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Abstract. To ensure the correctness of template based constructions
in C+-, constraints on template parameters are especially useful. Un-
like other languages (Ada, Eiffel, etc), C++ does not directly support
checking requirements on template parameters (i.e. concept checking).
However, many articles introduce ad hoc solutions based on special lan-
guage features. In this paper we propose a structure for a general in-
trospection library which supports easy expression and combination of
basic orthogonal requirements, providing the possibility to avoid reim-
plementation of simple checks for every similar concept. Based on these
building blocks, it is possible to express highly complex constraints on
template parameters, contrary to languages having builtin support for
a limited set of constraints only. Our library enables a checking method
that takes the advantages of previous solutions, such as REQUIRE-like
macros and static interfaces. Our implementation is non-intrusive, relies
only on standard C++ language features and results no runtime over-
head.

1 Introduction

Generative programming is a rapidly developing and expanding area in com-
puter science of our days. It includes generic programming, what aims to create
general and reusable components, and template metaprogramming, what tries
to replace calculations from the program (run time) to the compiler (compile
time). In C++ these paradigms are based on the template facility of the lan-
guage, which provides parametric polymorphism. Templates have many unique
properties unlike other constructs of the language. By definition, every part of
the template is instantiated only when used in the code. Unfortunately this may
cause a surprising behaviour of our code during the development process. For
instance, if we add a legal method call on an object of a template class, our
previously accepted code may not compile anymore. This is a result of lazy in-
stantiation: defects in the parameter type of the template are encountered only
during instantiation of the required feature.

Let us clarify this with an example: using a class T (that has no comparison
operator<) as type parameter for a given C container template, C<T> is legal even
if C defines a sort () operation, which depends on comparison of objects of type
T. Because of the lazy evaluation strategy, the compiler does not try to instantiate



the sort operation, therefore does not detect the lack of operator< in T. Later,
when a client happens to call the sort () function and the function is about to
be instantiated, the compiler flags the lack of operator<in T and raises an error.
This holds even for misspelled functions, e.g. a call srot () instead of sort() ina
function template body would not be recognized until an instantiation attempt.
Thus the compiler may accept code expected to be refused and may raise errors
later unexpectedly.

There is no builtin language support in C++ to ensure that features of
a template type parameter exist. Template arguments are not constrained in
any way. Instead, all type checking is postponed to template instantiation time.
The lack of language support is intentional (see [7]). Indeed, lazy instantiation
strategy allows a larger number of types to be used as parameter for a given
template: our code will be valid (also for otherwise illegal types) as long as we
do not try to instantiate any nonexisting member of that parameter type.

According to Stroustrup, the flexibility of this solution makes concepts un-
necessary. He considered concept checking to be even harmful. Contrary, there
were heavy efforts to implement concept checking on template parameters since
the introduction of templates in C+-. In many cases, instantiation of templates
can be explicitly forced, thus drawbacks of lazy instantiation can be avoided.

First ad hoc solutions were based on forcing instantiation of required tem-
plate features manually, e.g. in constructors. Later, an improved version of this
technique by Siek [2] was able to avoid runtime overhead for such instantiations.
This solution is currently used in several libraries, e.g. in the STL implementa-
tion of g-++. Further in the article, we will refer to this solution as REQUIRE-
like macros or traditional concept checking. Another approach was presented
by Smaragdakis and McNamara [1]. They introduced a framework called static
interfaces, which is based on explicitly specifying concepts that a class conforms
to, similarly to interfaces in e.g. Java.

It would be very important and profitable to have a standard, well designed
concept checking library: it would largely increase the chance of early detection
of many conceptional errors in our program design. Despite the heavy efforts,
there are still many deficiencies in current works on concept checking.

Firstly, most concept checking libraries (e.g. boost::concept [10]) raise compile
time errors when the inspected type does not meet its requirements. Introspec-
tion and feature detection on type parameters (returning compile time constants
instead of raising errors) would allow us to use more sophisticated programming
techniques, such as compile time adaptation. As an advantage of compile time
adaptation techniques, e.g. a container would be able to store comparable types
in a binary tree for efficient access, while it could store other types in a vector.
Based on compile time boolean results, we also would be able to express rela-
tionships between concepts, using arbitrary logical operations, while previous
libraries used an implicit and connection between all conditions. For example,
a type can be serialized to cout using operator<< or has member function
print (). Another example can be a type having no public constructor (e.g.



singletons). Using either builtin logical operators or custom metaprogramming
calculations, we are even able to exploit the lazy evaluation of logical expressions.

Secondly, most of the previous works were concentrating on checking particu-
lar concepts, but no comprehensive work was made on implementing elementary
concepts themselves. Most examples verify the existence of a member type (e.g.
T::iterator) or a simple function (e.g. comparision operator) in a type param-
eter. We can easily implement such checks for a single function, but without
reusable basic concepts, they must be completely rewritten for any other func-
tion, even similar ones. (E.g. concepts EqualityCheckable and LessThanCompa-
rable are verifying operators with the same signature, but they are both have
to be written from scratch using current libraries if they are not already imple-
mented).

Thirdly, until now, no discussion was made about what would be useful to
be expressed as a concept and what minimal orthogonal set of (meta)operations
would be required to cover all possible checks. Relying on an orthogonal and
complete set of basic concept implementations, we would be able to create a
well designed concept library.

Finally, despite having several concept libraries, there are many concepts that
seemingly cannot be implemented in C+-. Such a concept is already mentioned
above, when a type should have no public constructor. We cannot be sure if we’re
all searching for the solution at the wrong place, or it is theoretically impossible
to implement such concepts based on features of the current language standard.
The limitations of concept checking in C++ is still terra incognita.

Therefore, we suppose the following strategies for a well-designed concept
library:

1. Introspection of code and actions based on check results should be separated:
check failures should not be bound to aborting compilation. Rather, an el-
ementary action should be provided to interrupt compilation with custom
messages.

2. Concept checking should be factorized to orthogonal, elementary conditions.
We should give tools for constructing compound concepts.

3. The library should be non-intrusive and extensible.

In this paper we aim to provide a general and comprehensive, non-intrusive
framework for expressing basic concepts in C++. Qur checks result compile time
constants instead of compile errors, thus allowing compile time adaptation tech-
niques to be used. The structure of our framework is intended to be orthogonal.
Later, based on these building blocks we present a way of concept checking that
tries to take the advantages of both traditional concepts and static interfaces.

2 Programming techniques

Throughout this paper we use several special language features and techniques.
In this part we give an introduction to our implementation "tricks".



Firstly, we have two distinct classes Yes and No marking true and false values
by their different size!. These classes will be return types of functions, thus
marking which variety of overloaded functions is actually chosen for the current
function arguments.

typedef char No; // --- Type meaning false
typedef struct { char dummy[2]; } Yes; // --- Type meaning true

The size of Yes is clearly more than the size of No, therefore using the sizeof
operator we can distinguish these classes during compilation time. Instead of
manual calls of operator sizeof, it is easier to read the code that uses the
following class and macro:

// --- Type to return result as a bool constant
template <int> struct Conforms;

template <> struct Conforms< sizeof(No) >
{ enum { Result = 0 }; };

template <> struct Conforms< sizeof(Yes) >
{ enum { Result =1 }; };

// --- Provide more readable form of checking result
#define CONFORMS(PARAM) Conforms< sizeof (PARAM) >::Result

Class Conforms uses template specialization what allows us to use differ-
ent bodies for templates with different parameters. Conforms does not have an
implementation for the general case, providing that any parameter other than
sizeof (No) or sizeof (Yes) leads to compilation error. For an actual argument
sizeof (No), the class holds 0 as an enumerated value (being equivalent to a
bool with a false value), otherwise it holds 1 for sizeof (Yes) (same as true).
Finally we define macro CONFORMS to give a shortcut for the result.

Another common technique is using ellipses (marked as "..." in function
signatures). Ellipses mean "match all number and type of parameters". It enables
creation of default rescue branches while overloading functions: when the match
for all other signatures fail, it surely succeeds. Because ellipse have a minimal
priority, it is matched only if no other signature matches the actual arguments.
Though ellipses are often considered to be dangerous, we do not actually try
to access the parameters of such functions. Ellipses are used to decide whether
the actual parameters match the signature of another function or not, hence our
library remains safe.

Yes f(double); // --- use different return types
No f£(...); // --- use ellipse in rescue case
bool a = CONFORMS( f(2) ); // --- calls first, results true
bool b = CONFORMS( f("two") ); // --- calls rescue case, results false

! For a detailed explanation of this technique, see [4].



Using the sizeof operator (in the implementation of macro CONFORMS) on
the result of the function call, the function itself is no actually executed, because
size of the result type can be deducted anyway. Not executing any function body,
we have no runtime overhead penalty for checking. Since no implementation for
the function is needed, a single declaration is enough, no definition is required.

We also use the so-called SFINAE rule of C++, what is an acronym for
"substitution failure is not an error" (see [3]). It is also often referenced as "two
phase lookup". This principle is applied when the compiler tries to instantiate a
function template, but deduction of template parameters results in a type error.
In this case, instead of raising an error, it tries to use other overloaded instances
of the same function. If the compiler finally succeeds, the failure is suppressed
and is not considered as an error; it will be flagged only if all instantiation
attempts have failed.

template <class T>
typename T::iterator f(T t) { return t.begin(); }

void f(...) {} // --- rescue case
f( list<int>() ); // --- calls first
£f(2); // --- no int::iterator, calls second

Above we defined two functions to check the existence of type iterator
declared inside a class. Calling function £() with a 1list<int> argument, the
first variety of the function is used: type T is deducted from the type of the
argument, and it has an iterator type, thus the signature is valid. This not holds
for the second call: int has no nested types at all, thus the signature is invalid
and instantiation of the template function fails. According to the SFINAE rule,
the compiler struggles on to search for other overloaded versions of the function,
and finds our rescue function with the ellipse. Therefore the last line calls this
rescue function and the instantiation error will be suppressed.

We can exploit the SFINAE rule directly with the definition and use of the
following template class?:

template <bool, class> struct enable_if {};
template <class T> struct enable_if<true,T> { typedef T Result; };

Class enable_if provides the possibility of checking arbitrary compile time
conditions on any type. It defines the second parameter as Result inside the
class, if the condition (as its first parameter) is true; otherwise it does not contain
anything. Type enable_if has to be included in the signature of a function, and
additionally a rescue function is needed in the following manner:

// --- Declare function with enable_if specifying custom condition
template <class T> enable_if<MY_CONDITION, Yes>::Result f(T);

No f£(...); // --- rescue case
bool result = CONFORMS( £(1) ); // --- verify condition on type int

% Class enable_if is explained in detail in [8], and is part of the Boost library [9].



If MY_CONDITION is true, the result type of enable_if will be Yes, thus the
signature of the first function will be legal and preferred. If the condition is false,
the signature is illegal, and the rescue case is found. Hence the result type will
be No. We can use the above defined CONFORMS macro to check the result type
of the selected function variety.

3 Elementary conditions

In this section we give a general solution for several basic conditions. However,
many specific basic checks already have an appropriate solution. These checks
vary from checking the modifiers of the type of a variable (pointer, reference,
const, etc.) to verifying the presence of a nested type in a class. These works
provide good and comprehensive libraries, hance we do not intend to reinvent
the wheel: we concentrate on concepts that still do not have a comprehensive or
general solution. Furthermore, many of our ideas were inspired by these libraries
so effective details and solutions are similar at some places.

All of our concepts return the results of the check as a compile time boolean
constant, so as we can specialize our templates acccording to the check result,
hence exploiting compile time adaptation techniques. Furthermore, using con-
stants we are able to write logic expressions, thus expressing relations between
conditions. We do not directly support raising errors for unsuccessful checks.
However, if an error is needed in the case of a check failure, a simple compile
time assertion for the result can be used instead, such as STATIC_CHECK (result,
MY_ERROR_MESSAGE)?.

The following set of basic concepts is aimed to be orthogonal. Having a type
parameter, we have language support to use the type itself, or reference to one
of its nested types or members. Accordingly, we support the following atomic
concepts:

— Constraints on the type, e.g. size, modifiers, etc*
— Existence of a nested name for
e nested types
e members
— For an existing name, the exact type for that name for
e nested types
e member functions (both static and non-static)
e attributes (both static and non-static)

We can see that this list is far from being complete. Because of difficulties of
implementation, we cannot check if a type is abstract, if a function is virtual, etc.
There are many concepts that would be useful to have, but seemingly impossible
to implement using current language features. They are discussed in section 6.

3 This example is based on the compile time assertion macro of Loki [4]. Boost [9]
provides a similar solution for such assertions.

* These constraints already have an appropriate solution as presented in [4] and [3],
hence we do not discuss them here.



3.1 Attributes

Solutions based on partial template specialization exist for checking whether a
type is reference or const, discussed in [4] and [3]. In a similar manner we can
check the ezact type of an attribute. In this part we introduce our solution for this
problem, which is based on function overloading instead of partial specialization.

Based on techniques discussed above, we can check the exact type for any
member (being static or non-static member) in the following way:

template <class VarType>
struct Attribute
{

// --- Check static member
static Yes Static(VarType*);

// --- Rescue for static member
static No Static(...);

// --- Check non-static member
template <class Class>
static Yes NonStatic(VarType Class::*);

// --- Rescue functions for non-static member
static No NonStatic(...);
template <class> static No NonStatic(...);

};

// --- Example of usage (results false)
bool result = CONFORMS( Attribute<int>::NonStatic( &list<int>::size ) );

The functionality of Attribute consists of two main parts: checking static
and non-static members®. To understand how the above described programming
techniques work altogether, let us explain the compilation steps of the usage
example in the last line:

1. Classes Attribute<int> and list<int> are instantiated.

2. A member pointer is set to list<int>::size. However, it still has a cur-
rently unknown type since it can be either a member function or a data
member. (Note that if size is a static member, a conventional pointer is
gained instead)

3. Attribute<int>::NonStatic() is chosen according to overloading rules. If
the type of the pointed member matches the type parameter of the Attribute
template (actually int), our template function is preferred; otherwise the
NonStatic(...) rescue function is found.

4. The sizeof operator is applyied on the result type of the previous function
call by the CONFORMS macro, while the function itself is not actually called.
We gain the size of class Yes or No.

5 Global and namespace variables (and later, functions) could also be checked using
function Static()



5. The result size is checked and a compile time boolean constant is finally
achieved.

For a deeper understanding and becoming more familiar with class Attribute,
we introduce all different functionalities of the class through examples.

struct Base { int var; };
struct Derived : public Base {};

// --- Possible forms of calls (without CONFORMS to save space)

Attribute<const int>::Static( &Derived::var ); // --- results No
Attribute<int>::NonStatic( &Derived::var ); // --- results Yes
Attribute<int>::NonStatic<Base>( &Derived::var ); // --- results Yes

Function Static() returns true only if the parameter is a static member
of its class, non-static members are checked the same way by NonStatic().
However, this does not limit the usability of our class: if we do not care whether
the member is static or non-static, we can check both and connect the results
with a logical or (e.g. operator ||).

Function NonStatic() has an interesting feature, shown in the last two exam-
ples. Since it is a template function, we do not need to specify its type parameter,
it is automatically deduced by the compiler. We allow the examined attribute to
be a member of any class this way. Though we do not have to, we may explicitly
specify the type parameter of NonStatic(). In this case we check whether the
inspected attribute is a member of the specified class.

Note that as a consequence of our implementation technique, this solution
has an important property: we have to specify all type modifiers when inspecting
types, because they are part of the exact type to be checked. If we check whether
an attribute of type const int is type of int, we get false as result. We must
always specify the exact type to be checked.

3.2 Implement attributes, get functions for free

Checking the exact type of functions is a more complicated, but still very similar
problem to checking attributes as in 3.1. Functions have a more complex type:
they have a return type, a signature and may have several qualifiers (const,
etc). However, syntaxes for defining the type of a data member and a member
function are similar and closely related. Here, we can make a great advantage
of this fact: the exact type of a function can be inspected using the very same
method as with attributes. We use only a typedef on our previous Attribute
class to create Function and change nothing inside the class. Now we can make
the following checks:

struct Base {
static string classId();
double calc(double);

};



struct Derived : public Base {
void f(int, int);

}s

// --- All examples return type Yes

Function<string ()>::Static( &Derived::classID );
Function<void (int,int)>::NonStatic( &Derived::f );
Function<double (double)>::NonStatic( &Derived::calc );

Though we have changed nothing in the implementation of our class, it also
can be used for functions in a consistent manner. (Because there is no difference
between the implementation of checking functions and attributes, we decided to
join classes Attribute and Function into a Member class in our final solution.)
The only difference occurs when we’re parameterizing our template: we specify
function types instead of attribute types. Function qualifiers, such as const,
naturally fit into this construction:

// --- const signature
typedef void Signature(int) const;

struct S {

Signature f; // --- also can be written as void S::f(int) const
};
// --- Example resulting true

bool result = CONFORMS( Function<Signature>::Member<S>(&S::f) );

The type definition may be surprising: keyword const is meaningless except
for member functions. However, the language standard allows such definitions
so as member functions can be defined later, such as £() in class S. (Note that
despite the standard, many compilers do not accept such type definitions). Ex-
ploiting possibilities of this feature, we gain a consistent way to check function
signatures with modifiers.

Unfortunately this construction leads to compile time errors in some cases.
If a function has several overloaded instances, and none of them matches the
required signature, the compiler flags the function pointer (e.g. &S::f) to be
ambiguous. The solution for this limitation needs further work.

3.3 Types

Tt is often required for a template parameter to define a (nested) type, e.g. a con-
tainer should have a dependent iterator type. This concept can be implemented
using the SFINAE rule®, as shown in 2. Because the name of the type must
not be hardwired in a general solution, we are forced to use macros to solve the

5 A similar solution for this problem was already introduced in [3], but it was usable
only for a predefined name and had to be rewritten for each other name.



problem. One macro is required to ease the definition of the checker functions,
the other is to provide readable and comfortable usage.

// ----- Macros for easier definition

#define PREPARE_TYPE_CHECKER (NAME) \

template <class T> \

typename enable_if< sizeof (typename T::NAME), Yes >::Result \
check_##NAME (Type2Type<T>); \

\

No check_##NAME(...)

// - Macro for easier usage
#define TYPE_IN_CLASS(NAME,TYPE) check_##NAME( Type2Type<TYPE>() )

// --- Definition in global or accessable namespace
PREPARE_TYPE_CHECKER (iterator) ;

// --- Call check anywhere where variables can be defined
bool result = CONFORMS( TYPE_IN_CLASS(iterator, MyContainer) );

Class Type2Type is part of the Loki library [4], and is used to differentiate
between overloaded function variants without instantiating objects of the pa-
rameter type, what may have huge costs and unknown side effects. Type2Type
provides a lightweight type holder with a typedef inside and allows argument
type deduction the same way as a conventional parameter.

We use class enable_if to provide return type Yes for every conforming
case. For the first argument of enable_if, we have to specify a boolean tem-
plate parameter, hence we use sizeof () to "convert" the inspected type into an
integer value, which can be interpreted as a boolean.

Because a checker function for each type name must be declared before it can
be used, the PREPARE_TYPE_CHECKER macro must be called in advance with the
name to be checked as an argument, at any place in the program where global
functions can be defined. After preparation, the check can be made similarly to
other checks using the TYPE_IN_CLASS macro. In the last line of the example,
we check whether our container class has a nested type with name iterator.

3.4 Member names

Unfortunately all of our previously implemented data member and member func-
tion checks were based on the assumption that at least the name of the inspected
member exists in the class. Otherwise, a compile time error occurs since the refer-
enced member (e.g. &Derived: :var) cannot be found inside the class. Therefore
it is essential to check the existence of member names, i.e. the existence of a
attribute or function (of any type) with a given name.

The solution for this problem is very similar to the one for inspecting nested
types in 3.3. The only difference is in the conversion to a boolean parameter
for enable_if. For functions and attributes, we are able to use the address



operator&’ instead of sizeof(). For nested types, sizeof () was our only
choice, because pointers cannot be set to types.

Based on the very same principles, we can define our functions to check
member names:

// ----- Macros for easier definition

#define PREPARE_MEMBER_CHECKER (NAME) \
template <class T> \

typename enable_if< &T::NAME, Yes >::Result \
checkName_##NAME( Type2Type<T> ); \

\
No checkName_##NAME(...)

Y/ A— Macro for easier usage
#define MEMBER_IN_CLASS(NAME, CLASS) \
checkName_##NAME( Type2Type<CLASS>() )

// --- Definition in global or accessable namespace
PREPARE_MEMBER_CHECKER (size) ;

// --- Call check anywhere where variables can be defined
bool result = CONFORMS( MEMBER_IN_CLASS(size, MyContainer) );

In the last line, we are able to check whether our container class has a function
or attribute with name size.

4 Assembling concepts

In section 3 we have created our basic concepts. For practical use, we have to
combine several elementary conditions for expressing the actual requirements of
a type parameter. In this section we present our approach for assembling our
basic conditions into practically used, complex concepts.

Because all of our concept checks result a boolean value, in our case, assembly
means a simple combination using logical operations. In other libraries there was
an implicit and between listed conditions, however it does not hold for all cases.
In most cases we use logical and (operator &&), indeed, but other logical oper-
ators, such as operator! and operator| | should be supported, too. For exam-
ple, concept LessThanComparable may require that a type must have a member
comparision (T::operator<) or a global comparision operator ::operator<).
Raising an error for check failures, this concept can be expressed as follows:

template <class T> struct LessThanComparable
{
enum { Conforms =
// --- Check appropriate type for member
CONFORMS ( Function<bool (const T&) >::NonStatic(&T::operator<) )

7 Note that in C+—, all pointers are accepted as true except for null pointers.



[
// --- or global operator

CONFORMS ( Function<bool (const T&, const T&)>::Static(&operator<) )
};
};

// --- Example of usage
template <class Num> struct MyClass

{
STATIC_CHECK( LessThanComparable<Num>::Conforms,
TYPE_DOESNT_MEET_ITS_REQUIREMENTS) ;

The example uses the STATIC_CHECK macro of Loki which enables custom
error messages as its second parameter. In our user class MyClass, besides having
an assertion on the result (as above), we could also use compile time adaptation
techniques for the result.

5 Further work

5.1 Platforms

Our production code was placed into a single header file concept.h®. To minimize
dependencies from other libraries, we did not use any third party code. However,
two code fragments were used without modification from other projects is class
Type2Type from Loki and enable_if from boost. To avoid dependencies from
these libraries, we placed these very simple class definitions into header concept.h.

Altough we used only standard C++ features in our implementation, com-
pilers are still far behind the current language standard. We were able to compile
our whole framework on compilers Intel 8.0 and Visual C++ .Net 7.1. Most of
the code could be compiled on Gnu C++ 3.3, but failed to implement SFINAE
in an appropriate way. Unfortunately, we did not have the possibility to test
Comeau C++.

The only compiler that compiled flawless code was Intel 8.0. Visual C++ was
not able to correctly interpret MEMBER_IN_CLASS, however accepted it syntacti-
cally. Features compiled successfully by GNU C++ were interpreted according
to the language standard.

We should be able to "port" a working framework to widely used compilers,
hence features supported by most compilers should be used whenever possible.

5.2 Improvements

Based on discussed methods, we can check the exact type for members. How-
ever, we often do not care about the exact type in practice. Instead, we want

8 This file can be downloaded from gsd.web.elte.hu/Publications.



to know if a variable is usable (i.e. convertable®), which cannot be expressed
using the Attribute class above. E.g. we would like to require that when we
expect a short, it can be also a long or any class that can be cast to short.
Our framework should support expression of such non-strict conditions. Note
that there is no inheritance relationship between these types; in such cases when
there is, even the conventional tests of our previous Attribute class result the
desired answers. These kind of non-strict expressions should also apply to func-
tion signatures, where a void (long) signature may conform to a void (int)
restriction (such functor conversions are possible in boost: : functor, see [9]).

We should also get rid of the drawbacks of current implementation, such as
compilation error for ambigous operators. This would require a change in the
library structure, because this drawback is a direct consequence of referencing
members by name when using them as function arguments.

6 Open questions

Despite checking many kind of concepts has an appropriate solution, there are
several questions left open in this area. Perhaps the most important is checking
the existence of a public constructor for a class, e.g. a default constructor'®.
Unlike destructors, constructors are not conventional members of the belonging
class (e.g. no member pointer can be set to a constructor), therefore they cannot
be referenced explicitly as a function. This forbids the use of our above presented
method for constructors.

Similarly, we could find no solution for many template introspection issues.
Is a function virtual? How many descendents and ancestors does a class have?
Is it abstract? Is it a POD type? Does it require memory in heap?

This kind of problems raise the question: what is the limitation of C+-+
template introspection? We need a strict theoretical work inspecting;:

— What is the minimal orthogonal implementation for covering already solved
concept checking problems?

— What other concepts are expected to have a solution based on standard C++
language features?

— What are the concepts that are theoretically impossible to be solved (if there
is any)?

7 Summary

Template introspection has serious advantages compared to previous solutions,
like requires macros of g++, the more sophisticated concept library of boost
[10] or static interfaces [1].

9 Note that this is a different problem than the one has been solved with macro
SUPERSUBCLASS in [4].

10 Note that boost [10] is able to require its existence, but it raises compile error for a
check failure, and negation of this condition (e.g. for singletons) is impossible.



Conventional concept checks forced the instantiation of template features by
manual calls to required features, which yielded compile time errors in cases
of missing features. Our library does better than that: it provides compile time
boolean values as check results. At the same time, this solution had the advantage
of being non-intrusive, which also applies to our solution.

Static interfaces provide similar compile time boolean results as our frame-
work does. On the other side, they have the drawback of being intrusive since all
conforming concepts have to be explicitly specified, similarly to implementing
Java interfaces.

Our solution unites the advantages of previous solutions: we have a non-
intrusive introspection method providing boolean results, while we are able to
express the very same constraints on our classes as these previous libraries and
more. Instead of providing a large set of concrete concept checks, we intended
to implement elementary building blocks and construction facilities. This way
the user can specify and express his own custom concept conditions that can be
used for both compile time adaptation and termination of the compile process.
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