
Debugging C++ Template Metaprograms

Zoltán Porkoláb
Eötvös Loránd University,

Dept. of Programming Languages
and Compilers

H-1117 Pázmány Péter sétány 1/C
Budapest, Hungary

gsd@elte.hu

József Mihalicza
Eötvös Loránd University,

Dept. of Programming Languages
and Compilers

H-1117 Pázmány Péter sétány 1/C
Budapest, Hungary
pocok@inf.elte.hu

Ádám Sipos
Eötvös Loránd University,

Dept. of Programming Languages
and Compilers

H-1117 Pázmány Péter sétány 1/C
Budapest, Hungary

shp@elte.hu

Abstract
Template metaprogramming is an emerging new direction in C++
programming for executing algorithms in compilation time. De-
spite all of its already proven benefits and numerous successful ap-
plications, it is yet to be accepted in industrial projects. One reason
is the lack of professional software tools supporting the develop-
ment of template metaprograms. A strong analogue exists between
traditional runtime programs and compile-time metaprograms. This
connection presents the possibility for creating development tools
similar to those already used when writing runtime programs. This
paper introduces Templight, a debugging framework that reveals
the steps executed by the compiler during the compilation of C++
programs with templates. Templight’s features include following
the instantiation chain, setting breakpoints, and inspecting metapro-
gram information. This framework aims to take a step forward to
help template metaprogramming become more accepted in the soft-
ware industry.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification – C++; D.2.5 [Testing and De-
bugging]: Tracing

General Terms Languages

Keywords C++, template metaprogramming, debugging

1. Introduction
Programming is a human activity to understand a problem, make
design decisions, and express our intentions for the computer. In
most cases the last step is writing code in a certain programming
language. The compiler then tries to interpret the source code
through lexical, syntactic, and semantic analysis. In case the source
code is syntactically correct, the compiler takes further steps to
generate runnable code.

However, in numerous cases the code accepted by the compiler
will not work as we had expected, and intended. The causes vary
from simple typos – that (unfortunately) do not affect the syntax –
to serious design problems. There are various methods to decrease
the possibility of writing software diverging from its specification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

Strongly-typed programming languages, good programming con-
ventions, and many other techniques can help avoid such frustrating
situations. Nevertheless in many cases we have made some error(s),
and we have to fix it. For this we have to recognise that the bug ex-
ists, isolate its nature, and find the place of the error to apply the
fix. This procedure is called debugging.

Debuggers are software tools to help the debugging process.
The main objective of a debugger is to help us understand the hid-
den sequence of events that led to the error. In most cases this
means following the program’s control flow, retrieving information
on memory locations, and showing the execution context. Debug-
gers also offer advanced functionality to improve efficiency of the
debugging process. These include stopping the execution on a cer-
tain breakpoint, continuing the running step by step, step into, step
out, or step over functions, etc. Still, debugging can be one of the
most difficult and frustrating tasks for a programmer.

The more complex the language environment we work in,
the more sophisticated the debugging toolset we need. In object-
oriented languages like C++, a good debugger has to explore the
attributes of objects, handle virtual function calls, explore overload-
ing situations. Debuggers available for object-oriented languages
successfully tackle these challenges.

Templates are also key language elements for the C++ pro-
gramming language [16]. They are essential for capturing com-
monalities of abstractions without performance penalties in run-
time [18]. Generic programming [14], a recently emerged pro-
gramming paradigm for writing highly reusable components – usu-
ally libraries – is implemented in C++ with heavy use of tem-
plates [20]. The Standard Template Library – the most notable
example – is now an unavoidable part of most professional C++
programs [8]. Another important application field of templates is
the C++ template metaprogramming. Template metaprogramming
is a technique in which template definitions are used to control
the compilation process so that during the process of compiling
a (meta)program is executed [21]. The output of this process is still
checked by the compiler and run as an ordinary program.

Template metaprograming are proved to be a Turing-complete
sublanguage of C++ [4]. We write metaprograms for various pur-
poses. Expression templates [22] replace runtime computations
with compile-time activities to enhance runtime performance.
Static interface checking increases the ability of the compile-time
to check the requirements against template parameters, i.e. they
form constraints on template parameters [10, 12]. Subtype rela-
tionships could be controlled with metaprograms too [5, 23].

While generic programming quickly became an essential part of
C++ programs, template metaprogramming was able to break out
from the academic world only recently. Despite the growing num-
ber of positive examples, developers are still wary of using template

metaprogramming in strict, time-restricted software projects. One
reason beside the necessity of highly trained C++ professionals is
the lack of supporting software tools for template metaprogram-
ming.

In this article we describe Templight, a debugging framework
for C++ template metaprograms. The framework reads a C++
source and modifies it to emit well-formed messages during com-
pilation. Information gained this way under the ”running” of a
metaprogram is used to reconstruct the compilation process. A
front-end tool enables the user to set breakpoints, gives a step-
by-step reconstruction of the instantiation flow of templates, and
provides various other features.

In Section 2 we give an overview of C++ template metapro-
gramming compared to runtime programming. The ontology of
metaprogram errors is presented in Section 3. In Section 4 we dis-
cuss the possibility of debugging template metaprograms. Our de-
bugging framework is described in detail in Section 5 with demon-
strative examples. Limitations and future directions are discussed
in Section 6.

2. C++ Template metaprograms
It is hard to draw the boundary between an ordinary program
using templates and a template metaprogram. We will use the
notion template metaprogram for the collection of templates, their
instantiations, and specialisations, whose purpose is to carry out
operations in compile-time. Their expected behaviour might be
emitting messages or generating special constructs for the runtime
execution. Henceforth we will call a runtime program any kind of
runnable code, including those which are the results of template
metaprograms.

There is yet another kind of (pre)compile-time programming:
preprocessor metaprogramming ([27]). Later we show that our de-
bug method works properly together with preprocessor metapro-
gramming techniques.

Executing programs in either way means executing pre-defined
actions on certain entities. It is useful to compare those actions
and entities between runtime and metaprograms. The following
table describes the parallels between metaprograms’, and runtime
programs’ entities.

Metaprogram Runtime program
(template) class subprogram (function, procedure)
static const and data
enum class members (constant, literal)
symbolic names variable
(typenames, typedefs)
recursive templates, abstract data structures
typelist
static const initialisation initialisation
enum definition (but no assignment!)
type inference

Table 1. Comparison of runtime and metaprograms

There is a clear relationship between a number of entities. C++
template metaprogram actions are defined in the form of template
definitions and are ”executed” when the compiler instantiates them.
Templates can refer to other templates, therefore their instantiation
can instruct the compiler to execute other instantiations. This way
we get an instantiation chain very similar to a call stack of a runtime
program. Recursive instantiations are not only possible but regular
in template metaprograms to model loops.

template <int N>
class Factorial
{
public:

enum { value = N*Factorial<N-1>::value };
};
template<>
class Factorial<1>
{
public:

enum { value = 1 };
};
int main ()
{

const int r = Factorial<5>::value;
}

Conditional statements (and stopping recursion) are solved via
specialisations. Templates can be overloaded and the compiler has
to choose the narrowest applicable template to instantiate. Subpro-
grams in ordinary C++ programs can be used as data via function
pointers or functor classes. Metaprograms are first class citizens in
template metaprograms, as they can be passed as parameters for
other metaprograms [4].

// accumulate(n,f) := f(0) + f(1) + ... + f(n)
template <int n, template<int> class F>
struct Accumulate
{

enum { RET=Accumulate<n-1,F>::RET+F<n>::RET };
};
struct Accumulate<0,F>
{

enum { RET = F<0>::RET };
};
template <int n>
struct Square
{

enum { RET = n*n };
};
int main()
{

const int r = Accumulate<3,Square>::RET;
}

Data is expressed in runtime programs as constant values or lit-
erals. In metaprograms we use static const and enumeration values
to store quantitative information. Results of computations under the
execution of a metaprogram are stored either in new constants or
enumerations. Furthermore, execution of metaprograms can cause
new types be created. Types hold information that can influence the
further run of the metaprogram.

Complex data structures are also available for metaprograms.
Recursive templates are able to store information in various forms,
most frequently as tree structures, or sequences. Tree structures
are the favourite implementation form of expression templates
[22]. The canonical examples for sequential data structures are
typelist [2] and the elements of the boost::mpl library [26].

However, there is a fundamental difference between runtime
programs and C++ template metaprograms: once a certain entity
(constant, enumeration value, type) has been defined, it will be im-
mutable. There is no way to change its value or meaning. There-
fore no such thing as a metaprogram assignment exists. In this
sense metaprograms are similar to pure functional programming
languages, where referential transparency is obtained. That is the
reason why we use recursion and specialisation to implement loops:

we are not able to change the value of any loop variable. Immutabil-
ity – as in functional languages – has a positive effect too: unwanted
side effects do not occur.

3. Ontology of template metaprogram errors
The first examples of C++ template metaprograms were written by
Erwin Unruh and circulated among members of the ANSI/ISO C++
standardisation committee [19]. These programs did not have to be
run, their purpose was to generate warnings or error messages when
being compiled. The most famous example computed the prime
numbers, and produced the following output as error messages:

conversion from enum to D<2> requested in Prime
conversion from enum to D<3> requested in Prime
conversion from enum to D<5> requested in Prime
conversion from enum to D<7> requested in Prime
conversion from enum to D<11> requested in Prime
conversion from enum to D<13> requested in Prime
conversion from enum to D<17> requested in Prime
conversion from enum to D<19> requested in Prime

This is an erroneous C++ program in the sense of ”traditional”
programming, since the compiler emits error messages, but as a
template metaprogram it does exactly the right thing. These error
messages were intentional and produced the expected output. In
fact, the lack of error messages would denote an error in the prime
generator template metaprogram. However, generating other mes-
sages than primes would be considered erroneous too.

This example points out the difference of the notions correct
and erroneous behaviour between traditional runtime programs
and template metaprograms. The C++ International Standard de-
fines the notion well-formed and ill-formed programs [3]. A pro-
gram is well-formed if it was constructed according to the syntax
rules, diagnosable semantic rules, and the One Definition Rule. It
is ill-formed, if it is not well-formed. In case any ddiagnosable re-
quirements are broken, the compiler ”shall issue a diagnostic mes-
sage”. However, no such requirements for other forms of ill-formed
programs exist. Moreover, ”whenever this International Standard
places a requirement on the execution of a program ... and the data
encountered during execution do not meet that requirement, the be-
havior of the program is undefined and ... places no requirements
at all on the behavior of the program”. Even well-formed programs
may be a cause of problems if they exceed resource limits.

The following code demonstrates an ill-formed program, with
diagnostic message, since variable i is undefined. This leads to a
compile-time error. The program does not start to run.

#include <iostream>
int main ()
{

for (i=0; i!=4; ++i)
std::cout << i << std::endl;

}

The next example compiles but fails to stop running.

#include <iostream>
int main ()
{

for (int i=0; ; ++i)
std::cout << i << std::endl;

}

This example demonstrates an ill-formed program without di-
agnostic message. It does compile, but implements an endless for
loop. The cause of the error is the missing loop condition, and this
is the bug we will need to find using some debugging method.

Let us further examine the Factorial metaprogram described
in Section 2, and let us suppose that the template specialisation
Factorial<1> has a syntactic error: a semicolon is missing at the
end of the class definition.

template <int N>
class Factorial
{
public:

enum { value = N*Factorial<N-1>::value };
};
template<>
class Factorial<1>
{
public:

enum { value = 1 };
} // ; missing

This is an ill-formed template metaprogram, with diagnostic
message. The metaprogram has not been run: no template instan-
tiation happened. Another ill-formed template metaprogram with
diagnostic message is shown in the next example. However, it
starts to ”run”, i.e. the compiler starts to instantiate the Factorial
classes, but the metaprogram aborts (in compilation time) [15].

template <int N>
class Factorial
{
public:

enum { value = N*Factorial<N-1>::value };
};
template<>
class Factorial<1>
{
// public: missing

enum { value = 1 };
};
int main ()
{

const int f = Fibonacci<4>::value;
const int r = Factorial<5>::value;

}

As the full specialisation for Factorial<1> is written in form
of a class, the default visibility rule for a class is private.
Thus enum { value=1 } is a private member, so we receive a
compile-time error when the compiler tries to acquire the value of
Factorial<1>::value, while Factorial<2> is being instanti-
ated. The template metaprogram is ill-formed, with no diagnostic
message. However, if this code fragment is part of a bigger program
which has a well-formed Fibonacci template, the Fibonacci part
of the metaprogram would be successfully executed before abor-
tion.

Let us now erase the full specialisation.

template <int N>
struct Factorial
{

enum { value = N*Factorial<N-1>::value };
};

// specialisation for N==1 is missing

int main ()
{

const int r = Factorial<5>::value;
}

As the Factorial template has no explicit specialisation,
the Factorial<N-1> expression will trigger the instantiations
of Factorial<1> followed by Factorial<0>, Factorial<-1>
etc. We have written a compile-time infinite recursion. This is an
ill-formed template metaprogram with no diagnostic message.

In fact different compilers might react differently to this code.
g++ 3.4 halts the compilation process after the 17 levels of im-
plicit instantiations is reached, as defined by the C++ standard.
The compiler for MSVC 6 runs until its resources are exhausted
(reached Factorial<-1308> in our test). MSVC 7.1 halted the
compilation reaching a certain recursion depth. The error message
received was fatal error C1202: recursive type or function depen-
dency context too complex.

Another possible source of error in template metaprogramming
world is the exhaustion of the compiler’s resources. Let us suppose
that we want to calculate Factorial<125>::value somewhere in
the program, and that we are using the original flawless Factorial
metaprogram. In the case of a standard-compliant compiler it will
still result in a compile-time error, as the compiler will exceed the
permitted 17 levels of implicit instantiation. However, some com-
pilers, like g++ can be parameterised to accept deeper instanti-
ation levels. In this case the compiler continues the instantiation
risking that the resources will be exhausted. In that unfortunate sit-
uation the compiler will crash.

4. Metaprogram debugging
There are certain techniques to reduce the possibility of writing
malfunctioning template metaprograms.

4.1 Static assert
The tool described is a technique used in the case of runtime pro-
grams, called assertation. An assert is a function (usually imple-
mented as a macro) that requires a logic expression as parameter.
If the condition is false, the program is terminated, and an infor-
mative message is printed to the screen. If an invariant is not met
at a certain point, the program stops immediately, before any other
(also incorrect) command could modify the variables in a way that
renders the invariant true again. Thus we avoid overlooking a logic
error in the program.

On the other hand, a static assert is one of the possible ways to
handle a metaprogram situation, when a compile-time requirement
is not met by a type or a value. A static assert is capable of halting
the compilation of a program at the point of the error’s detection,
thus we can avoid an incorrect program to come into being. At the
same time, we aspire to create a static assert that contains some
sensible error message, thus it is easier for the programmer to find
the bug.

The simplest way to do this is by using a macro as defined in
[28, 7], whose simplified version is as follows:

template <bool> struct STATIC_ASSERT_FAILURE;
template<> struct STATIC_ASSERT_FAILURE<true>{};
template<int x> struct static_assert_test{};

#define STATIC_ASSERT(B, error) \
typedef static_assert_test< \
sizeof(STATIC_ASSERT_FAILURE<(bool)(B),error>)>\

static_assert_typedef_;

If the expression B is true, the existing specialisation of
STATIC ASSERTION FAILURE is used as the sizeof’s argument.
Otherwise the missing specialisation for false causes a compile-
time error. In the error argument a typename has to be provided
that passes messages for the programmer:

struct SIZEOF_INT_NOT_EQUAL_TO_SIZEOF_LONG {};

STATIC_ASSERT(sizeof(int)==sizeof(long),
SIZEOF_INT_NOT_EQUAL_TO_SIZEOF_LONG)

Static assert is a widely used technique for C++ programs using
templates [2, 25].

4.2 Concept checking
One of the most specific characteristics of C++ templates is that
we are not able to explicitly specify the requirements for a type
used as a template argument. In other words: C++ templates are not
constrained. This is an intentional design decision of the language
[17]. However, there are situations when this feature might cause
unwanted behaviour of template metaprograms.

The possibilities for specifying requirements for template argu-
ments are researched extensively, and the results are implemented
in libraries like boost::concept [25], or Alexandrescu’s Loki
[2]. A template introspection library was proposed in [24].

Major efforts are underway to extend the C++ language with
the explicit language support for constrained generics. Concepts (a
type system for templates) can reduce the possibility of misusing
templates and enhance better modularity. Early discussions on con-
cept checking can be found in [10] and [12]. Currently there are
two proposals for constrained generics for C++. The proposal of
Stroustrup and Dos Reis [18] draws motivation from generic pro-
gramming. Another proposal originated from Siek et. al. [13] is
based on earlier comparative studies on generic language features
of various programming languages [6]. An experimental compiler
derivate – ConceptGCC – already supports the latest proposal.

Both proposals are targeting key weaknesses of the C++ tem-
plate facilities. Current template instantiation techniques combine
information from both definition and instantiation context. This re-
duces the possible separation of template definitions from its user
context. Therefore C++ template definitions are harder (if not im-
possible) to modularise and check deeply compared to other lan-
guages like ADA [9].

4.3 Objectives for a metaprogram debugger
As we have seen in Section 3, compiler diagnostics are often use-
less when aiming to detect the place and cause of the unwanted be-
haviour of C++ template metaprograms. In these situations we need
to debug our code with different methods. These methods have to
include the following major components:

• We have to follow the ”control flow” of the program. In case of
template metaprograms, this is equivalent to following the chain
of the template instantiations. We should give special attention
to recognising recursive instantiations.

• We need to inform the programmer of the ”variables’” values
(i.e. the arguments and static const values of templates being
instantiated). The debugger has to track the values of variables,
and these values have to be made available to the programmer.

• To increase the efficiency of debugging the user should be
able to set breakpoints – meaning suspending the compilation
process when templates with certain arguments are instantiated

• The user should be able to control the debugging process to step
into, step over, or step out of instantiation events.

Tools we use in everyday programming for debugging are not
available in the well–known way, when dealing with metapro-
grams. We have no command for printing to the screen (in fact
we have practically no commands at all), we have no framework
to manage running code. On the other hand, we still have some
options. Having a set of good debugging tools in the runtime world
and a strong analogue between the runtime and compile-time realm

we can attempt to implement a template metaprogram debugging
framework.

A common property of debugging tools is that they analyse a
specific execution of our program. In most cases this execution
does not depend on the usage of the tool1. In such cases it does
not matter whether we are using the tool on the running program or
on a previously generated trace of its runtime steps.

One of the possible solutions is the modification of the C++
compiler to serve the information required for debugging purposes.
With the strong help of compiler vendors, this approach has many
benefits. However, to identify the exact specification for such a
major step earlier experiences are needed. Such results could be
obtained from more portable, lightweight solutions with the co-
operation of standard C++ language elements and external tools.

Applying the analogue we can say that if we had a trace file
that contains all template instantiations, the appropriate template
parameters, the inner typedef definitions, timestamps for a pro-
filer etc. step by step along the compilation process then we could
apply the tools to analyse the behaviour of our template metapro-
grams.

All we need is a utility that generates a detailed trace file about
the compilation process.

5. Implementation
Most compilers generate additional information for debuggers and
profilers. Obviously the simplest way for providing information for
our debugging framework would be the implementation of another
compiler setting that makes the framework generate the desired
trace file. However, an immediate and more portable solution is
to use external tools cooperating with standard C++ language el-
ements. An appropriate compiler support could be an ideal long-
term solution.

Without the modification of the compiler the only way of ob-
taining any information during compilation is generating informa-
tive warning messages that contain the details we are looking for
[1]. Therefore the task is the instrumentation of the source, i.e.
its transformation into a functionally equivalent modified form that
triggers the compiler to emit talkative warning messages. The con-
cept of such instrumentation is a usual idea in the field of debug-
gers, profilers and program slicers [11]. Everytime the compiler in-
stantiates a template, defines an inner type etc. the inserted code
fragments generate detailed information on the actual template-
related event. Then we have to gather the desired information from
the corresponding warning messages in the compilation output and
form a trace file. The front-end system uses this trace file to imple-
ment its various debugging features.

5.1 Overview
The input of the process is a C++ source file and the output is a
trace file, a list of events like instantiation of template X began,
instantiation of template X ended, typedef definition found etc.
The procedure begins with the execution of the preprocessor with
exactly the same options as if we were to compile the program. As
a result we acquire a single file, containing all #included template
definitions and the original code fragment we are debugging. The
preprocessor decorates its output with #line directives to mark
where the different sections of the file come from. This information
is essential for a precise jump to the original source file positions
as we step through the compilation while debugging in an IDE for
example. To simplify the process we handle the mapping of the
locations in the single processed file to the original source files in a
separate thread. Simple filter scripts move the location information

1 this immediately leads to a limitation described in Section 6

from #line directives into a separate mapping file and delete #line
directives.

At this point we have a single preprocessed C++ source file,
that we transform into a C++ token sequence. To make our frame-
work as portable and self-containing as possible we apply the
boost::wave C++ parser. Note that even though boost::wave
supports preprocessing, we still use the original preprocessor tool
of the compilation environment to eliminate the chance of bugs
occurring due to different tools being used. Our aim is to insert
warning-generating code fragments at the instrumentation points.
As wave does no semantic analysis we can only recognise these
places by searching for specific token patterns. We go through the
token sequence and look for patterns like template keyword + ar-
bitrary tokens + class or struct keyword + arbitrary tokens + { to
identify template definitions. The end of a template class or func-
tion is only a } token that can appear in quite many contexts, so
we should track all { and } tokens in order to correctly determine
where the template contexts actually end. This pattern matching
step is called annotating, its output is an XML file containing an-
notation entries in a hierarchical structure following the scope.

The instrumentation takes this annotation and the single source
and inserts the warning-generating code fragments for each anno-
tation at its corresponding location in the source thus producing a
source that emits warnings at each annotation point during its com-
pilation. The next step is the execution of the compiler to have these
warning messages generated. The inserted code fragments are in-
tentionally designed to generate warnings that contain enough in-
formation about the context and details of the actual event. Since
the compiler may produce output independently of our instrumen-
tation, it is important for debugger warnings to have a distinct for-
mat that differentiates them. This is the step where we ask the com-
piler for valuable information from its internals. Here the result is
simply the build output as a text file. The warning translator takes
the build output, looks for the warnings with the aforementioned
special format and generates an event sequence with all the de-
tails. The result is an XML file that lists the events that occurred
during the compilation in chronological order. The annotations and
the events can be paired. Each event signals that the compiler went
through the corresponding annotation point. We can say events are
actual occurrences of the annotation points in the compilation pro-
cess.

5.2 Preprocessing
The C++ preprocessor is executed in order to instrument all tem-
plates that appear in the given compilation unit. It is important to
enable the #line directives since they serve the mapping between
the original source file positions and the positions in the single pre-
processed file. By using the same preprocessor as in the normal
compilation process all possible preprocessor tricks done in the
source are processed exactly the same way, and there are no com-
patibility issues even if the code contains preprocessor metapro-
gramming or any other compiler-dependent technique.

5.3 #line filtering
Simple filters are executed that eliminate the #line directives from
the preprocessed source. At the same time they generate a map
file that later can be used to retrieve the original positions with the
position adjuster.

5.4 Annotating
The annotator parses the C++ source (using boost::wave) and
looks for special token sequences like

• beginning of scope
• end of scope

original source

preprocessor

#line filter

unaltered preprocessed source
without #line directives

annotator

instrumentator

compiler

warning parser

position adjust

visualiser

trace file

compilation output

instrumented code

annotation

file and line mapping

preprocessed source

line mapping

position correct trace file

Figure 1. Architecture of debugging framework

• beginning of template class definition (optionally a specialisa-
tion)

• beginning of template function definition (optionally a special-
isation)

• (inner) typedef definition

We use the following grammar:

openBrace = wave::T_LEFTBRACE ;
closeBrace = wave::T_RIGHTBRACE ;

templateClassBegin = wave::T_TEMPLATE >>
*(anychar_p - (

wave::T_SEMICOLON |
wave::T_LEFTBRACE |
wave::T_CLASS |
wave::T_STRUCT

)) >>
+(

(wave::T_CLASS | wave::T_STRUCT) >>
*(anychar_p - (

wave::T_CLASS |
wave::T_STRUCT |
wave::T_SEMICOLON |
wave::T_LEFTBRACE

))
) ;

templateClassDeclaration =
templateClassBegin >> wave::T_SEMICOLON ;

templateClassDefinition =
templateClassBegin >> wave::T_LEFTBRACE ;

templateFunctionBegin =
wave::T_TEMPLATE >>
+(

*(anychar_p - (
wave::T_SEMICOLON |
wave::T_LEFTBRACE |
wave::T_RIGHTPAREN

)) >>
wave::T_RIGHTPAREN

);
templateFunctionDeclaration =

templateFunctionBegin >> wave::T_SEMICOLON ;
templateFunctionDefinition =

templateFunctionBegin >> wave::T_LEFTBRACE ;

typedefDeclaration =
wave::T_TYPEDEF >>
*(anychar_p - (

wave::T_SEMICOLON |
wave::T_IDENTIFIER

)) >>
*(wave::T_IDENTIFIER >>

+(anychar_p - (
wave::T_SEMICOLON |
wave::T_IDENTIFIER

))
) >>
wave::T_IDENTIFIER >> wave::T_SEMICOLON ;

The grammar is implemented by boost::spirit rules that oper-
ate on the token sequence of the wave output. The result is an XML
file that describes the structure of the source file. Consider the fol-
lowing simple example:

template<int i>
struct Factorial
{

enum { value = Factorial<i-1>::value };
};

template<>
struct Factorial<1>
{

enum { value = 1 };
};

int main ()
{

return Factorial<5>::value;
}

The resulting XML file is the following:

<?xml version="1.0" standalone="yes"?>
<!-- [annotation] generated by Templight -->
<FileAnnotation

beginpos = "test2.cpp.preprocessed.cpp|1|1"
endpos = "|1|1">
<TemplateClassAnnotation

beginpos = "test2.cpp|1|1"
endpos = "test2.cpp|5|2"
afteropenbracepos = "test2.cpp|3|2"
beforeclosebracepos = "test2.cpp|5|1">
<ScopeAnnotation

beginpos = "test2.cpp|4|7"
endpos = "test2.cpp|4|40"/>

</TemplateClassAnnotation>
<TemplateClassAnnotation

beginpos = "test2.cpp|7|1"
endpos = "test2.cpp|11|2"
afteropenbracepos = "test2.cpp|9|2"
beforeclosebracepos = "test2.cpp|11|1">
<ScopeAnnotation

beginpos = "test2.cpp|10|7"
endpos = "test2.cpp|10|20"/>

</TemplateClassAnnotation>
<ScopeAnnotation

beginpos = "test2.cpp|14|1"
endpos = "test2.cpp|16|2"/>

</FileAnnotation>

The outmost FileAnnotation element represents the source file,
while the two TemplateClassAnnotation elements correspond
to the general Factorial template class definition and its spe-
cialisation, respectively. The beginpos and endpos attributes
show the borders of the definition while afteropenbracepos
and beforeclosebracepos contain the locations where the in-
strumented code fragments should be inserted. Note the presence
of the ScopeAnnotation elements following all ’{’ ... ’}’ pairs
regardless of their meaning.

5.5 Instrumenting
The instrumentator takes the annotation file and for each element
that marks a debug point it inserts a corresponding code frag-
ment that generates a compilation warning containing the desired
information. In the current implementation we use a double to
unsigned conversion. This construct is proved to emit a warning
when compiled by current C++ compilers. However, it is possi-
ble to insert multiple warning generator fragments to cover a wider
range of compilers. At the warning parsing step (in 5.7) the unnec-
essary warnings are dropped.

The other output of this step is the line mapping that enables
the position adjuster to retrieve the original positions from the
line numbers referring to the instrumented code in the warnings.
Inserted code fragments were defined to be semantically neutral,
i.e. they must not affect the functionality of the original template
metaprogram. The result of the previous example’s instrumentation
is the following:

/* ---------------- begin inserted ----------- */
namespace Templight {

template<class C, int C::*>
struct ReportTemplateBegin {

static const unsigned Value = -1.0;
};
template<class C, int C::*>
struct ReportTemplateEnd {

static const unsigned Value = -1.0;
};
template<class C, int C::*, class Type>
struct ReportTypedef {

typedef Type Result;
static const unsigned Value = -1.0;

};
}
/* ----------------- end inserted ------------ */
template<int i>
struct Factorial
{
/* ---------------- begin inserted ----------- */
struct _TEMPLIGHT_0s { int a; };
enum { _TEMPLIGHT_0 =

Templight::ReportTemplateBegin<
_TEMPLIGHT_0s, &_TEMPLIGHT_0s::a

>::Value
};
/* ----------------- end inserted ------------ */

enum { value = Factorial<i-1>::value };
/* ---------------- begin inserted ----------- */
struct _TEMPLIGHT_1s { int a; };
enum { _TEMPLIGHT_1 =

Templight::ReportTemplateEnd<
_TEMPLIGHT_1s, &_TEMPLIGHT_1s::a

>::Value
};
/* ----------------- end inserted ------------ */
};

template<>
struct Factorial<1>
{
/* ---------------- begin inserted ----------- */
struct _TEMPLIGHT_2s { int a; };
enum { _TEMPLIGHT_2 =

Templight::ReportTemplateBegin<
_TEMPLIGHT_2s, &_TEMPLIGHT_2s::a

>::Value
};
/* ----------------- end inserted ------------ */

enum { value = 1 };
/* ---------------- begin inserted ----------- */
struct _TEMPLIGHT_3s { int a; };
enum { _TEMPLIGHT_3 =

Templight::ReportTemplateEnd<
_TEMPLIGHT_3s, &_TEMPLIGHT_3s::a

>::Value
};
/* ----------------- end inserted ------------ */
};

int main ()
{

return Factorial<5>::value;
}

There is a fixed part instrumented to the beginning of the file
containing the following helper types: ReportTemplateBegin,
ReportTemplateEnd, ReportTypedef.

The occurrence of these helper types in a warning message obvi-
ously signals that the compiler met an instrumented code fragment.
Each instrumentation introduces a new inner class and passes an
address of its static variable to the helper templates to enforce new
instantiations each time. Having this parameter omitted we would
get the warning only at the first – the only – instance of the helper
template. Unfortunately this trick is not always enough to get the
desired warnings for each instance (see Section 6).

typedef instrumentation Some compilers display the typedef
identifier rather than the actual type in the warning messages which
makes diagnostics more difficult, as described in [1]. To overcome
this problem the instrumentation slightly modifies the type of the
typedef and inserts a forwarding template in order to have the
actual type displayed. This forwarding type is ReportTypedef.
The following example shows a typedef instrumentation. The
original source is the following:

template<int N>
struct Test
{

typedef Int<N> IntType;
};

And the corresponding instrumentation:

template<int N>
struct Test
{

// { ... ReportTemplateBegin part ... }

struct _TEMPLIGHT_2s { int a; };
typedef typename

Templight::ReportTypedef<
_TEMPLIGHT_2s, &_TEMPLIGHT_2s::a,
Int<N>

>::Result IntType;
};

// { ... ReportTemplateEnd part ... }
};

5.6 Compiling
The C++ compiler is executed on the instrumented source file to get
the talkative error messages. If the original source is ill-formed, the
compiler may emit compilation errors and warnings independent of
our framework. These messages are preserved since they are also
converted to events by the warning parser. The compilation may
stop on serious errors caused by the original source. In this case
the trace contains all the events up to that point. This way it is
still possible to debug the compilation and follow the control up to
the point our compilation aborted. This situation is similar to the
crash of an ordinary program, where one can debug the behaviour
to the point of the problematic instruction. Sometimes the running
program even survives several illegal instructions, exactly the same
way as the compiler does not stop at the first error. A fragment of
the previous example’s compilation output:

test2.cpp.patched.cpp(1) : warning C4244:
’initializing’ : conversion from ’double’ to
’const unsigned int’, possible loss of data

test2.cpp.patched.cpp(9) : see reference to
class template instantiation
’Templight::ReportTemplateBegin<C,__formal>’
being compiled
with
[

C=Factorial<4>::_TEMPLIGHT_0s,
__formal=pointer-to-member(0x0)

]
test2.cpp.patched.cpp(10) : see reference to
class template instantiation
’Factorial<i>’ being compiled
with
[

i=4
]

Here we can see the artificially generated warning message that
comes from our Templight::ReportTemplateBegin template
class showing that it is not a warning of the original compilation,
but an instrumented one. In order to catch the original context an in-
ner class is passed to this template class. As our previous compiler
output shows it is recognisable that the warning is originated from
the Factorial<4> template instance. In this example the compiler
also helped us by reporting the context, but this backtrace is not al-
ways present.

5.7 Parsing warnings
The warning parser takes the compilation output and looks for our
special warning messages and collects the encoded information
as well as the position and instantiation history of the event. The
result is an XML file containing a sequence of events, where all
events correspond to an element in the annotation file, set up with
the actual properties of activation. The resulting event entry of the
warning is the following:

<TemplateBegin>
<Position position=

"test2.cpp.patched.cpp|9|1"/>
<Context context="Factorial<4>"/>
<History>

<TemplateContext instance="Templight::
ReportTemplateBegin<C,__formal>">

<Parameter name="C" value=
"Factorial<4>::_TEMPLIGHT_0s"/>

<Parameter name="__formal"
value="pointer-to-member(0x0)"/>

</TemplateContext>
<TemplateContext

instance="Factorial<i>">
<Parameter name="i" value="4"/>

</TemplateContext>
</History>

</TemplateBegin>

The name of the tag describes that this event is the beginning of
a template instantiation, while the child elements contain additional
details. The Position tag shows the location of the annotation point
in the source, the Context tag shows the actual template context,
and the History tag lists the template instantiation backtrace that
was present in the warning.

5.8 Adjusting positions, visualisation
The position adjuster corrects the file positions in the trace file
using the previously saved line mappings of the #line filter and
instrumentator steps. Here we have a full trace of all the events that
happened during the compilation with exact source file positions.
This is an ideal input for post-processing tools.

A debugger frontend maintains breakpoint positions set by the
user. Traversing the trace the frontend stops at each breakpoint
and allows the user to examine the instantiation stack of templates
including template names and arguments at each level. Then she
can advance to the next breakpoint or take only one step. In the
second case she can step into the next template instantiation inside
the actual one, step over, i.e. skip nested instantiations, or step
out skipping all instantiations until reaching the context where the
actual template was instantiated. Thus the programmer is able to
focus on desired portions of the compilation process and can reduce
debugging effort.

A profiler frontend may display the template instantiations
sorted by their compile time. The compile times can mean only
local times, where the times of nested instantiations are subtracted,
or full times meaning the full time spent inside the given instantia-
tions.

5.9 Remarks
The framework was intentionally designed to be as portable as pos-
sible, for this end we tried to use portable and standard-compliant
tools. All components except for the #line filter scripts are writ-
ten in C++ using the STL, boost and Xerces libraries. The only
compiler-dependent step in our framework is the warning parser.

6. Limitations and future works
No intervention Note that while in traditional debugging the pro-
gram is actually running when being debugged, in our case we only
traverse the previously generated trace file. As a result we are un-
able to modify the values of the variables at a given point and see
what happens if the variable had that value at that point. A real in-
teractive template metaprogram debugger can only be implemented
by strong intentional support of compilers. On the other hand we
can see the whole process and can arbitrarily go back and forth on
the timeline, which is impossible in immediate debugging.

Compiler support The process detailed above works only if the
compiler gives enough information when it meets the instrumented
erroneous code. Unfortunately not all compilers fulfil this criterion
today. The table below summarises our experiences with some
compilers:

compiler result
g++ 3.3.5 ok
g++ 4.1.0 ok
MSVC 7.1 ok
MSVC 8.0 ok
Intel 9.0 no instantiation backtrace
Comeau 4.3.3 no instantiation backtrace
Metrowerks no instantiation backtrace
CodeWarrior 9.0
Borland 5.6 no warning message at all
Borland 5.8 no instantiation backtrace,

but the warning message is printed
for each instantiation

Table 2. Our experiences with different compilers

It is a frequent case when a warning is emitted, but there is no in-
formation about its context. Comeau 4.3.3., Intel 9.0, and Metrow-
erks CodeWarrior 9.0 print the double to unsigned warning only
once in the ReportTemplateBegin helper template without refer-
ring to the instantiation environment.

The example shown in subsection 5.5 produces the following
output using the Comeau C++ online evaluation compiler:

"ComeauTest.c", line 5: error:
expression must have integral or enum type

static const unsigned Value = -1.0;
^

"ComeauTest.c", line 9: error:
expression must have integral or enum type

static const unsigned Value = -1.0;
^

"ComeauTest.c", line 14: error:
expression must have integral or enum type

static const unsigned Value = -1.0;
^

3 errors detected in
the compilation of "ComeauTest.c".

Similar output is produced by the Intel 9.0 compiler. The mes-
sages are only emitted once for each helper template regardless of
the number of their actual instantiations.

The most surprising find was that the Borland 5.6 compiler does
not print any warnings to our instrumented statement even with all
warnings enabled. A later version of this compiler (version 5.8)
prints the desired messages, but similarly to many others it does

not generate any context information. In contrast to the others this
compiler prints the same warning for each instantiation.

Since we do not have semantic information we fall back on us-
ing mere syntactic patterns. Unfortunately without semantic infor-
mation there are ambiguous cases where it is impossible to de-
termine the exact role of the tokens. This simply comes from the
environment-dependent nature of the language and from the heav-
ily overloaded symbols. The following line for example can have
totally different semantics depending on its environment:

enum { a = b < c > :: d };

If the preceding line is

enum { b = 1, c = 2, d = 3 };

then the < and > tokens are relational operators, and :: stands
for ’global scope’, while having the following part instead of the
previous line

template<int>
struct b {

enum { d = 3 };
};
enum { c = 2 };

the < and > tokens become template parameter list parentheses and
:: the dependent name operator. This renders recognising enum
definitions more difficult.

Future works include the implementation of new IDE exten-
sions providing better functionality for the debugger frontend. This
includes the placing and removing of breakpoints, following the
compilation process, and examination of the instantiation stack.

Another direction is to create a real, interactive debugger, that
can suspend the compilation process at breakpoints, collect infor-
mation, and is even able to modify the compilation process. As far
as we know this can be done only by the modification of the com-
piler. However, the most adequate modifications and the protocol
describing how the compiler and the outer tools interact are cur-
rently open.

7. Related work
Template metaprogramming was first investigated in Veldhuizen’s
articles [21]. Static interface checking was introduced by Mc-
Namara [10] and Siek [12]. Compile-time assertion appeared in
Alexandrescu’s work [2]. Vandevoorde and Josuttis introduced the
concept of a tracer, which is a specially designed class that emits
runtime messages when its operations are called [20]. When this
type is passed to a template as an argument, the messages show
in what order and how often the operations of that argument class
are called. The authors also defined the notion of an archetype for
a class whose sole purpose is checking that the template does not
set up undesired requirements on its parameters. In their book on
boost [1] Abrahams and Gurtovoy devoted a whole section to
diagnostics, where the authors showed methods for generating tex-
tual output in the form of warning messages. They implemented
the compile-time equivalent of the aforementioned runtime tracer
(mpl::print, see [26]).

Even though in the preprocessing phase the TIME predefined
macro can be used to determine the exact system time, it is impos-
sible to get such information during the actual compilation step.
Therefore profiling information can only be generated by the mod-
ification of the compiler. Using the Templight framework we im-
plemented a light-weight template profiler for the g++ compiler.
We modified the compiler to output timestamps when emitting the
aforementioned warning messages. These timestamps are collected
by the warning parser and then inserted to the trace file.

8. Conclusion
C++ template metaprogramming is a new, evolving programming
technique. Even though it extends traditional runtime programming
with numerous advantages, the lack of development tools retains its
applicability in time-constrained, large-scale industrial projects.

In this paper we listed the analogues between the realms of
runtime and compile-time programming. We set up an ontology
of template metaprogram errors and defined the requirements for
a template metaprogram debugger. We described our prototype
framework that fulfils these requirements and supplies a portable
solution for debugging template metaprograms in practice. We
showed the details of the framework’s operation step by step
through examples.

Our framework is also an experimental tool towards discovering
the requirements of intentional compiler support for debugging and
profiling template metaprograms in the future.

References
[1] David Abrahams, Aleksey Gurtovoy: C++ template metaprogram-

ming, Concepts, Tools, and Techniques from Boost and Beyond.
Addison-Wesley, Boston, 2004.

[2] Andrei Alexandrescu: Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison-Wesley (2001)

[3] ANSI/ISO C++ Committee. Programming Languages – C++.
ISO/IEC 14882:1998(E). American National Standards Institute,
1998.

[4] Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Program-
ming: Methods, Tools and Applications. Addison-Wesley (2000)

[5] Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A
Solution to the Constructor-Problem of Mixin-Based Programming in
C++. In First C++ Template Programming Workshop, October 2000,
Erfurt.

[6] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek,
Jeremiah Willcock: A Comparative Study of Language Support
for Generic Programming. Proceedings of the 18th ACM SIGPLAN
OOPSLA 2003, pp. 115-134.

[7] Björn Karlsson: Beyond the C++ Standard Library, A Introduction to
Boost. Addison-Wesley, 2005.

[8] David R. Musser and Alexander A. Stepanov: Algorithm-oriented
Generic Libraries. Software-practice and experience, 27(7) July 1994,
pp. 623-642.

[9] David R. Musser and Alexander A. Stepanov: The Ada Generic
Library: Linear List Processing Packages. Springer Verlag, New
York, 1989.

[10] Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In
First C++ Template Programming Workshop, October 2000, Erfurt.

[11] Krisztián Pócza, Mihály Biczó, Zoltán Porkoláb: Cross-language Pro-
gram Slicing in the .NET Framework. Journal of .NET Technologies
Vol. 3., Number 1-3, 2005 pp. 141-150.

[12] Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding
parametric polymorphism in C++. In First C++ Template Program-
ming Workshop, October 2000, Erfurt.

[13] Jeremy Siek and Andrew Lumsdaine: Essential Language Support
for Generic Programming. Proceedings of the ACM SIGPLAN 2005
conference on Programming language design and implementation,
New York, NY, USA, pp 73-84.

[14] Jeremy Siek: A Language for Generic Programming. PhD thesis,
Indiana University, August 2005.

[15] Ádám Sipos: Effective Metaprogramming. M.Sc. Thesis. Budapest,
2006.

[16] Bjarne Stroustrup: The C++ Programming Language Special Edition.
Addison-Wesley (2000)

[17] Bjarne Stroustrup: The Design and Evolution of C++. Addison-
Wesley (1994)

[18] Gabriel Dos Reis, Bjarne Stroustrup: Specifying C++ concepts.
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2006: pp. 295-308.

[19] Erwin Unruh: Prime number computation. ANSI X3J16-94-0075/ISO
WG21-462.

[20] David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The
Complete Guide. Addison-Wesley (2003)

[21] Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report
vol. 7, no. 4, 1995, pp. 36-43.

[22] Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5,
1995, pp. 26-31.

[23] István Zólyomi, Zoltán Porkoláb, Tamás Kozsik: An extension to the
subtype relationship in C++. GPCE 2003, LNCS 2830 (2003), pp.
209 - 227.

[24] István Zólyomi, Zoltán Porkoláb: Towards a template introspection
library. LNCS Vol.3286 pp.266-282 2004.

[25] Boost Concept checking.
http://www.boost.org/libs/
concept check/concept check.htm

[26] Boost Metaprogramming library.
http://www.boost.org/libs/mpl/doc/index.html

[27] Boost Preprocessor library.
http://www.boost.org/libs/
preprocessor/doc/index.html

[28] Boost Static assertion.
http://www.boost.org/regression-logs/
cs-win32 metacomm/doc/html/boost staticassert.html

