Atomic Physics

Ildikó László, PhD

Dept. Programming Languages and Compilers Eötvös Loránd University, Budapest, Hungary

Financed from the financial support ELTE won from the Higher Education Restructuring Fund of the Hungarian Government

Physics & Informatics

Ildikó László, PhD

Atomic Physics

Physics & Informatics

Ildikó László, PhD

Atomic Physics

The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

Atomic Physics

The Atom - Basics

Early Models of the Atom The de Broglie Hypothesis

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

- the idea that any matter is made of atoms
 dates back to the Greek philosopher Democritus;
- the word atom comes from the Greek atomos,
 which means "indivisible":
- an atom is the smallest particle of an element
 that still has the properties characterizing that element;
- the experimental evidence came mainly in the eighteenth and nineteenth centuries;
- much of it was obtained from the analysis of chemical reactions;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the idea that any matter is made of atoms
 - dates back to the Greek philosopher Democritus;
- the word atom comes from the Greek atomos,
 - which means "indivisible";
- an atom is the smallest particle of an element
 that still has the properties characterizing that element;
- the experimental evidence came mainly in the eighteenth and nineteenth centuries;
- much of it was obtained from the analysis of chemical reactions;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the idea that any matter is made of atoms
 - dates back to the Greek philosopher Democritus;
- the word atom comes from the Greek atomos,
 - which means "indivisible";
- an atom is the smallest particle of an element
 that still has the properties characterizing that element;
- the experimental evidence came mainly in the eighteenth and nineteenth centuries;
- much of it was obtained from the analysis of chemical reactions;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the idea that any matter is made of atoms
 - dates back to the Greek philosopher Democritus;
- the word atom comes from the Greek atomos,
 - which means "indivisible";
- an atom is the smallest particle of an element
 that still has the properties characterizing that element;
- the experimental evidence came mainly in the eighteenth and nineteenth centuries;
- much of it was obtained from the analysis of chemical reactions;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the idea that any matter is made of atoms
 - dates back to the Greek philosopher Democritus;
- the word atom comes from the Greek atomos,
 - which means "indivisible";
- an atom is the smallest particle of an element
 that still has the properties characterizing that element;
- the experimental evidence came mainly in the eighteenth and nineteenth centuries;
- much of it was obtained from the analysis of chemical reactions;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Robert Boyle (1627-1691) was the one who believed
 - that chemical experiments could demonstrate
 - the truth of the corpuscularian philosophy;
- Antoine-Laurent Lavoisier (1743-1794),
- John Dalton (1766-1844) and others like
 - Gay-Lussac and Robert Brown contributed to the atomic theory;
- Joseph John Thomson (1856-1940)
 - discovered the electron (he called it corpuscles)
 - in a series of experiments designed to study
 - the electric discharge in cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Robert Boyle (1627-1691) was the one who believed
 - that chemical experiments could demonstrate
 - the truth of the corpuscularian philosophy;
- Antoine-Laurent Lavoisier (1743-1794),
- John Dalton (1766-1844) and others like
 Gay-Lussac and Robert Brown contributed to the atomic theory;
- Joseph John Thomson (1856-1940)
 - discovered the electron (he called it corpuscles)
 - in a series of experiments designed to study
 - the electric discharge in cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Robert Boyle (1627-1691) was the one who believed
 - that chemical experiments could demonstrate
 - the truth of the corpuscularian philosophy;
- Antoine-Laurent Lavoisier (1743-1794),
- John Dalton (1766-1844) and others like
 Gay-Lussac and Robert Brown contributed to the atomic theory;
- Joseph John Thomson (1856-1940)
 - discovered the electron (he called it corpuscles)
 - in a series of experiments designed to study
 - the electric discharge in cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Robert Boyle (1627-1691) was the one who believed
 - that chemical experiments could demonstrate
 - the truth of the corpuscularian philosophy;
- Antoine-Laurent Lavoisier (1743-1794),
- John Dalton (1766-1844) and others like
 Gay-Lussac and Robert Brown contributed to the atomic theory;
- Joseph John Thomson (1856-1940)
 - discovered the electron (he called it corpuscles)
 - in a series of experiments designed to study
 - the electric discharge in cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- by applying an improved vacuum technique
 - Thomson was able to demonstrate that this
 - "dark space", which seemed to extend outward from the cathode toward the opposite end,
 - would glow
- were composed of the same particles, or corpuscles
 - regardless of what kind of gas carried the electric discharge,
 - or what kind of metals were used as conductors;
- he was able to measure directly e/m
 - by applying electric and magnetic fields;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- by applying an improved vacuum technique
 - Thomson was able to demonstrate that this
 - "dark space", which seemed to extend outward from the cathode toward the opposite end,
 - would glow
- were composed of the same particles, or corpuscles
 - regardless of what kind of gas carried the electric discharge,
 - or what kind of metals were used as conductors;
- - he was able to measure directly e/m
 - by applying electric and magnetic fields;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- by applying an improved vacuum technique
 - Thomson was able to demonstrate that this
 - "dark space", which seemed to extend outward from the cathode toward the opposite end,
 - would glow
- were composed of the same particles, or corpuscles
 - regardless of what kind of gas carried the electric discharge,
 - or what kind of metals were used as conductors;
- he was able to measure directly e/m
 - by applying electric and magnetic fields;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- if screens with small hole were inserted, the glow was restricted to a tiny spot;
- the cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

・ロット 「「「」、「」、「」、「」、「」、「」、

- if screens with small hole were inserted, the glow was restricted to a tiny spot;
- the cathode-ray tube;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the bright spot could be deflected to one side
 by an electric or magnetic field:
- could be charged particles;
- estimates of the charge e, and the ratio: e/m, had been made by 1897;
- if the applied electric and magnetic fields
 - are choosen so that they balance each-other, then from

$$F = ma = \frac{mv^2}{r};$$
 (1)

- and

$$F = qvB; \qquad (2$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Physics & Informatics

lldikó László, PhD

Atomic Physics

- the bright spot could be deflected to one side
 by an electric or magnetic field:
- could be charged particles;
- estimates of the charge e, and the ratio: e/m, had been made by 1897;
- if the applied electric and magnetic fields
 - are choosen so that they balance each-other, then from

$$F = ma = \frac{mv^2}{r};$$
 (1)

- and

$$F = qvB; \tag{2}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the bright spot could be deflected to one side
 by an electric or magnetic field:
- could be charged particles;
- estimates of the charge e, and the ratio: e/m, had been made by 1897;
- if the applied electric and magnetic fields

- are choosen so that they balance each-other, then from

$$F = ma = \frac{mv^2}{r};$$
 (1)

- and

$$F = qvB; \qquad (2$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the bright spot could be deflected to one side
 by an electric or magnetic field:
- could be charged particles;
- estimates of the charge e, and the ratio: e/m, had been made by 1897;
- if the applied electric and magnetic fields

- are choosen so that they balance each-other, then from

$$F = ma = \frac{mv^2}{r}; \tag{1}$$

- and

$$F = qvB;$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- the bright spot could be deflected to one side
 by an electric or magnetic field:
- could be charged particles;
- estimates of the charge e, and the ratio: e/m, had been made by 1897;
- if the applied electric and magnetic fields

- are choosen so that they balance each-other, then from

$$F = ma = \frac{mv^2}{r}; \tag{1}$$

- and

$$F = qvB;$$
 (2)

Physics & Informatics

Ildikó László, PhD

Atomic Physics

The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

follows:

$\frac{e}{m} = \frac{E}{rB^2};$ (3)

- the quantities on the right side could be measured ,
 - so e/m could be determined;
- it was found that

$$\frac{e}{m} = 1.76x10^{11}C/kg;$$
(4)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- and soon, cathode rays have been called electrons;

Physics & Informatics

lldikó László, PhD

Atomic Physics

- follows:

$$\frac{e}{m} = \frac{E}{rB^2};$$
(3)

- the quantities on the right side could be measured ,
 - so *e*/*m* could be determined;
- it was found that

$$\frac{e}{m} = 1.76 \times 10^{11} C/kg;$$
(4)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- and soon, cathode rays have been called electrons;

Physics & Informatics

lldikó László, PhD

Atomic Physics

- follows:

$$\frac{e}{m} = \frac{E}{rB^2};$$
(3)

- the quantities on the right side could be measured ,
 - so *e*/*m* could be determined;
- it was found that

$$\frac{e}{m} = 1.76 x 10^{11} C/kg;$$
 (4)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- and soon, cathode rays have been called electrons;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- follows:

$$\frac{e}{m} = \frac{E}{rB^2};$$
(3)

- the quantities on the right side could be measured ,
 - so *e*/*m* could be determined;
- it was found that

$$\frac{e}{m} = 1.76 x 10^{11} C/kg;$$
 (4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

and soon, cathode rays have been called electrons;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

Thomson was the person who argued,

- that these particles were constituents of atoms,
- but not ions or the atoms themselves as many thought;
- Thomson called them "corpuscles";
- after these experiments, he also created
 - a model of the atom, the Thomson's model;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Thomson was the person who argued,
 - that these particles were constituents of atoms,
 - but not ions or the atoms themselves as many thought;
- Thomson called them "corpuscles";
- after these experiments, he also created
 - a model of the atom, the Thomson's model;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

- Thomson was the person who argued,
 - that these particles were constituents of atoms,
 - but not ions or the atoms themselves as many thought;
- Thomson called them "corpuscles";
- after these experiments, he also created
 - a model of the atom, the Thomson's model;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom

Atomic Physics The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

The Thomson Model

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

- Thomson's model of the atom was the first
 - taking in consideration that the electron
 - is a part of the structure;
- it was supposed that the positively charged part
 of the atom is distributed uniformly in a sphere
 of radius *r*, and the small electrons are inside of th sphere;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

The Thomson Model

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

- Thomson's model of the atom was the first
 - taking in consideration that the electron
 - is a part of the structure;
- it was supposed that the positively charged part
 - of the atom is distributed uniformly in a sphere
 - of radius *r*, and the small electrons are inside of the sphere;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- Ernes Rutherford (1871-1937) and his colleagues'
 experiments contradicted Thomson's model of the atom;
- in their experiments positively charged
 α particles were bombarding a thin gold sheet;
- it was expected that the α particles would not be deflected significantly;
 - since electrons are much lighter then the α particles;
- most α particles passed through the gold sheet unaffected
 - as if the foil had been mostly empty;
- and of those deflected, a few were deflected at very large angles;

Physics & Informatics

lldikó László, PhD

Atomic Physics The Atom - Basics

Early Models of the Atom The de Broglie Hypothesis

- Ernes Rutherford (1871-1937) and his colleagues'
 experiments contradicted Thomson's model of the atom;
- in their experiments positively charged
 α particles were bombarding a thin gold sheet;
- it was expected that the α particles would not be deflected significantly;
 - since electrons are much lighter then the α particles;
- most α particles passed through the gold sheet unaffected
 - as if the foil had been mostly empty;
- and of those deflected, a few were deflected at very large angles;

Physics & Informatics

lldikó László, PhD

- Ernes Rutherford (1871-1937) and his colleagues'
 experiments contradicted Thomson's model of the atom;
- in their experiments positively charged
 α particles were bombarding a thin gold sheet;
- it was expected that the α particles would not be deflected significantly;
 - since electrons are much lighter then the α particles;
- most α particles passed through the gold sheet unaffected
 - as if the foil had been mostly empty;
- and of those deflected, a few were deflected at very large angles;

Physics & Informatics

lldikó László, PhD

- Ernes Rutherford (1871-1937) and his colleagues'
 experiments contradicted Thomson's model of the atom;
- in their experiments positively charged
 α particles were bombarding a thin gold sheet;
- it was expected that the α particles would not be deflected significantly;
 - since electrons are much lighter then the α particles;
- most
 a particles passed through the gold sheet unaffected
 - as if the foil had been mostly empty;
- and of those deflected, a few were deflected at very large angles;

Physics & Informatics

lldikó László, PhD

- Ernes Rutherford (1871-1937) and his colleagues'
 experiments contradicted Thomson's model of the atom;
- in their experiments positively charged
 α particles were bombarding a thin gold sheet;
- it was expected that the α particles would not be deflected significantly;
 - since electrons are much lighter then the α particles;
- most
 a particles passed through the gold sheet
 unaffected
 - as if the foil had been mostly empty;
- and of those deflected, a few were deflected at very large angles;

Physics & Informatics

lldikó László, PhD

- finally Rutherford reasoned that:

- this can be explained only if
 - the α particles are interacting by a massive positive charge
 - concentrated in a very small region of space;
- he concluded that:
 - the atom must consist of a tiny but massive positively charged nucleus
 - surrounded by electrons;
- the electrons would be moving in orbits about the nucleus;
 - as the planets move around the sun;

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics

Early Models of the Atom The de Broglie Hypothesis

- finally Rutherford reasoned that:
- this can be explained only if
 - the α particles are interacting by a massive positive charge
 - concentrated in a very small region of space;
- he concluded that:
 - the atom must consist of a tiny but massive positively charged nucleus
 - surrounded by electrons;
- the electrons would be moving in orbits about the nucleus;
 - as the planets move around the sun;

Physics & Informatics

lldikó László, PhD

- finally Rutherford reasoned that:
- this can be explained only if
 - the α particles are interacting by a massive positive charge
 - concentrated in a very small region of space;
- he concluded that:
 - the atom must consist of a tiny but massive positively charged nucleus
 - surrounded by electrons;
- the electrons would be moving in orbits about the nucleus;
 - as the planets move around the sun;

Physics & Informatics

lldikó László, PhD

- finally Rutherford reasoned that:
- this can be explained only if
 - the α particles are interacting by a massive positive charge
 - concentrated in a very small region of space;
- he concluded that:
 - the atom must consist of a tiny but massive positively charged nucleus
 - surrounded by electrons;
- the electrons would be moving in orbits about the nucleus;
 - as the planets move around the sun;

Physics & Informatics

lldikó László, PhD

- Rutherford's planetary model of the atom
 was an important step toward how we see the atom today;
- it was Bohr's idea that quantum theory has to be incorporated in it;
- it was known by that time that
 - the energy of oscillating electric charges must change discontinuously;
- he reasoned that electrons in an atom also cannot lose energy continuously;
- must do it in quantum jumps;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

Early Models of the Atom The de Broglie Hypothesis

- Rutherford's planetary model of the atom
 was an important step toward how we see the atom today;
- it was Bohr's idea that quantum theory has to be incorporated in it;
- it was known by that time that
 - the energy of oscillating electric charges must change discontinuously;
- he reasoned that electrons in an atom also cannot lose energy continuously;
- must do it in quantum jumps;

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom

he de Broglie Hypothesis

- Rutherford's planetary model of the atom
 was an important step toward how we see the atom today;
- it was Bohr's idea that quantum theory has to be incorporated in it;
- it was known by that time that
 the energy of oscillating electric ch
 - the energy of oscillating electric charges must change discontinuously;
- he reasoned that electrons in an atom also cannot lose energy continuously;
- must do it in quantum jumps;

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Rutherford's planetary model of the atom
 was an important step toward how we see the atom today;
- it was Bohr's idea that quantum theory has to be incorporated in it;
- it was known by that time that
 - the energy of oscillating electric charges must change discontinuously;
- he reasoned that electrons in an atom also cannot lose energy continuously;
- must do it in quantum jumps;

Physics & Informatics

Ildikó László, PhD

Atomic Physics

Early Models of the Atom The de Broglie Hypothesis

- Rutherford's planetary model of the atom
 was an important step toward how we see the atom today;
- it was Bohr's idea that quantum theory has to be incorporated in it;
- it was known by that time that
 - the energy of oscillating electric charges must change discontinuously;
- he reasoned that electrons in an atom also cannot lose energy continuously;
- must do it in quantum jumps;

Physics & Informatics

lldikó László, PhD

Atomic Physics The Atom - Basics

Early Models of the Atom The de Broglie Hypothesis

Bohr postulated:

- electrons move in circular orbits,
 - but only certain orbits are allowed;
- an electron would have a definite energy
 and would move in the orbit without radiating
- he called the possible orbits
 - stationary states;
- when an electron jumps from a stationary state to another
 - a single photon of light would be emitted,
 - whose energy is given by: $h\nu = \delta E$;

Physics & Informatics

lldikó László, PhD

- Bohr postulated:
- electrons move in circular orbits,
 - but only certain orbits are allowed;
- an electron would have a definite energy
 and would move in the orbit without radiating;
- he called the possible orbits
 - stationary states;
- when an electron jumps from a stationary state to another
 - a single photon of light would be emitted,
 - whose energy is given by: $h\nu = \delta E$;

Physics & Informatics

Ildikó László, PhD

- Bohr postulated:
- electrons move in circular orbits,
 - but only certain orbits are allowed;
- an electron would have a definite energy
 and would move in the orbit without radiating;
- he called the possible orbits
 - stationary states;
- when an electron jumps from a stationary state to another
 - a single photon of light would be emitted,
 - whose energy is given by: $h\nu = \delta E$;

Physics & Informatics

lldikó László, PhD

- Bohr postulated:
- electrons move in circular orbits,
 - but only certain orbits are allowed;
- an electron would have a definite energy
 and would move in the orbit without radiating;
- he called the possible orbits
 - stationary states;
- when an electron jumps from a stationary state to another
 - a single photon of light would be emitted,
 - whose energy is given by: $h\nu = \delta E$;

Physics & Informatics

lldikó László, PhD

- Bohr postulated:
- electrons move in circular orbits,
 - but only certain orbits are allowed;
- an electron would have a definite energy
 and would move in the orbit without radiating:
- he called the possible orbits
 - stationary states;
- when an electron jumps from a stationary state to another
 - a single photon of light would be emitted,
 - whose energy is given by: $h\nu = \delta E$;

Physics & Informatics

Ildikó László, PhD

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

Atomic Physics

The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

- the Bhor Model could explain why atoms emit line spectra
 - and predicts for hydrogen the wavelengths of emitted light;
- also offers an explanation for absorption spectra;
- he assumed that electrons in fixed orbits
 - do not radiate light, though they are accelerating;
- Louis de Broglie suggested that
 - electrons have a wave nature;
- this hypothesis was confirmed by experiment several years later;

Physics & Informatics

Ildikó László, PhD

- the Bhor Model could explain why atoms emit line spectra
 - and predicts for hydrogen the wavelengths of emitted light;
- also offers an explanation for absorption spectra;
- he assumed that electrons in fixed orbits
 do not radiate light, though they are acceleratir
- Louis de Broglie suggested that
 - electrons have a wave nature;
- this hypothesis was confirmed by experiment several years later;

Physics & Informatics

Ildikó László, PhD

- the Bhor Model could explain why atoms emit line spectra
 - and predicts for hydrogen the wavelengths of emitted light;
- also offers an explanation for absorption spectra;
- he assumed that electrons in fixed orbits
 - do not radiate light, though they are accelerating;
- Louis de Broglie suggested that
 - electrons have a wave nature;
- this hypothesis was confirmed by experiment several years later;

Physics & Informatics

Ildikó László, PhD

- the Bhor Model could explain why atoms emit line spectra
 - and predicts for hydrogen the wavelengths of emitted light;
- also offers an explanation for absorption spectra;
- he assumed that electrons in fixed orbits
 - do not radiate light, though they are accelerating;
- Louis de Broglie suggested that
 - electrons have a wave nature;
- this hypothesis was confirmed by experiment several years later;

Physics & Informatics

Ildikó László, PhD

Atomic Physics The Atom - Basics Early Models of the Atom The de Broglie Hypothesis

・ロト・西ト・西ト・西ト・日・

- the Bhor Model could explain why atoms emit line spectra
 - and predicts for hydrogen the wavelengths of emitted light;
- also offers an explanation for absorption spectra;
- he assumed that electrons in fixed orbits
 - do not radiate light, though they are accelerating;
- Louis de Broglie suggested that
 - electrons have a wave nature;
- this hypothesis was confirmed by experiment several years later;

Physics & Informatics

Ildikó László, PhD

- de Broglie suggested that
 - the electron wave must be a circular standing wave that closes in itself;
- - that is: $2\pi r_n = n\lambda;$
- then, for an electron orbiting on a circle
 of radius r_n this follows: mvr_n = ^{nh}/_{2π};
- this is the quantum condition proposed by Bohr;
- Bhor's theory worked well for hydrogen and for one-electron ions;
 - but did not work well for multielectron atoms;

Physics & Informatics

Ildikó László, PhD

- de Broglie suggested that
 - the electron wave must be a circular standing wave that closes in itself;
- that is:

 $2\pi r_n = n\lambda;$

- then, for an electron orbiting on a circle
 of radius r_n this follows: mvr_n = ^{nh}/_{2π};
- this is the quantum condition proposed by Bohr;
- Bhor's theory worked well for hydrogen and for one-electron ions;
 - but did not work well for multielectron atoms;

Physics & Informatics

Ildikó László, PhD

- de Broglie suggested that
 - the electron wave must be a circular standing wave that closes in itself;
- that is:

 $2\pi r_n = n\lambda;$

then, for an electron orbiting on a circle
 of radius r_n this follows:

$$mvr_n = \frac{nh}{2\pi};$$

- this is the quantum condition proposed by Bohr;
- Bhor's theory worked well for hydrogen and for one-electron ions;
 - but did not work well for multielectron atoms;

Physics & Informatics

Ildikó László, PhD

- de Broglie suggested that
 - the electron wave must be a circular standing wave that closes in itself;
- that is:

 $2\pi r_n = n\lambda;$

- then, for an electron orbiting on a circle
 of radius r_n this follows:
 - $mvr_n = \frac{nh}{2\pi};$
- this is the quantum condition proposed by Bohr;
- Bhor's theory worked well for hydrogen and for one-electron ions;
 - but did not work well for multielectron atoms;

Physics & Informatics

Ildikó László, PhD

- de Broglie suggested that
 - the electron wave must be a circular standing wave that closes in itself;
- that is:

 $2\pi r_n = n\lambda;$

- then, for an electron orbiting on a circle of radius r, this follows:
 - of radius r_n this follows:

 $mvr_n = \frac{nh}{2\pi};$

- this is the quantum condition proposed by Bohr;
- Bhor's theory worked well for hydrogen and for one-electron ions;
 - but did not work well for multielectron atoms;

Physics & Informatics

Ildikó László, PhD