The number of control
nodes in the object-graph is the sum of the number of control nodes of the
member graphs. At the same time each attribute node is counted only once.

The definition reflects the common experience that good object-oriented pro-
grams have very strong binding between the attributes and the methods inside
the class and have very week connection between different classes. The complex-
ity of an individual member function doesn’t depend on whether it works on
global data or in a class attribute. However, the whole program can decrease its
complexity if it uses member functions for access local data hidden in a class.

8 Á. Fóthi, J. Nyéky-Gaizler, Z. Porkoláb

1d

set_next_day

ca

1P

set_next_month

b

t
t

P

P P

2

3 4

e

f

g

2

1

S S

d

d2

3

Fig.3.

See Fig. 5. as an example. Here we show a (simplified) date class. The class is
represented by three data members: day, month and year denoted by d1, d2 and
d3 on Fig. 5. We implemented two methods on the class: set next month and
set next day. We coded the predicate nodes as
p1 ::= month == 12
p2 ::= month == 1 or month == 3 or ... or month == 12
p3 ::= day == 31
p4 ::= day == 30

and the other nodes as

a ::= month := 1
b ::= year := year + 1
c ::= month := month+ 1
e ::= day := 1
f ::= set next month
g ::= day := day + 1

(For the sake of simplicity we ignored february and the leap-year problem.) The
complexity of the class can be computed based on the definition 4.2.
Scope(p1) = {d2, a, b, d3, c}
Scope(a) = {d2}
Scope(b) = {d3}
Scope(c) = {d2}
Scope(p2) = {d2, p3, d1, e, f, p4, g}

On the Complexity of Class 9

Scope(p3) = {d1, e, f, g}
Scope(p4) = {d1, e, f, g}
Scope(e) = {d1}
Scope(f) = 0
Scope(g) = {d1}
Pred(p1) = 0
Pred(a) = {p1}
Pred(b) = {p1}
Pred(c) = {p1}
Pred(p2) = 0
Pred(p3) = {p2}
Pred(p4) = {p2}
Pred(e) = {p2, p3, p4}
Pred(f) = {p2, p3, p4}
Pred(g) = {p2, p3, p4}
Pred(d1) = {p2, p3, p4, e, g}
Pred(d2) = {p1, a, c}
Pred(d3) = {p1, b}
Thus | N ′ | = 13, ND(G) = 24 and C(O) = 37.

Remarks

(1) In a real object-oriented language when we implement a class, member func-
tions often call another member functions (from the same or from a different
class). In Fig. 5. member function set next day calls set next month, an other
member function of the same class. As we have seen at the procedural programs,
we can represent the called procedure in the caller as an elementary node. The
called procedure should represented as a member graph in the same or in a
different object. As at the complexity of the program, such constructions are
regularly decrease the complexity of the caller function and the class.

(2) It is possible, that a class has only data and has no member function. This
is a kind of grouping data. However this is not a supported technique, it is
syntactically correct to write in C++:

class date // example 4.1.
{
public :

int year, month, day;
};
In our model, we can still compute the complexity of this class, which is the
number of the attributes. This is in harmony with the common sense. Similarly,
if a class has no attributes at all, its complexity is the sum of the individual
members. This ”class” is an ordinary function library.

(3) The model we introduced does not make difference between public and private
data and method. The access right of a member is not influences the complexity
of the class itself. Let see the two C++ class definitions bellow:

10 Á. Fóthi, J. Nyéky-Gaizler, Z. Porkoláb

class date // example 4.2.
{
public :

void set next month() {
if(month == 12) { month = 1; year = year + 1; }
else { month = month+ 1; }

}
int year, month, day;

};
class date // example 4.3.
{
public :

void set next month() {
if(month == 12) { month = 1; year = year + 1; }
else { month = month+ 1; }

}
private :

int year, month, day;
};
Can an ordinary C++ programmer see the differences in complexity between
the two definitions? We can hardly say yes. However, there could be differences
in the complexity of the client code, which uses the class. If the client accesses
the attributes of the class via the set next month function, we can replace its
subgraph in the client code in the known way. This decreases the complexity of
the client code. If the client accesses the attributes directly, we cannot do this.
Using the example 4.2. the client programmer can choose whichever way, with
the code in example 4.3. he is enforced to choose the better one.

5 Conclusions

The complexity measure studied here expresses the structural complexity of the
program.

We investigated the given complexity measures, and found them suffering
from a common problem, that they, while computing the complexity of a given
program, did not take the role of neither the modularization nor the data used
into account. On the basis of the previous efforts of J.W.Howatt and A.L.Baker
we suggested a new measure of program complexity, which reflects our psycholog-
ical feeling that the main concepts of object-oriented programming methodology
help us to decrease the total complexity of a program.

The notion of inheritance allows actually to hide a class of types, further
decreasing the sum of complexity, of course adding the complexity of the inheri-
tance graph. To compute the complexity of an inheritance graph we have to use
the graphrepresentation suggested by Meyer [7], namely using edges from the
descendants to their ancestors, since the complexity of a class depends on their
ancestor(s), not on their descendant(s). The complexity of an object-oriented

On the Complexity of Class 11

program will thus be determined by the sum of the complexity of the inheri-
tance graph and the complexity of classes used.

References

[1] Dijkstra,E.W.: A Discipline of Programming, Prentice-Hall, Engelewood Cliffs,
N.Y.,1976.

[2] Fóthi,Á. and Nyéky-Gaizler,J. : A Theoretical Approach of Objects and Types,
in: Kai Koskimies and Kari-Jouko Raiha (eds.): Proceedings of the Second Sym-
posium on Programming Languages and Software Tools, Pirkkala, Finland, August
21-23,1991, Report A-1991-5,August,1991.

[3] Harrison,W.A. and Magel,K.I. : A Complexity Measure Based on Nesting Level,
ACM Sigplan Notices,16(3),63-74 (1981).

[4] Harrison,W.A. and Magel,K.I. : A Topological Analysis of the Complexity of
Computer Programs with Less Than Three Binary Branches, ACM Sigplan No-
tices,16(4), 51-63 (1981).

[5] Howatt,J.W. and Baker,A.L. : Rigorous Definition and Analysis of Program Com-
plexity Measures : An Example Using Nesting, The Journal of Systems and Sofware
10,139-150 (1989).

[6] McCabe, T.J. A Complexity Measure, IEEE Trans. Software Engineering, SE-
2(4),308-320 (1976).

[7] Meyer,B. : Object-Oriented Software Construction, Prentice Hall, New York, 1988
[8] Piwowarski,P. : A Nesting Level Complexity Measure, ACM Sigplan Notices

,17(9),44-50 (1982).
[9] Varga, L.: A new approach to defining software design complexity. In: R.Mittermeier

(ed.): Shifting Paradigms in Software Engineering. Springer Verlag, Wien, New
York, 198-204.(1992)

[10] Fóthi, Á., Nyéky-Gaizler, J.: On the Complexity of Object-Oriented Programs,
Proc. of the Third Symp. on Programming Languages and Software Tools, Kaariku,
Estonia, 1993.

