
Infrastructure for Analysis of F# Programs

Péter Diviánszky, Zoltán Horváth, Mónika Mészáros, Gábor Páli

Supported by ELTE IKKK, Morgan Stanley

Functional programming is an emerging
programming paradigm. One of the recent
languages is F#, a non-pure functional language. It
has a growing importance mainly on .NET
architecture.

F# was developed as a pragmatically-oriented
variant of ML that shares a core language with
OCaml. It executes at or near the speed of C# and
C++, making use of the performance that comes
through strong typing. F# includes extensions for
working across languages, and it works seamlessly
with other .NET programming languages and tools.

The purpose of this project is to develop tools
enhancing programmer's efficiency in F#.

We present here an approach to analysis and
refactoring programs, where separation of style of
source code from content plays an important role.
Our proposal resembles to the relation between
HTML and CSS, and it could be adapted to
arbitrary programming language.

Every information in the source code that does not
change the effect of the resulting program code is
considered style, for example line breaks,
indentation, usage of comments and variable names,
etc. Style of source code has great importance in
human communication, for example, choice and use
of a common style is essential for productivity in
larger software projects.

Content and style can be seen as two layers of
information. This dual model was refined to have
more layers as shown in the graph below. Layers
are constructed at every step, when the program is
transformed to a higher representation. The resulted
layer contains information not present in the higher
representation. Hence layers do not overlap, e.g. do
not contain redundant information.

We have developed an implementation in F#, where
we would like to demonstrate the potential of this
approach. Currently the layers regarding style are
worked out and the elaboration of the higher-level
layers (regarding content) is future work.

In this infrastructure, program analysis (software
metrics and resource analysis) can be done on the
most suitable layer.

Refactoring and program transformation can be
performed on the components of the layered
representation which is the green area in the graph.
In our opinion, a well-designed program
transformation works with only one component. In
consequence, a complex refactoring step should not
bother with style information, which will be
automagically adjusted to the transformed code
(new and altered source segments will have default
style which has been extracted from the program
itself).

Concrete and nearly implemented applications:

- Analysis of style of programming, which is just a
special kind of program analysis.

- Automatic unification of source code style, which
is a refactoring step on the style component. For
example, this application can be used for enforcing
different coding policies.

Introduction

Software Based on the Concepts

Separating Layers of Information

Master students in Software Technology

divip@aszt.inf.elte.hu,{hz,bonnie,pgj}@inf.elte.hu

 MatchStyle
 { rules = InNewLine (Uniform (IndentedBy 0))
 , arrows = NonUniform (Floating 1
 , [Index 2, Floating 0])
 , expressions = Uniform (InTheSameColunm 1)
 }

Department of Programming Languages and Compilers

Eötvös Loránd University, Budapest, Hungary

The Model in Action

 MatchStyle
 { rules = InNewLine (Uniform (IndentedBy 4))
 , arrows = Uniform (InTheSameColunm 1)
 , expressions = Uniform (Floating 2)
 }

let rec length l =
 match l with
 | [] -> 0
 | x::longName -> 1 + length longName

A small piece of the model is illustrated by three
source code and two layout segments.

Source codes overlap their layout. Only the
layouts of match expressions are shown. Unique
identifiers link layout data to other data like the
AST. (Eventually these layout fractions contain
no identifiers.)

Layout and other data structured are designed so
that it fits to program transformation. Consider
the rename of the xs identifier in the upper code.
This transformation does not affect style, but the
synthesized code looks nice.

let rec length l =
 match l with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec length l =
 match l with
 | [] -> 0
 | x::xs-> 1 + length xs

Artyom Antyipin, Dorián Batha, Andrea Kovács, Péter Kovács, Judit Kőszegi, Dániel Leskó

	Dia 1

