
Alternative Generic Libraries

Zoltán Porkoláb, Róbert Kisteleki

Department of Computer Science, Eötvös Loránd University of Sciences
zoltan.porkolab@elte.hu, robert.kisteleki@elte.hu

Abstract

Multi-Paradigm design is one of the emerging paradigm in software technology. Multi-
Paradigm helps the designer to choose the rigth paradigm for each problem domain. In one
specific case of variable problem scenarious where the objects we use has little or no common
structure but there is similar behaviour. In this cases we successfully use the paradigm of
generic programming. The goal of this style is to reveal the foundations and programming
methods of generic and therefore reusable components and libraries.

Until quite recently generic programming has only one well-known existing implementation:
the C++ Standard Template Library (STL). STL has a certain goal: there are data structures
and specific algorithms working on them. This is a very specific problem-domain which can
affect the implementation. We think this one implementation of the generic programming is
not enough to examine this new paradigm. Therefore we try to define a set of demonstrative
generic libraries, implement them as working software, and making comparison on the internal
structure: select common patterns and leave problem or implementation-specific parts.

We present in this article the Graphical Template Library (GTL). GTL works on graphical
shapes like circle or polygon, implementing common functions like move, rotate, etc. The idea
of GTL comes from real-world applications. Graphical drawing programs can benefit from this
kind of design.

One of the main advantages of the use of generic programming is the significant reduce
of code complexity. The average library has n objects on k basic types with m algorithms,
has O(n*k*m) methods developed by object-oriented way, but this can be redused to O(n*m)
with generic paradigm. Iterators are in central role of generic programming. Iterators are the
fundamental program elements connecting data structures and algorithms. STL has a certain
hierarchy of iterators. In GTL we extend the set of iterators, but we insert them into STL’s
hierarchy. The new iterators have practical usage in generic libraries and parallel environments.
These iterators need further researches.

1 Introduction

Nowadays, new programming paradigms came into view in software technology. Multi-Paradigm
Design [Coplien99] by James O. Coplien and others is focusing to help the designer to create
abstraction for arbitrary domains. Object-oriented design arms the designer with tools that produce
modules of a certain shape; as long as the problem domains lends itself well to object-shaped
abstractions, the object paradigm works well. However, some problems have little to do with
objects. Multi-Paradigm steps above any single paradigm to help the designer choose the right
paradigm for each project domain.

1

Among of different programming paradigms the most interesting new paradigm is generic
programming. The goal of this style is to reveal the foundations and programming methods of
generic and therefore reusable components and libraries. In the terms of Multi-Paradigm theory
we use generic programming in those cases when the objects has no or little common structure but
the behaviour (the methods used on objects) are similar. Using this approach we can greatly reduce
the complexity of a software library. For example, if we have a library with n data structures, each
with k base type and m algorithms, then using the traditional object-oriented way the comlexity
of the library is O(k*n*m). Using generic programming this reduced to O(n+m).

The software library designs that have resulted from this generic programming approach
are markedly different from other software libraries: the precisely-organized, interchangeable build-
ing blocks that result from the approach permit many more useful combinations that are possible
with more traditional component designs. The design is also a suitable basis for further development
of components for specialized areas such as databases, user interfaces, and so on. By employing
compile-time mechanisms and paying due regard to algorithms issues, component generality can be
achieved without sacrificing efficiency. This is in sharp contrast to the inefficiences often introduced
by other C++ library structures involving complex inheritance hierarchies and extensive use of
virtual functions. The bottom-line results of these differences is that generic components are far
more useful to programmers, and therefore far more likely to be used, in preference to programming
every algorithmic or data structure operation from scratch.

On the other hand, generic programming has only one well-known existing implementa-
tion: the C++ Standard Template Library (STL). Because in any implementation, the elements of
the general principles and the particular programming language inevitably blend, one implemen-
tation is not enough to examine the structure of generic libraries and programming.

To help this situation we created an (experimental) template library: the Graphical Tem-
plate Library. GTL manipulates graphical objects (circle, polygone, text, etc.) using generic algo-
rithms (move, rotate, mirroring, magnificate, etc.) similar way as STL does it with containers and
algorithms. Like in STL, graphical objects has no one common base class, and we intentionally
implemented the objects internally in different ways. With the help of GTL we can examine the
internal structure of generic programming.

2 The intention of creating alternative generic libraries

Our goal is to examine the deep structure of generic programming. This can be done in two elemen-
tal way: the theoretical one and the practical one. With the respect of the first way [Hermann98]
[Kistel99] in this article we present the second case, choosing existing software products and try
to analyze them. This includes to collect common features and leave the customized, problem- or
implementation specific elements.

In computer science, practice often anticipate theory. A good example is Simula67 pro-
gramming language. Simula67 language had become popular before major theoretical work has
been done on object-orientation. Hovewer, studying Simula67 we can recognize that next to object-
oriented elements (class, inheritance, etc.) there are co-rutines and other similar stuff. Those have
nothing to do with object-orientation, they are the problem-specific part of the language created
to solve simulation tasks. Studying only Simula67 does not help to classify the features.

2

We feel similar situation with generic programming. Until quite recently generic pro-
gramming has only one well-known existing implementation: the C++ Standard Template Library
(STL) [Musser98] (and it’s derivates: Java Collection Framework, ObjectSpace’s JGL [JGL], etc.).
This library has a certain goal: there are data structures and specific algorithms working on them.
We think this one implementation of the generic programming is not enough to examine paradigm.
Therefore we try to define a set of demonstrative generic libraries, implement them as working soft-
ware, and making comparison on the internal structure: select common patterns and leave problem
or implementation-specific elements.

3 The GTL Library

The experimental library we will discussed in this article is the GTL, the Graphical Template Li-
brary. GTL manipulates graphical objects (circle, polygone, text, etc.) using generic algorithms
(move, rotate, mirroring, magnificate, etc.) similar way as STL does it with containers and al-
gorithms. Like in STL, graphical objects has no one common base class, and we intentionally
implemented the objects internally in different ways.

This is based on the Multi-Paradigm theory, where we can distinguish between differ-
ent problem-domains. In those projects where acting objects have a common structure and have
(slightly) different behaviour, we choose object-oriented method to stress the commonality in ob-
jects. In other cases we have no such commonality in data structures – so choosing a common
base class is not practical. However common behaviour can be expressed using common (generic)
algorithms.

The back-door intent in the definition of GTL was:

• define an easy-to-understand but not trivial library, where the benefit of using the idea of
generic programming is clear. As we shown previously, this depends on the common behaviour
of objects with different internal structure.

• keep the problem within limits to minimize the implementation-specific elements. Implement-
ing large libraries neccessarry deform the original idea.

• specify a real-world problem. This is essential if we want to avoid l’art pour l’art design, and
want to concentrate on practical solutions. The library we defined can be act as the engine
behind a real graphical drawing tool (like xfig in UNIX/Linux).

About the points above: the whole library is about 800 C++ lines. A set of example client programs
demonstrate the usage of the library. Future plans include creating graphical representation in the
style of the xfig utility.

4 Complexity

One of the major advertized advantages of generic programming is the capability to reduce the
amount and complexity of code. let examine this question with the help of the Graphical Template
Library. In object-oriented textbook examples graphical ”shapes” are derivated from one common

3

root basic class. Algorithms are mostly virtual methods on this base class. The root class is often
abstract as some methods are specific to the certain graphical shapes and impossible to implement
generally (they are pure virtual functions). In this pattern we write code for (most of) the methods
at the derived class level. This produces complexity of O(n*m) level. This sceme is shown in the
next code example:

class graphical_base

{

public:

virtual void move(/* ... */) = 0;

// other virtual functions as algorithms

private:

// some common structure

};

class a_certain_shape : public graphical_base

{

public:

void move(/* ... */)

{

// the concrete implementation of i

// an algorithm on a certain shape

}

private:

// the implementation of the certain_shape

};

In GTL hovewer, there is no common base class. Each graphical class defines iterator classes (at
least input and output iterators), and iterators carries data to algorithms. This reduces complexity
to O(n+m).

The problem with this model is the lack of the common base class and inheritance
hierarchy. Sometimes the common base class is essential. That is the foundation to collect data
structure in a type-safe way. Therefore it is important to mix the two model, to win the reduced
complexity from the generic programming model and keep the inheritance hierarchy from object-
oriented model.

Therefore we propose a new model, a kind of object-oriented wrapping of the generic
programming model. Let’s define a common graphical base class with non-virtual methods as the
algorithms. Methods are realized with the help of virtual iterator-functions defined on the base
class, but implemented on the derived classes (so the base class remains abstract). This model
exploits the pattern of generic programming, but in the same time keeps the conventional object-
oriented model.

class graphical_base

{

public:

void move(vect distance)

4

{

// implementation of the concrete algorithm

outp_iter() = inp_iter() + distance;

}

// other concrete functions as algorithms

protected:

virtual vect inp_iter() const = 0;

virtual vect& outp_iter() = 0;

private:

// some common structure

};

class a_certain_shape : public graphical_base

{

public:

vect inp_iter() const

{

// each call produces next call

}

vect& outp_iter()

{

// each call produces reference to next node

}

private:

// the implementation of the certain_shape

};

The complexity of code is the same as the case of GTL. However, there still remains a practical
drawback against GTL: if we want to implement a new algorithm, we should modify the base class,
which is not necessary in GTL. (Interestingly, adding a new graphical class does not involve the
modification of existing classes. Just create a derived class, and implement the iterator functions.)

5 Common base class

In the previous section we discussed the role of the common base class in a certain aspect. There
could be other arguments too. In most of the graphical drawing tools there is a possibility to
grouping objects, somehow glue them together and then handle the group as a single object. How
can one implement this feature in GTL?

There is an elegant way. A new graphical class: composit can collect other graphical
objects. The iterator of the composite can be class implemented in the following way: each iteration
supplies a participant object’s iterator. Here an algorithm, like move() called on a composit object
will roam all the group members, calling move on the certain elementary graphical class. The
”recursion” (this is not really recursion, rather recursive resolvance of template function parameter)
will stop when it arrives to the specialized move() function on node. These resolvings happen mostly
compile-time, so there is no run-time cost of this design.

5

Hovewer there is an important point here. Inside the composite object we should aggre-
gate the iterators of the (elementary) member objects. To enable to store the iterators of different
elementary graphical objects in type-safe way requires a common base class of the iterators. This
sounds correct, since there is a common behaviour of these iterators, they are e.g. forward iterators,
they can fulfill a common interface.

6 Iterators

Iterators has a very strict classification in STL [Musser98]. There are input or output iterators,
forward iterators, bidirectional iterators and random access iterators. Each iterator class has the
functionality of the previous one - namely bidirectional iterators are also forward iterators etc.
This is very similar to an inheritance relationship. Why STL iterators has not been derived from a
hierarchy of abstract classes (interfaces)? The example in the previous section shows the advantage
of that construction.

GTL has different iterators. Since we work with both open and closed shapes, we have
forward iterators, bidirectional iterators, cyclic iterators and random iterators. Cyclic iterators use
the fact that for closed shapes (like a polygon) the begin() and the end() iterators supply the same
values. As we can calculate a regular polygon’s node coordinates based on two arbitrary node
coordinates, regular polygons implement random iterators.

Based on the experiences we have got during the design of GTL we think the collection
of possible iterator classes are much wider than we have seen it in STL. We can imagine itera-
tors, which randomly choose data from the container (never choose the same item twice) until
the container is ”exhausted”. Such iterators could be used in parallel way in certain algorithms
(for each(), or GTL move()).

7 Algorithms

Algorithms are another basic element of generic programming. Algorithms are working with itera-
tors, independent from the concrete data structures. Our examination is that the generic algorithms
have common architecture: evaluate the iterator from a starting point until the iterator exhausted.
Sometimes this later event detected as we read an extream iterator value. This is the way as STL
works. However other solutions can work also perfectly: in GTL we detect the end of iteration
reading the starting iterator element in secound times.

Not mention these small problem-oriented differences, algorithms in STL and GTL are
the same. In the next example we present the solution of for each() algorithm in STL and in GTL.

template <class InputIterator, class Function>

Function for_each(InputIterator first,

InputIterator last,

Function f)

{

for (; first != last; ++first)

6

{

f(*first);

}

return f;

}

template <class InputIterator, class Function>

Function for_each(InputIterator first,

Function f)

{

InputIterator save = first;

f(*first++);

for (; first != save; ++first)

{

f(*first);

}

return f;

}

8 Results and future plans

GTL now is implemented as fully working library. We learned a lot about generic grogramming and
the connection with object-orientation. As it turned out, such light-weight generic libraries are very
useful for educational purposes too. We proved (at least for ourselves) that generic programming
is not a one-library tool (STL), but a universal paradigm capable to solve problems for a certain
class.

Containers in a solution using generic programming paradigm are rather problem specific.
There were no similarity between STL and GTL containers. However, general algorithms were
surprisingly similar. We identified new types of iterators, and we could extend the iterator-hierarchy
of STL. We expect much more type of iterators. We used function-objects, predicates, etc, as
technical helpers. We didn’t used adapters, but we will likely do in the next versions of GTL.

There are four major directions we plan to continue our examinations.

• Extend GTL, and implement the composite class and other features. Create GUI interface
and complete the program as a drawing tool.

• Specify new problems to suit the generic programming paradigm. In fact we found this harder
then we expected.

• Examine the connection between object-orientedness and generic programming. This includes
the implementation of GTL in object-oriented way with virtual iterator functions as described
under the Complexity section. The two patterns should be compared in the aspect of com-
plexity, ease of modification and efficiency.

• Examine parallelism in generic programming. Recent implementations known to us lack par-
allelism. Hovewer some algorithms like for each could gain from massive parallelism. Per-

7

haps parallelism depends on new type of iterators, which are able to enumerate data in
non-seqencial way.

References

[Coplien99] Coplien, J. Multi-Paradigm Design for C++, 1999, Addison-Wesley

[BreyHugh95] Breymann, U. and Hughes, N. Composite Templates and Inheritance. C++ Report,
No.7, Sept 1995, 32-40

[Musser98] Musser, D. R., Saini, A. STL Tutorial and Reference, 1998, Addison-Wesley

[Strou97] Stroustrup, Bjarne. The C++ Language 3rd ed., 1997, Addison-Wesley

[Lippman98] Lippman, S. B., Lajoe, J. C++ Primer 3rd ed., 1998, Addison-Wesley

[Breymann98] Breymann, U. Designing Components with the C++ STL, 1998, Addison-Wesley

[MusStep94] D. Musser, A. Stepanov, Algorithm-Oriented Generic Libraries Software, Practice
and Experience, vol. 24(7), July 1994.

[MusStep89] D. Musser, A. Stepanov: Generic Programming, Invited paper, in P. Gianni, Ed.
ISSAC’88 Symbolic and Algebraic Computation Proceedings, Lecture Notes in Computer
Science, Springer-Verlag, vol. 358, 1989.

[Erlin96] Erlingsson, Kostantinou, Implementing the C++ Standard Template Library in ADA,
Rensselaer Polytechnic Institute, Jan 1996.

[JGL] Java Generic Library. http://www.objectspace.com/products/jglOverview.htm

[Breymann95] U. Breymann and N. Hughes, Composite Templates and Inheritance, In C++ Re-
port, No. 7., pages 32 - 40., Sept 1995.

[Hermann98] G. Hermann, Examination of Generic Programming, M.Sc. thesys, 1998. (in Hun-
garian)

[Kistel99] R. Kisteleki, The Graphical Template Library, M.Sc. thesys, 1999. (in Hungarian)

8

