A Feature Composition Problem and a Solution
Based on C+-+ Template Metaprogramming

Zoltan Porkolab and Istvan Zolyomi

Department of Programming Languages and Compilers,
E6tvos Lorand University

Pazméany Péter sétany 1/C H-1117 Budapest, Hungary
{gsd, scamel}@elte.hu

Abstract. Separation of concerns and collaboration based design is usu-
ally a suitable concept for library implementation: it results in easily
scalable and maintainable code. After specifying and implementing or-
thogonal features, we aim to easily assemble library components. In real
life, components can be used only after appropriate refinement steps,
progressively adding features in each step. Therefore the specific solu-
tion for a particular task can be produced by composing a set of refined
components. Unfortunately, a subtype anomaly occurs in object-oriented
languages between such composite components that have different num-
bers of features from different refinement stages. In this article we anal-
yse this anomaly that we named chevron-shape inheritance and present
a framework based on standard C+-+ template metaprogramming.

1 Introduction

The creation of large scale software systems is still a critical challenge of soft-
ware engineering. Several design principles exist to keep the complexity of large
systems manageable. Different methodologies are used to divide the problem
into smaller orthogonal parts that can be planned, implemented and tested sep-
arately with moderate complexity. In a fortunate case such parts already exist
as some foundation library module, otherwise they can be produced by reason-
able efforts. This separation of concerns is widely discussed in [25] and [12].
In object-oriented libraries these concerns are mostly implemented as separate
classes.

Possessing our premanufactured components we have several methodologies
to assemble a full system from the required components. This so-called collab-
oration based design is supported by aspect oriented programming [21], subject
oriented programming [27] [28], feature oriented programming [10] and compo-
sition filters [19]. Besides, the assembly can be naturally expressed by deriving
from all required components using multiple inheritance in languages that sup-
port this feature, such as C-++. This mizin-based! technique is highly attrac-
tive for implementing collaboration-based design [13]. Whichever approach we

! There is a number of different meanings of “mixins”. We use the term mizin according
to Batory and Smaragdakis [13].

choose, the basic idea is to easily create the solution as a union of components
implemented in separate modules.

However, in real life it is hard to find a component that implements the
required feature exactly. In most cases we have to customize the components to
meet the requirements of the current task by adding features [12]. Specializations
for every separate component are made orthogonally which leads to separated
refinement chains, each representing refinement steps of individual features. The
specific solution for a particular task can be finally produced by assembling
specialized components from appropriate layers of different chains.

In object-oriented languages we represent our components as classes. Refine-
ment is regularly expressed by inheritance, hence we gain a subtype relationship
between the refined and the original component. In [11], Batory et al. claim
that “the only classes that are instantiated in a synthesized application are the
terminal classes of the refinement chains [...]| Non-terminal classes |[...] are never
instantiated.” Nevertheless, it is a frequent scenario that some client code han-
dles the objects of terminal classes through an interface of an earlier refinement
layer. For example, the client code has been implemented prior to the final refine-
ment steps or the refinements serving implementational purposes only should be
hidden. In such cases, subtyping should be provided between refinement layers.

In this article we present examples where conventional subtyping yields un-
desired effects, give a detailed discussion of an inheritance anomaly, dispute ex-
isting or proposed alternative solutions and introduce a solution based on code
transformation using standard C++ template metaprogramming.

2 Problem description

To define the problem, we rely on the notation and formalism of AHEAD [11].
In this model, we consider features as refinement transformations. Every feature
fi is a function that transforms a (possibly empty) component. As a result,
the represented feature will be added to the component. Assuming an existing
component ¢;, we mark such extensions by f; e ¢;.

For an easier creation of programs, we allow the composition? of features.
A composition is represented by a set, e.g. a union of features is {f;, f;}. An
extension of a compound component by a set of features is formalized as

fec={f1,...fu}o{cr,..,cn} ={fr10c1,..., fnocn} (1)

Note that feature addition is distributive over the composition above [11]. In
widely used object-oriented languages, such as Java, C++, C# or Eiffel, feature
addition (component refinement) is implemented by inheritance. Additionally,
composition may also be implemented by multiple inheritance® or aggregation.

% Such compositions are referred as collectives in [11].

3 Note that some languages (e.g. Java) do not support multiple inheritance directly,
but are able to simulate it (e.g. using interfaces). The problem exists in these cases,
too.

What is the problem with inheritance? In object-oriented languages, reusing
code and defining subtype relations is not clearly separated, they are both ex-
pressed through inheritance. Thus, composition implemented by multiple inher-
itance or aggregation fails to fulfil the distributive property. Hence the foremen-
tioned languages does not conform to equation (1).

The service for a specific user requirement can be constructed as a com-
position of refined features. In the same time, we should be able to use any
subset of features from different refinement stages as an interface to this service.
Therefore a subtype relation should be provided between any of these collectives
irrespectively of the number and refinement level of participant concern classes.
Thus we have to decide: if we derive the refined collaboration from the original
collaboration class, we lose the subtype relationship with classes implementing
the refined features; otherwise (deriving from the refined features) we lose the
subtype relationship with the original collective. In figure 1 the general structure
of the anomaly can be seen, according to the two mentioned cases respectively.
We have named this anomaly chevron-shape inheritance.

[{F1, F2} 0 {1, c2} | {FloC1, F2 0 C2}|

Fig. 1. Chevron-shape inheritance. (Missing subtypes are marked by dashed lines)

3 Examples

To clarify the formalism above, let us introduce an example from the C+-+
Standard Library. In Fig. 2 you can see the class hierarchy of the stream imple-
mentation in GNU C++ as specified by the C++ standard. (We omit the fact
that all the following classes are templates by the standard, because this does
not affect the problem).

Classes istream and ostream are representing input and output streams as
orthogonal concerns. (There is a common base class ios for both classes that
holds some general stream functionality.) Class iostream unifies input and out-
put functionalities representing streams that can be both read and written. Using

Fig. 2. I/0 library according to the C++ standard

the formalism introduced above, iostream = {istream,ostream}. iostream is
implemented by multiple inheritance from classes istream and ostream. The
result is a well known anomaly called diamond-shape inheritance. It is usually
resolved using virtual inheritance in classes istream and ostream.

The library contains refinements for both input and output streams. Streams
opened over certain physical devices belong to classes ifstream or ofstream
as refinements of istream and ostream respectively. Formalising this, we gain
ifstream = fileioeistream, class of stream can be defined analogously. Similar
refinements exist for streams stored in a memory buffer (e.g. istringstreamand
ostringstream). These refinements are implemented using inheritance. Class
fstream (and stringstream also) inherits from iostream and represents file
streams for both input and output operations. For fstream, we gain fstream =
fileio e jostream. Until this point, the class hierarchy is specified by the C++
standard.

Surprisingly, this construction causes some unexpected results. Intuitively,
fstream is clearly a subtype of both ifstream and ofstream, so fstream =
{ifstream,of stream}. The inheritance hieararchy described above does not
express this, hence there is no conversion from fstream to either istream or
ostream. Thus,

fstream = fileio e iostream = fileio e {istream, ostream} @)
{ fileio e istream, fileio e ostream} = {ifstream,of stream}

Clients handling input files are not able to use objects from fstream as
an instance of ifstream, they are enforced to use istream as a more general
interface losing file-specific information. After examining classes iostream and
istream this may be an astonishing fact.

There is another possible construction scheme for the I/O library that is de-
scribed in [29] and also referred in Stroustrup’s fundamental book The Design

and Evolution of C++ [17]. Classes ifstream and ofstream are derived from
ifstreamand ostreamrespectively, and also from class fstreambase, which rep-
resents an orthogonal, third concern (file operations). Here, fstream is derived
from ifstream and ofstream, therefore our previous problem is substituted
with another one: iostream is not an ancestor of fstream anymore, therefore
cannot be used as an interface for input and output file operations.

The implementation technique of file streams is not covered by the stan-
dard. Examining certain implementations like the one in the old GNU C++
version 2.95 we get an even more confusing picture (see figure 3). The problem
arises at the implementation of file streams. Since all file streams handle files, it
is highly attractive to detach file-specific functionality into fstreambase. The
consequence of this structure is a kind of mixture of the two previous approaches:
ifstream and ofstream are descendents of istream and ostream respectively,
and fstreambase like in [29]. However, fstream is inherited from iostream and
fstreambase as in the current standard.

ofstream

Fig. 3. The GNU implementation of the I/O library

The current C++ standard votes for the first solution. No matter, which
one we choose, disturbing gaps remain in subtype relations between refinement
stages. It seems we can not express the whole subtype graph that the user would
find natural.

Another example is from the Eiffel programming language [18]. The kernel
library of Eiffel contains several abstract classes like NUMERIC for arithmetics,
COMPARABLE for sorting, HASHABLE for associative containers, etc. These classes
are practical to have because in Eiffel we can require a template parameter to be

a subclass of such an “interface”. These classes can be combined as needed using
multiple inheritance, hence we can derive a NUMERIC_COMPARABLE_HASHABLE or
a NUMERIC_COMPARABLE interface directly from the bases. Again, the problem
appears when we try to use an object of the first class with a generic algorithm
requiring the latter type. No subtype relation is provided by the compiler, we
have to resolve it by hand creating conversion functions.

4 Classical Approaches

In this section we discuss several widely used methods that may promise a pos-
sible solution for the anomaly and analyze the results.

Virtual Inheritance (opposed to conventional inheritance) guarantees that
when a class occurs as a superclass several times, its members will be not du-
plicated in the descendants. Virtual inheritance can usually solve issues related
to multiple inheritance and with a combination of abstract classes it supports a
programming style where the abstract bases define interfaces and several derived
classes contribute to the implementation [17] [16].

Virtual inheritance has several drawbacks in our case. Besides having mem-
ory and runtime penalties, we must explicitly mark our intention to use a class
as a wirtual base, hence it is intrusive and can not be a solution using precom-
piled libraries. Additionally, in the case of several feature refinement chains, the
number of possible collectives grows exponentially, only an automatic mecha-
nism provides an acceptable solution, thus it provides a suitable solution only
for a small number of features.

Signatures play an important role in certain functional languages, like Stan-
dard ML. A signature prescribes the typenames, values and nested structures
that must appear in a structure. That way signatures constrain the contents of
structures [7].

Signatures for C++ were proposed by Gerald Baumgartner [4]. They pro-
vide a facility similar to interfaces, but in a non-intrusive way. Signatures have
features similar to classes, e.g. they can inherit from other signatures, and a
compiler can check whether a class has all members to meet the requirements
of a signature. However, using signatures, unintentional conversions may occur:
though it is conceptionally wrong, a Gun can be cast to a Camera because they
both have function shoot() and signatures ignore any semantic information.
Additionally, signatures are non-standard language extensions for C++.

Structural subtyping binds the subtype relation to data structures instead
of inheritance. Languages like C++, Java or Eiffel declare subtyping at the
point of class definition. Contrary, subtype relations are based on structural
subtyping in many functional languages where existence of subtype relations
can be decided based on structural conformance. The reader can find a well
known implementation in the Ocaml language [8]. We suggest reading [20] on
the theoretical background of structural subtyping.

Structural subtyping provides an excellent solution to our anomaly: in lan-
guages supporting this feature our anomaly does not exist. Unfortunately, struc-

tural subtyping suffers from the problem of accidental conformance the same way
as signatures do. Furthermore, no widely used object-oriented language provides
structural subtyping. Recently, several attempts were made to unify the object
oriented and structural approaches, see [9].

Aspects address the subtyping problem a different way than structural sub-
typing. Instead of providing an algorithmic model to implicitly deduce subtype
relations, another approach is to provide a language mechanishm external to
the class definition that establishes a subtyping relation [23]. Aspect-oriented
programming systems, such as AspectJ [22] allow modification of types indepen-
dently of their original definitions. For example, an existing class can be modified
to implement a newly created interface using static cross-cutting [21]. Though
aspects are usable to weave a single feature into a hierarchy, we find the same
subtyping anomaly when aspects have their own refinement chains.

5 Implementation

Beside object-orientation, the C++ language also has a rich feature set for sup-
porting generative programming. C++ templates provide parametric polymor-
phism as an extension to inclusion polymorphism provided by inheritance. We
can create template specializations to have a completely different implementa-
tion from the general one for some special template arguments. Thus we can
create a matrix class that stores elements in a plain array except for booleans,
where it stores an array of chars each representing (mostly) eight booleans. Be-
cause booleans can be passed as template arguments, we can specialize upon
compile time conditions. Specializations also allow us to write algorithms run-
ning in compilation time inside the compiler instead of runtime in the program.
This approach is called template metaprogramming [5].

Theoretically, template metaprogramming in C++ is a Turing complete lan-
guage in itself, therefore any algorithm can be expressed as a metaprogram (see
[15]). Practically, compilers have limitations in resources (e.g. a maximal depth
of recursion during template instantiation) so this possibility must be used with
care. Additionally, programming compile time algorithms is still an uncomfort-
able effort lacking standard libraries and debug tools. However, it is very useful
for simple cases, especially to give a performance boost. (See expression tem-
plates [6]).

5.1 CSet

The template metaprogramming features discussed above enable us to solve the
chevron-shape anomaly described in section 2. To achieve this goal we perform
an automatic transformation to simulate a subtype relationship between col-
lectives: based on the possibilities of template metaprogramming we implement
automatic conversions between them. In the remaining part of the article we call
these sets CSets (where C can be pronounced as any of class, concern, collabora-
tion, collective, chevron, etc, as conceptually needed). Presenting the technical

implementation details is out of the scope of this paper, it can be found in [1].
In this article we concentrate on usage and applicability of the CSet framework
in feature-oriented programming.

Creating CSet, our first task is to assemble the collaborating classes into a
single entity which we implement as a C++ class using multiple inheritance.
Class CSet is written to directly inherit from all classes in a recursive way,
according to the recursive structure of typelists.

// --- Inherit from all types in list

typedef TYPELIST_3(Container, Rectangle, GuiComponent) WindowList;
typedef CSet<WindowList> Window;

Window win;

win.add(Button("0K")); // --- Container method
win.move (13, 42); // --- Rectangle method
win.draw() ; // --- GuiComponent method

Above we assemble three features into a CSet called Window: Container,
Rectangle and GuiComponent. The structure of the created CSet can be seen in
Fig. 4. After having a window object we can call the methods of all three classes.

Rectangle GuiComponent

CSET_1(Rectangle)

ICSET_Z(GuiComponent, Rectangle)l

[csET_3(Container, GuiComponent, Rectangle)

Fig. 4. Example for a CSet hierarchy

The main issue in CSet is the support of conversions between all appropri-
ate collectives. The implementation is based on the fact that constructors are
ordinary functions in C++, therefore they can be defined to be templates as
well. This way we can make the conversion in elementary recursive steps using
built-in conversions provided by the compiler. Because the conversion is built
into constructors, it can be used in a completely transparent form without any
function calls for conversion:

// --- Conversion using the constructor
CSET_2(GuiComponent, Shape) widget(win);

widget = win; // --- or the assignment operator

Note that CSet has CSET_N macros similar to TYPELIST_N providing an easier
form of definition. Our object win can be converted to the collective of features
GuiComponent and Shape because win itself is an instance of GuiComponent,
furthermore it also can be converted to a shape since win has feature Rectangle
which is refined from Shape. Thus the conversion is legal and the object widget
can be initialized using win.

Similarly to the constructor, the assignment operator can be defined as a
template, too. Template functions provide another advantage: not only CSets,
but other user objects can be converted with these functions.

// --- Create a user class and an instance
struct MyWindow : public GuiComponent,

public Circle, public Vector { ... };
MyWindow myObj;

// --- Conversion from user object
CSET_2(Shape, GuiComponent) widget (my0Obj);

5.2 Dynamic binding

So far we are able to perform appropriate conversions between matching CSets.
Unfortunately these conversions are done by value. This may imply the loss of
dynamic data of the converted object which is often called slicing in C++. To
avoid slicing, we have to convert our objects by pointer or reference. We follow
the conventional way in our implementation and create our own smart pointers
and references. Because the implementation and usage of these classes are very
similar, we introduce only our smart pointer class called CSetPtr.

Conversions using class CSetPtr can be written the same way as with CSet,
but using pointers we bind dynamically.

// --- Conversion using the constructor
CSETPTR_2(GuiComponent, Shape) widgetPtr(win);

widgetPtr = win; // --- or assignment operator

In CSetPtr we aggregate pointer data members instead of inheriting from
ancestors to implement elementary conversion steps. As a result, the structure
of CSetPtr created by the previous definition is completely different from the
structure of an appropriate CSet. The created hierarchy and the essence of dy-
namic binding can be seen in figure 5.

CSetPtr holds a pointer member for each type in the set, so every pointer
can be set to the appropriate part of an adequate CSet object. This way we can
utilize dynamic binding provided by conventional pointers in C++. CSetPtr can
be transparently converted to any of its pointer members, so virtual functions
can be called easily.

CSETPTR_1(Shape)
head: Shape*

points to

CSETPTR_2(GuiComponent,Shape)

head: GuiComponent*

points to

Rectangle | Container | GuiComponent |

Fig. 5. Example for a CSetPtr hierarchy

Shape *shape = widgetPtr;
shape->draw(); // --- Use dynamic binding

The difference between CSetPtr and CSetRef comes from the type of their
data members: CSetRef holds references instead of pointers. Thus it must be
initialized and conversions are done by reference or value after initialization.

5.3 Limitations and Further Work

Though our solution relies on standard C++ features only, we encountered prob-
lems with some compilers regarding conformance to the standard. Aged compil-
ers tend to fail providing language requirements like partial template special-
ization or has unacceptable compile time, exponentially growing by the number
of composed features. Hopefully these problems will disappear in new compiler
versions.

Another kind of problems is related to our implementation of feature com-
position. While we exploit the advantages of multiple inheritance, we also suffer
from its usual drawbacks like possible name resolution disambiguities.

Our current version does not provide const correctness which is an essential
language feature to improve semantical correctness of complex C++ programs,
e.g. const member functions, pointers to const data or const_iterator.

In our future work we plan to further improve our solution by eliminating
the problems enlisted above.

6 Summary

The subtyping mechanism of current object oriented languages is not flexible
enough to express required subtype relationships that arise at the implemen-
tation of collaboration based designs. We described an anomaly called chevron-
shape inheritance which arises assembling collectives created during the stepwise
refinement of features. We have introduced a framework called CSet based on
C++ template metaprogramming to transform the subtyping mechanism of the
C++ language. CSets make subtype relationships created during refinement dis-
tributive with feature composition. It supports coercion polymorphism between

appropriate collectives and inclusion polymorphism allowing dynamic binding of
methods with smart pointers. The framework is strictly based on standard C++
features, therefore neither language extensions nor additional tools are required.

References

1.

10.

11.

12.

13.

14.

15.
16.
17.

18.
19.

20.

Istvan Zolyomi, Zoltan Porkoldb, Tamas Kozsik: An extension to the subtype re-
lationship in C++. GPCE 2003, LNCS 2830 (2003), pp. 209 - 227.

Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

David Vandevoorde, Nicolai M. Josuttis: C+-+ Templates: The Complete Guide.
Addison-Wesley (2003)

. Gerald Baumgartner, Vincent F. Russo: Implementing Signatures for C++. ACM

Transactions on Programming Languages and Systems (TOPLAS) Vol. 19 Issue 1.
1997. pp. 153-187.

Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
1995, pp. 36-43.

Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.
Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock:
A Comparative Study of Language Support for Generic Programming. Proceedings
of the 18th ACM SIGPLAN OOPSLA 2003, pp. 115-134.

Leroy, Xavier et al.: The Objective Caml system, release 3.0.8 (July 2004), docu-
mentation and user’s manual. http://caml.inria.fr/ocaml/htmlman /index.html
Jeremy Siek: A Language for Generic Programming. PhD thesis, Indiana Univer-
sity, August 2005.

Don Batory: A Tutorial on Feature Oriented Programming and the AHEAD Tool
Suite. Technical Report, TR-CCTC/DI-35, GTTSE 2005, pp. 153-186.

Don Batory, Jacob Neal Sarvela, Axel Rauschmayer: Scaling Step-Wise Refine-
ment. IEEE Transactions on Software Engineering, vol. 30, no. 6, pp. 355-371.
Don Batory, Jia Liu, Jacob Neal Sarvela: Refinements and multi-dimensional sep-
aration of concerns. Proceedings of the 9th European Software Engineering Con-
ference, 2003.

Yannis Smaragdakis, Don Batory: Mixin-Based Programming in C++. In proceed-
ings of Net.Object Days 2000 pp. 464-478.

Yannis Smaragdakis, Don Batory: Mixin Layers: An Object-Oriented Implemen-
tation Technique for Refinements and Collaboration-Based Designs. ACM Trans-
actions of Software Engineering and Methodology Vol. 11, No. 2, April 2002, pp.
215-255.

Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)
Bertrand Meyer: Eiffel: The Language. Prentice Hall (1991)

Lodewijk Bergmans, Mehmet Aksit: Composing Crosscutting Concerns Using
Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp. 51-57,
October 2001.

Luca Cardelli: Structural Subtyping and the Notion of Power Type. Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, January 1988. pp. 70-79.

21.

22.
23.

24.

25.

26.

27.

28.
29.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, John Irwin: Aspect-Oriented Programming. Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241, June 1997.

Gregor Kiczales et al.: An overview of AspectJ. LNCS 2072 (2001), pp. 327-355.
G. Baumgartner, M. Jansche, K. Liufer: Half & Half: Multiply Dispatch and
Retroactive Abstraction for Java. Technical Report OSU-CISRC-5/01-TR08. Ohio
State University, 2002.

Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the
Constructor-Problem of Mixin-Based Programming in C+-. Presented at the
GCSE2000 Workshop on C+-+ Template Programming.

Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson
Research Center. http://www.research.ibm.com /hyperspace/Papers/tr21452.ps
Harold Ossher, Peri Tarr: Hiper/J. Multidemensional Separation of Concerns for
Java. International Conference on Software Engineering 2001. ACM pp. 734-737.
William Harrison, Harold Ossher: Subject-oriented programming: a critique of pure
objects. Proceedings of 8th OOPSLA 1993, Washington D.C., USA. pp. 411-428.
Subject Oriented Programming. http://www.research.ibm.com/sop

Jonathan E. Shopiro: An Example of Multiple Inheritance in C++: a Model of the
Iostream Library. ACM SIGPLAN Notices, December, 1989.

