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1 Abstraction and Paradigm
In the very centre of software design is the idea of abstraction. Abstraction
means to focus on the general and put the specific aside. We try to formulate
what is common in problem domain and negligate differences. A paradigm is
a set of conventions we use to understand the world around us [1]. In software,
paradigms shape the way we formulate abstractions. What is the world made
of? Do we divide the world into procedures? Data records? Modules? Or we
divide it into classes? Co-operating data structures and generic algorithms?
Classes and aspects? Components? In the practice, a paradigm defines us
rules, conventions, sometimes tools make us be able to divide the problem into
pieces that small enough to understand, code and test. Here is some examples
of paradigms:

1.1 Procedural programming
A"Decide which procedures you want; use the best algorithms you can find."
Here the focus is on the processing - the algorithm needed to perform the de-
sired computation. The programming languages supporting procedural pro-
gramming have adequate tools define and call procedures, passing parameters
in a various way and handling return value.

1.2 Modular programming
A set of related procedures with the data they manipulate is often called a
module. Modular programming has the main principle data hiding. Here the
"Decide which modules you want, partition the program so that data is hidden
within modules" .

2 Object-Oriented Programming
In the 90s the leading software paradigm was object-orientation. Classes and
objects are the main abstractions. Cohesion and coupling are the main parti-
tioning criteria: we form objects from similar responsibilities and/or cohesive
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data structures. We use a special programming language construct: class to
describe all objects with the same data structure, functionality and role. This
is the most important feature of object-oriented construct: very strong binding
between data and operations within a class and as week connections between
different classes as possible. A class can act as a user-defined type, provides a
full set of operations. Similarity between classes can be made explicit by using
inheritance-hierarchy.

In the classical schoolbook example see the classes of vehicles. Classes Car
and Truck are derived from a common base class, Vehicle. The common data
members and algorithms are collected in Vehicle, additional data members can
appear in derived classes. Some operations, like ... are used but not defined in
Vehicle - the exact definitions appear in the derived classes. This is handled by
the use of virtual functions - an appearance of (inclusion) polymorphism.

3 Generic Programming
Object-orientation has many advantages in a wide area of problem domains.
In the same time there are certain domains where object- orientation does not
effective or even fails. Let see an other school-book example: we have to im-
plement a set of stacks, each have different types of elements: one stack has
integer elements, other has doubles, etc... Easy to see: there is many common
in the different type of stacks: how to allocate space for the elements, how han-
dle the stack pointer, how to check the space has left at push operation and
whether the stack is empty at pop.

Logical (and very object-oriented) way of thinking to create a base class -
a general stack - where we are grouping all the data and algorithms, which is
common for all stacks. Later we will create concrete stacks via inheritance - one
for storing integers, other for doubles, etc... Here is the skeleton of the classes:

class stack {
public:

virtual void push( ? );
virtual ? pop();
// ...

private:
int capacity;
int stack_ptr;
? *elems;
// ...

};

class intStack {
public:

void push(int);
int pop();

};

The problem lays in the points we marked with the question-mark. How
we should store the elements without knowing their exact type? How to define
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the signature of pop() and push() operations? If we dig down to the deep of
the problem, we recognise the fundamental difference of the two examples. In
the vehicle example the basic data-structure of the vehicles was common. The
differences were in additional data members in the derived classes, and in cer-
tain algorithms. This was positive variance: doesn’t hurt the "contract" which
defined "vehicle" type. On the other hand differences between the stacks (and
the general stack) show negative variability: it contradicts the assumptions
that underlie the abstraction of (general) stack. These kinds of differences are
handled only with serious difficulties in current object-oriented languages.

Experienced C++ programmers could choose different way to implement
stacks. With the technique called templates - i.e. parametrising with types -
one can easy create the template class stack:

template <typename T>
class stack
{
public:

virtual void push( T );
virtual T pop();
// ...

private:
int capacity;
int stack_ptr;
T *elems;
// ...

};

Here we found the commonality in the algorithms. Creating stacks, push
and pop operations share the same code - except the type parameter T. There-
fore the idea is to implement these operations as generic algorithms which can
be applied for all the types. Not only those types we already know, but they
can work with classes we develop later. This is also a kind of polymorphism -
parametric polymorphism.

Creating foundation libraries in this way has clear advantages. The imple-
mentor has to write O(n+k) size of code for k algorithms working on n classes.
New algorithms or classes can be added with linear effort. This could be signif-
icantly better than binding classes and algorithms together in object-oriented
way. Even better generic programming - as the method above is called - can
most cases handle negative variability with a technique called template spe-
cialisation. Based on the work of Alexander Stepanov and David R Musser,
Generic Programming became very popular in the last few years [2]. Standard
Template Library in C++, JAVA Collection Framework and others are now part
of the language standards [3]. Compile-type type checking, automatic instan-
tiation, better performance (comparing to run-time solutions, like JAVA reflec-
tion or Smalltalk) and more simple code has made C++ STL a success and has
led SUN Microsystems to propose inventing templates in JAVA languages [4].
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4 Aspect-Oriented Programming
Traditionally, programs involving shared resources, multi-object protocols, er-
ror handling, complex performance optimisations and other systemic, or cross-
cutting concerns have tended to have poor modularity. The implementation
of these concerns typically ends up being tangled through the code, result-
ing in systems that are difficult to develop, understand and maintain. Aspect-
oriented programming [6] is a technique that has been proposed specifically
to address this problem. One can separate the above mentioned concerns on
source level into aspects and weave them into the original code using an au-
tomated tool before compilation. The granularity of the weaving points and
the language of the aspect is determined by the actual implementation of the
weaver.

To demonstrate the separation of concerns we have chosen a simple exam-
ple of monitoring the state of a system. The programmer should deal only
with the functional code of the system and separate the monitoring code. This
separation allows the ”instrumentation” of the system without human modifi-
cation of the original source code. For simplicity the system consists only the
”Variable” class (in Java language [7]):

public class Variable {
private int v;
public Variable() { v = 0; }
public int getV() { return v; }
public void setV(int v) { this.v = v; }

}

The monitoring code should report the value of the enclosed variable before
and after every method call. How can we preserve the original class and still
be able to get through the private visibility? In an object-oriented solution we
would have to let others to directly access the - not any longer - private variable
or place other kind of hooks inside the original source, which would decrease
the readability and maintainability.

The monitoring concern will be implemented by using a general-purpose
aspect-weaver called AspectJ [5]. This tool has been developed in the last cou-
ple of years at Xerox Palo Alto. In AspectJ, aspects are programming constructs
that work by crosscutting the modularity of classes in carefully designed and
principled ways. So, for example, a single aspect can affect the implementation
of a number of methods in a number of classes. We modify the ”Variable” class
by using the ”Trace” aspect:

aspect Trace {
advise * Variable.*(..) {

static before {
System.out.println("Entering " +
thisJoinPoint.methodName + " v=" + thisObject.v);

}
static after {

System.out.println("Exiting " +
thisJoinPoint.methodName + " v=" + thisObject.v);

}
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}
}

Weaving together the original class and this aspect will produce a source,
which is functionally equivalent to the following code:

public class Variable {
private int v;
public Variable() { v = 0; }

public int getV() {
int thisResult;
System.out.println("Entering " + "getV" + " v=" +

this.v);
thisResult = v;
System.out.println("Exiting " + "getV" + " v=" + this.v);
return thisResult;

}

public void setV(int v) {
System.out.println("Entering " + "setV" + " v=" +

this.v);
this.v = v;
System.out.println("Exiting " + "setV" + " v=" + this.v);

}
}

Placing crosscutting concerns into one aspect has the clear advantage of im-
proving comprehension of the source and avoiding repetition of code segments
in similar classes. The aspect- oriented paradigm allows different languages for
the aspects, thus an implementation might choose the most appropriate one for
a specific concern. The skeleton of the data structures and the basic functional-
ity can be designed and implemented by the object-oriented paradigm, while
specific concerns are described in a language, which is closer to the problem
domain (e.g. path- expressions for concurrency issues).

5 Functional Programming
The previous section demonstrated that modern functional languages support
generic programming and parametric polymorphism in a highly developed
way. Moreover, there are still other lessons to learn from functional program-
ming. In the following two questions will be discussed. First program correct-
ness will be addressed, then the advantages of higher-order languages will be
summarised. Finally we emphasise that the object-oriented and the functional
programming paradigms do not exclude each other, e.g. they can be incorpo-
rated within the same programming language.

5.1 Program Correctness
Writing correct programs is very hard - every programmer is aware of this dis-
appointing fact. Formal methods and testing can be applied to increase trust
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in the correctness of a software product, but in case of a large piece of software
it is often hard to make use of them. This can be the result of the heavy com-
plexity of the code to be investigated and the huge gap between the problem
specification and the implementation. Both the object-oriented and the func-
tional programming paradigms try to overcome these difficulties.

According to the object-oriented programming paradigm, each implemen-
tation decision is encapsulated inside a small component, an object. The com-
plexity of the program can be reduced significantly this way. (Section AOP
explains what to do if it is not the case.) Furthermore, the (interfaces of and
the relations between the) objects correspond to the entities of the "real world",
hence the solution of a problem is obtained inside the problem domain, which
reduces the gap between specification and implementation.

In the functional programming paradigm a program consists of a set of
function definitions and an expression, the value of which is to be computed.
This style of programming can be much more regarded as writing "executable
specifications" rather then "programs". Specification and implementation are
not far from each other any more in this paradigm. See for example this very
natural implementation of the quicksort algorithm in the functional language
Clean [Clean]. The program text is a direct representation of the ideas we have
on quicksort (see a more complex example in [21]). E.g. when sorting a non-
empty list, the beginning of the result is obtained by collecting and sorting the
elements smaller than a dedicated element, and the end of the result is obtained
by collecting and sorting the non-smaller elements.

qsort [] = []
qsort [x:xs] = qsort [y \\ y <- xs | y < x]

++ [x] ++
qsort [y \\ y <- xs | y >= x]

Functional programming also increases program correctness via avoiding
"side-effects". Pure functional programming forces the preservation of referen-
tial transparency: the value of an expression is independent of when it is eval-
uated, since the result of a function is uniquely determined by its arguments.
This proves to be a great advantage when one wants to reason about program
correctness. Such reasoning requires a very simple mathematical apparatus.
The application of a function can always be replaced by the definition of the
function with the actual arguments replacing the formal arguments. (This is
called the principle of uniform substitution.) This, and the fact that the seman-
tics of functional programs can be given with relatively simple computational
models (lambda calculus, graph rewrite system) even enables the use of semi-
automatised proof systems (e.g. [8]).

5.2 Higher-order languages
Functions are first-class citizens - this is a principle in functional program-
ming. Manipulations with computations are possible in many programming
languages: recall for example the function pointers of C or the subprogram
types of Modula 2 or Ada 95. However, these languages do not consider these
possibilities such a big goal as functional languages do. In functional languages
the value of an expression can also be a function and act as a parameter or a
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result in a function application. But partial application (also called "currying")
is possible as well. Regard the following example expression, which increases
the elements of a list by two. The well-known map function takes a unary func-
tion as its first argument and applies it elementwise to its second argument, a
list. The function parameter here is the curried addition operator:

map ((+) 2) [1,2,3,4]
This flexibility in managing functions grants high expressive power to a

programming language, increasing its capability for abstraction. As a comple-
tion let us remark on a fairly interesting phenomenon related to handling of
functions as first- class entities. In functional languages the construct "lambda
abstraction" is used to define functions "on the spot", right where they are ap-
plied. This concept reappears in Java: its "inner classes" are applicable for a
very similar purpose.

5.3 About the co-existence of OOP and FP
Many words have been written so far on how functional languages can support
the object-oriented paradigm. These ideas show up in most modern widely
used functional programming languages, like ML, Haskell or Clean. The sub-
sequent paragraphs will recall some of them with the intention of giving a
foretaste.

Abstract data types can be implemented in many ways [9], [10]. One way
is with the use of "type classes" [11], [12], which are similar to e.g. interfaces
in Java. Implementation is assigned to a type class with instantiation allowing
several alternative representations. Record types with functional components
provide another facility: when used in combination with existential types, they
can even give way to inhomogeneous data structures over the alternative rep-
resentations. This latter solution enables powerful, object-level dynamic bind-
ing of operations.

Encapsulation is made possible by modules and the so-called "abstract da-
tatypes" [12], [13]. Subtyping and inheritance can be supported both with type
classes and (extensible) records. Dynamic typing is often added to statically
typed languages as "dynamics" [14].

We can conclude that functional and object-oriented programming can be
integrated within one framework. This marriage endows object-orientation
with valuable properties and opens up a promising future now, when effi-
ciency problems, the major argument against functional programming seems
to disappear [15].

6 Component-Oriented Software Technology
The object-oriented technology has already been accepted in the software com-
munity as offering the most powerful tools for software development. "The
Unified Modeling Language (UML) is becoming the standard palette used by
software designers to paint their thoughts [16]. UML is

• an architecture-centric and use case driven program adopting and itera-
tive development methodology.
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• an excellent vehicle for communicating the system design among various
stakeholders.

• a graphic language for specifying, solving a given problem and for doc-
umenting the given solution.

• a general-purpose modeling language that provides an extensive concep-
tual base for a broad spectrum of application domains. It is broad enough
to cover real-time systems as well. Real- time modeling can be fully ac-
commodated by specializing appropriate base concepts.

• the standard modeling language for software-intensive systems like Web
applications.

Now beyond 2000 researchers are suggested to go beyond objects in search
for better software technology [17]. The notion of component is more general
than of an object, and in particular may be of either much finer or coarser gran-
ularity. From methodological aspect a component is a component because it
has been designed to be used in a compositional way together with other com-
ponents. It is designed as a part of a framework of collaborating components.
Valid examples of components may be functions, macros, procedures, tem-
plates or modules. At a software technology level, the vision of component-
oriented development is a very old idea, which was already present in the first
developments of structured programming and modularity. An application can
be viewed simultaneously as a computational entity that delivers results and
as a construction of software components that fit together to achieve those re-
sults. The integration of these two aspects is not straightforward, since their
goals may conflict. For example concurrency mechanism, which are computa-
tional, may conflict with inheritance, which is a compositional feature [18,19].

A component is a static abstraction with plugs. A software component
static because it is a long-lived entity stored in a software base, independently
of the applications in which it has been used. Abstraction means that a compo-
nent is encapsulated. "With plugs" means that there are well-defined ways to
interact and communicate with the component.

Component-oriented software development requires a change of mind-set,
change of methodology and requires new technological support at the same
time. A good example for these changes is a framework for component-based
Client/Server computing with CORBA [20]. The most ambitious middleware
undertaking ever, CORBA manages every detail of component interoperabil-
ity, ensuring the possibility of interaction-based systems that incorporate com-
ponents from multiple sources. A service specification of an object is com-
pletely separated from its implementations. CORBA is able to provide a self-
specifying system that allows the discovery of other objects on the network.
CORBA objects can exists anywhere on a network, their location is completely
transparent. Details such as the language in which an object is written or the
operating system on which it currently runs are also hidden to clients. The in-
terface is the only consideration a client make when selecting a serving object.
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7 Conclusion
Old and new paradigms could and should live together. Multi- paradigm pro-
gramming promises to use all the advantages of different paradigms:

OO: mature large-scale design, good modularity

GP: parametrised type constructs, good handling of negative variability

AOP: crosscutting concerns

FP: formal-proof, data-flow optimisation

Components: easy deployment and configuration

We should also emphasize how are these paradigms are getting closer to
the human way of thinking. ’Give me a complex language, where I can express
my thoughts!’
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