On the Structured Complexity of Object-Oriented
Programs

Porkolab Zoltan

Eo6tvos Lorand University
Faculty of Science
Departman of General Computer Science
PH.D. THESES
Budapest, 2002.

Advisor: Dr. Téke Pdl

Ph.D. Program in Computer Science
Director: Dr. Demetrovics Janos

1 INTRODUCTION 2

1 Introduction

In these theses we define a new metrics for structural complexity of programming lan-
guages. The measure equally adequate for imperative and object-oriented languages
and compute the complexity independently of the paradigm we used to develope our
program.

Testing, bug-fixing cover more and more percentage of the software lifecycle. The
most significant part of the cost we spent on software connected to the maintenance
of the software. The cost of software maintenance is mostly depends on the structural
complexity of the code. A good complexity measurment tool can trigger critical parts
of the software even in developement phase. It can help to write good quality code,
and can make assumptions on the predicted costs.

In the modern programming languages multiparadigm design is frequently used
[1]|2]. An adequate measure therefore should not be based on special features of one
paradigm, but on basic language elements and construction rules applied to different
paradigms.

Our main proposal is, that when counting the complexity of a program, we
should take the complexity of the data used and the complexity of data handling into
consideration; we should see the decreasing of complexity through hiding techniques.
Accordingly, the complexity of a program is a sum of three components:

e the complexity of its control structure,
e the complexity of data types used,

e the complexity of the data handling (ie., the complexity of the connection
between the control structure and the data types).

We give a suggestion for the measure of complexity of a program or (class) library.
First, we show this measure working well on procedural programs. Then, we extend
the measure to object-oriented programs in the following steps:

(1) We define the complexity of class. Class is defined as a set of data (attributes)
and control structures (member functions, methods) working on the attributes. We
define the complexity of class as a sum of the complexity of attributes and the
complexity of member functions. The definition reflects the common experience that
good object-oriented programs have very strong bindings between the attributes and
the methods inside the class and have week connections between different classes.
The measure is also examined on special cases such as member functions calling
other member functions, and classes with no attributes (old-style libraries), etc.

(2) We examine the complexity issues of the connection of classes. Inheritance
and aggregate relationships between classes can increase global complexity of the

2 THE PROPOSED METRICS 3

program. However, every time we use the same class we can see the benefit of these
constructions. We show on some classical example, how complexity depends on
binding between classes.

2 The proposed metrics

The well-known measure of McCabe (cyclomatic complexity) is based only on the
number of predicates in a program: V(G) = p + 1. The inadequacy of the measure
becomes clear, if we realize that the complexity depends basically on the nesting
level of the predicate nodes. The measures proposed by Harrison and Magel [4] and
Piwowarski [9] proven to be equivalent in principle by Howatt and Baker [5] take
this lack into account.

The complexity of the control structur of a program is defined with the help
of the nesting depth. It is important to carefully define the complexity, not to
exclude non-structural programs. Programming languages, like C#, C++, Java
reintroduced non-structured control facilities with the exception handling.

Definition Given control garph G = (N, E,s,t) and p € N predicate node.
The scope of p is: Scope(p).

Definition Given control graph G = (N, E, s,t), and z € N node. For a node
x the predicate set was defined as:

Pred(z) = {p| = € Scope(p)}

Definition Given control graph G = (N, E, s,t) and z € N the nesting depth
of node z is:
nd(x) =| Pred(z) |

Definition Given control graph G = (N, E, s,t) the total nesting depth of the
graph is:
ND(G) = Y nd(n)

neN’

Definition Given control graph G = (N, E, s,t) the scope number of the graph
is defined as:

SN(G) = > (] Scope(n)| +1)=| N' | +ND(G)

nenN’
There is a clear analogy with the McCabe metrics. Here however we summarize the

nesting depth of nodes rather than summarize the number of predicate nodes.

2 THE PROPOSED METRICS 4

2.1 The role of data handling

An important feature of our software metrics is that it doesn’t count the complexity
of data handling based on the place of the declaration. The metrics encounter that
value exactly at the point of data handling. This of course also measure the place
of declaration in an implicite way: local variables are used only in the local code
context (in the subprogram).

Definition Given an AV graph G = (N, €&, s,t), N = NUD, where N is the set
of the control nodes, D the set of data nodes, p € N (not neccessery) predicate
node. The data-scope (D-scope) of node p is DScope(p) ={d€ D |In € N A n €

Scope(p) U{p} A ((n,d) € EV (d,n) € E)

Definition Given an AV graph G = (N, &, s,t) N = N U D, the set of control
nodes is IV, the set of data nodes is D, node p € N predicate. The data and
control scope of node p

AV Scope(p) = Scope(p) U DScope(p)

Given AV graph G = (N, &,s,t), and node x € N. The set of nodes that
predicate a node z is

AV Pred(z) ={p| « € AVScope(p)}

Definition. Given AV graph G = (N, &, s,1) the nesting depth of node z € N
is:

nd(z) =| AV Pred(z) |
Definition Given Av graph G = (N, &, s,t) the total nesting depth is:

ND@) = Y nd(n)

neN’
Definition Given AV graph G = (N, &, s,t) the complexity of the graph is

CG) =1 N' | + ND(9)

The complexity of th AV graph depends on the control structure and the data
handling. The control structure — with the help of predicate nodes — defines the
nesting depth of control nodes and the depth of data handling. The total complexity
is exprssed by the nesting level of both data and control.

3 THE COMPLEXITY OF CLASS 3

There is an another possible way to get these results. Let suppose we have no
data nodes and data edges in our graph but we replace them whit special control
nodes: ,reader” and/or ,writer” which do only receiving and sending information.
These nodes will be inserted just before and after the real control nodes which read
and /or write data. The nesting depth and complexity value we get with this model
is the same we count based on AV graphs.

3 The complexity of class

We can naturally extend our model to object-oriented programs. In the centre of
the object-oriented paradigm there is the class. Therefore we should first describe
how we measure the complexity of a class. In the base of the previous sections we
can see the class definition as a set of (local) data and a set of methods.

Definition A class-graph O = {G | G AVgraph} is a finite set of AV graphs
(the member graphs). The set of nodes N' = N D, where N represents the nodes
belonging the control structure of one of the member graphs and D represents the
data nodes used by the member graphs. We can call D also as the set of attributes
of the class. The set of edges £ = E|J R represents the E edges belonging the
control structure of one of the member graphs and R as the data reference edges
of the attributes. As the control nodes (nodes belonging to the control structure of
one of the member graphs) were unique, there is no path from one member graph
to another one. However, there could be attributes (data nodes) which are used
by more than one member graph. These attributes have data reference edges to
different member graphs.

This is a natural model of the class. It reflects the fact that a class is a coherent
set of attributes (data) and the methods working on the attributes. Here the meth-
ods (member functions) are procedures represented by individual data-flowgraphs
(the member graphs). Every member graph has his own start node and terminal
node, as they are individually callable functions. What makes this set of procedures
more than an ordinary library is the common set of attributes used by the mem-
ber procedures. Here the attributes are not local to one procedure but local to the
object, and can be accessed by several procedures.

Definition The complexity of a class can be computed in a very similar way to
the complexity of the program:

C(O)=|N"[+ 3. ND(9)

Geo

It is important to stress that the complexity of the class is inherited from both
the complexity of the control flow and the complexity of data structure.

3 THE COMPLEXITY OF CLASS 6

Lemma The complexity of the class can be computed as the sum of the attributes
and the sum of the complexity of disjunct memberfunctions.

CO) =[A[+> (ND@G)+ | La)

GeO

In the following example we represent a class with an AV graph. Let consider the
year data node, as one of the nodes witch used by more than one method.

ND(set_next_month) = 14

|IN'|=4

ND(set_next year) = 9

|IN'|=3

The number of the attributes in this graph:
| Af=3

Total complexity:
C(date) =18 +12+3 =33

3.1 Evaluate the metrics

Let consider that h definition of AV graph permits the emty set of control nodes.
In that case we get a classical data structure. The complexity of a classical data
structure is the sum of the data nodes.

3 THE COMPLEXITY OF CLASS 7

The opposite situation is also possible. When a ,class” contains disjunct methods,
so there is no common data shared between them — there are no attributes — we
compute the complexity of the class as the sum of the complexity of the disjunct
functions. We can identify this construct as an ordinay function library.

These examples also point to the fact,that we use paradigm-independent notions,
so we can apply our measure onto procedural, object-oriented or even mixed style
programs. This was our goal.

3.2 Encapsulation

Let suppose we have two identical classes. The only difference between the two code
is that one of them using private declarations to hide those variables not to belong
to interface.

Can an ordinary C++ programmer see the differences in complexity between
the two definitions? We can hardly say yes. However, there could be differences
in the complexity of the client code, which uses the class. If the client accesses the
attributes of the class via the set_next month function, we can replace its subgraph
in the client code in the known way. This decreases the complexity of the client code.

3.3 Class relationships

A data member of a class is marked with a single data node regardless of its internal
complexity. If it represents a complex data type, its definition should be included in
the program and its complexity is counted there. Up to the point, where we handle
this data as an atomic entity, its effect to the complexity of the handler code doesn’t
differ from the effect of the most simple (built-in) types. From the viewpoint of the
code using class date, the internal implementation of date makes no difference.

If T is a user-defined class, then the complexity of the whole system (containing
the standard libraries, functions and the other user-defined classes earlier defined is
increasing. The complexiy of 7" has been added to the system. This is however a
good trade-of, because the constant effort we did here, will result a code decrease in
linear, when we use that more intelligent class.

Here we use the member functions of date, the calls of which have constant
complexity regardless of its implementation. Hovewer, if we break the encapsulation
of class date (ie. we directly access its components), the data reference edges connect
the handler code to the internal representation and increment its complexity. Once
again, we stress this fact has to do with the private or public members only in an
indirect way: as far as we use the methods to handle data, it doesn’t matter whether
the components are public or private. Of course, the compiler supports this strategy
only when we made our components private.

4 WEYUKER AXIOMS 8

Inheritance is handled in a similar way. Code of the derived class in most cases
(but not neccessery) refers to the methods and /or data members of the base class(es).
These references (method calls or data accesses) are described in the very same way
as we did in the case of procedural programs. The motivation here is again to derive
complexity from the basic, paradigm—-independent program elements.

4 Weyuker axioms

Elaine J, Weyuker in 1988 proposed logical statements over complexity metrics based
on syntactical features of program [10]. The statements — often called Weyuker ax-
ioms, however they are not axioms in the mathematical sense — define the ,expected
behaviour” of software metrics. Here we show the results of the evaluation of our
metrics against the Weyuker axioms:

statements McCabe Halstead dataflow AV graph
1 + — — - -
2 + - + - with mod.
3 + B B + -
4 n + + - -
5 | + - - +
6a - - + + +
6b - - + -+ -
7 - - - + +
8 - — — - -
9a - - + + -
9b - - + + +

5 Empirical results

There is a software implementation of our metrics working on Java sources, comput-
ing the Av complexity. The implementation was written itself in Java, using an open
source parser: CUP [11]. The software is also able to measure the SN(G) complexity
so we can compare AV graph complexity to the control graph complexity.

To test the proposed metrics, program-designer students of ELTE University has
developed programs based on the same specification and we measured the products.

References

[1] Coplien J.O. Multi-Paradigm Design for C++ Addison-Wesley, (1998).

REFERENCES 9

[2] Czarnecki K., Eisenecker U.W. Generative Programming Addison-Wesley,
(2000).

[3] Fothi A., Nyéky-Gaizler J. On the Complexity of Object-Oriented Programs Proc.
of the 3rd Symp. on Programming Languages and Software Tools Kaariku, Es-
tonia, 1993.

[4] Harrison,W.A. and Magel, K.I. A Complexity Measure Based on Nesting Level
ACM Sigplan Notices,16(3), pp.63-74 (1981).

[5] Howatt,J.W. and Baker,A.L. Rigorous Definition and Analysis of Program Com-
plexity Measures: An FEzxample Using Nesting The Journal of Systems and
Sofware 10, pp.139-150 (1989).

[6] Halstead, M. H. Natural laws controlling algorithm structure SIGPLAN Notices,
vol.7. pp.19-26 (1972).

[7] Henry S., Kafura D. Software Sructure Metrics Based of Information Flow IEEE
Trans. Software Engineering, vol.7, pp.510-518 (1981).

[8] McCabe, T.J. A Complezrity Measure IEEE Trans. Software Engineering, SE-
2(4), pp.308-320 (1976).

[9] Piwowarski,P. A Nesting Level Complezity Measure ACM Sigplan Notices, 17(9),
pp.44-50 (1982).

[10] Weyuker, E.J. Evaluating software complexity measures IEEE Trans. Software
Engineering, vol.14, pp.1357-1365 (1988).

[11] CUP Parser Generator for Java
http://www.cs.princeton.edu/ appel/modern/java/CUP

[12] Fothi A., Nyéky-Gaizler J., Porkolab Z. The Structured Complexity of Object-
Oriented Programs Computers and Mathematics with Applications accepted for
publication (2002).

[13] Féthi, A., Nyéky-Gaizler, J., Porkolab, Z. On the Complezity of Class Proc. of
the FUSST’99, Tallin, Estonia, pp.221-231 (1999).

