
Java Card 2.1 Application Programming
Interface

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Final Revision 1.0, February 24, 1999

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94043 USA.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, worldwide, limited license
(without the right to sublicense) under SUN’s intellectual property rights that are essential to practice the Java Card API
Specification ("Specification") to use the Specification for internal evaluation purposes only. Other than this limited license, you
acquire no right, title, or interest in or to the Specification and you shall have no right to use the Specification for productive or
commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS
OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Java Card API

Table of Contents
.................... 1Overview
.................. 4Class Hierarchy
.................. 6Package java.lang
................ 9Class ArithmeticException
............ 11Class ArrayIndexOutOfBoundsException
................ 13Class ArrayStoreException
................ 15Class ClassCastException
................... 17Class Exception
.............. 19Class IndexOutOfBoundsException
.............. 21Class NegativeArraySizeException
................ 23Class NullPointerException
................... 25Class Object
................ 27Class RuntimeException
................. 29Class SecurityException
.................. 31Class Throwable
............... 33Package javacard.framework
.................... 35Class AID
................... 39Class APDU
................. 51Class APDUException
................... 56Class Applet
................. 63Class CardException
............... 66Class CardRuntimeException
.................. 69Interface ISO7816
.................. 76Class ISOException
................... 78Class JCSystem
.................. 87Class OwnerPIN
................... 92Interface PIN
.................. 95Class PINException
.................. 98Interface Shareable
................. 99Class SystemException
................ 103Class TransactionException
................. 107Class UserException
.................... 110Class Util
................ 117Package javacard.security
................. 119Class CryptoException
.................. 123Interface DESKey
.................. 125Interface DSAKey
................ 129Interface DSAPrivateKey
................ 131Interface DSAPublicKey
................... 133Interface Key

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. i

Java Card 2.1 API

.................. 135Class KeyBuilder

................. 141Class MessageDigest

................. 146Interface PrivateKey

.................. 147Interface PublicKey

............... 148Interface RSAPrivateCrtKey

................ 155Interface RSAPrivateKey

................ 158Interface RSAPublicKey

.................. 161Class RandomData

.................. 164Interface SecretKey

................... 165Class Signature

................ 176Package javacardx.crypto

................... 177Class Cipher

................ 186Interface KeyEncryption

..................... 188Index

ii Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Java Card TM 2.1 Platform API Specification
Final Revision 1.0

This document is the specification for the Java Card 2.1 Application Programming Interface.

See:
 Description

Packages

java.lang
Provides classes that are fundamental to the design of the Java Card technology
subset of the Java programming language.

javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java
Card applet.

javacard.security Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto
Extension package containing security classes and interfaces for
export-controlled functionality.

This document is the specification for the Java Card 2.1 Application Programming Interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Java Card 2.1 API

Java Card 2.1 API Notes

Referenced Standards

ISO - International Standards Organization

Information Technology - Identification cards - integrated circuit cards with contacts: ISO 7816
Information Technology - Security Techniques - Digital Signature Scheme Giving Message
Recovery: ISO 9796
Information Technology - Data integrity mechanism using a cryptographic check function employing
a block cipher algorithm: ISO 9797
Information technology - Security techniques - Digital signatures with appendix : ISO 14888

RSA Data Security, Inc.

RSA Encryption Standard: PKCS #1 Version 2.0
Password-Based Encryption Standard: PKCS #5 Version 1.5

EMV

The EMV ’96 ICC Specifications for Payments systems Version 3.0

IPSec

The Internet Key Exchange (IKE) document RFC 2409 (STD 1)

Standard Names for Security and Crypto
SHA (also SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS 180-1.
MD5: The Message Digest algorithm RSA-MD5, as defined by RSA DSI in RFC 1321.
RIPEMD-160 : as defined in ISO/IEC 10118-3:1998 Information technology -- Security techniques
-- Hash-functions -- Part 3: Dedicated hash-functions
DSA: Digital Signature Algorithm, as defined in Digital Signature Standard, NIST FIPS 186.
DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2.
RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm.

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Parameter Checking

Policy
All Java Card API implementations must conform to the Java model of parameter checking. That is, the
API code should not check for those parameter errors which the VM is expected to detect. These include
all parameter errors, such as null pointers, index out of bounds, and so forth, that result in standard
runtime exceptions. The runtime exceptions that are thrown by the Java Card VM are:

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException
IllegalStateException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
NegativeArraySizeException
NullPointerException
SecurityException

Exceptions to the Policy
In some cases, it may be necessary to explicitly check parameters. These exceptions to the policy are
documented in the Java Card API specification. A Java Card API implementation must not perform
parameter checking with the intent to avoid runtime exceptions, unless this is clearly specified by the Java
Card API specification.

Note: If multiple erroneous input parameters exist, any one of several runtime exceptions will be
thrown by the VM. Java programmers rely on this behavior, but they do not rely on getting a specific
exception. It is not necessary (nor is it reasonable or practical) to document the precise error handling
for all possible combinations of equivalence classes of erroneous inputs. The value of this behavior is
that the logic error in the calling program is detected and exposed via the runtime exception
mechanism, rather than being masked by a normal return.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

Java Card 2.1 API

Hierarchy For All Packages
Package Hierarchies:

java.lang, javacard.framework, javacard.security, javacardx.crypto

Class Hierarchy
class java.lang.Object

class javacard.framework.AID
class javacard.framework.APDU
class javacard.framework.Applet
class javacardx.crypto.Cipher
class javacard.framework.JCSystem
class javacard.security.KeyBuilder
class javacard.security.MessageDigest
class javacard.framework.OwnerPIN (implements javacard.framework.PIN)
class javacard.security.RandomData
class javacard.security.Signature
class java.lang.Throwable

class java.lang.Exception
class javacard.framework.CardException

class javacard.framework.UserException
class java.lang.RuntimeException

class java.lang.ArithmeticException
class java.lang.ArrayStoreException
class javacard.framework.CardRuntimeException

class javacard.framework.APDUException
class javacard.security.CryptoException
class javacard.framework.ISOException
class javacard.framework.PINException
class javacard.framework.SystemException
class javacard.framework.TransactionException

class java.lang.ClassCastException
class java.lang.IndexOutOfBoundsException

class java.lang.ArrayIndexOutOfBoundsException
class java.lang.NegativeArraySizeException
class java.lang.NullPointerException
class java.lang.SecurityException

class javacard.framework.Util

4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Interface Hierarchy
interface javacard.security.DSAKey

interface javacard.security.DSAPrivateKey(also extends javacard.security.PrivateKey)
interface javacard.security.DSAPublicKey(also extends javacard.security.PublicKey)

interface javacard.framework.ISO7816
interface javacard.security.Key

interface javacard.security.PrivateKey
interface javacard.security.DSAPrivateKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPrivateCrtKey
interface javacard.security.RSAPrivateKey

interface javacard.security.PublicKey
interface javacard.security.DSAPublicKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPublicKey

interface javacard.security.SecretKey
interface javacard.security.DESKey

interface javacardx.crypto.KeyEncryption
interface javacard.framework.PIN
interface javacard.framework.Shareable

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 5

Java Card 2.1 API

Package java.lang
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

See:
 Description

Class Summary
Object Class Object is the root of the Java Card class hierarchy.

Throwable
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of
the Java language.

6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Exception Summary

ArithmeticException
A JCRE owned instance of ArithmethicException is
thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an array has been accessed with an
illegal index.

ArrayStoreException
A JCRE owned instance of ArrayStoreException is
thrown to indicate that an attempt has been made to store the
wrong type of object into an array of objects.

ClassCastException
A JCRE owned instance of ClassCastException is thrown
to indicate that the code has attempted to cast an object to a
subclass of which it is not an instance.

Exception
The class Exception and its subclasses are a form of
Throwable that indicates conditions that a reasonable applet
might want to catch.

IndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an index of some sort (such as to an
array) is out of range.

NegativeArraySizeException
A JCRE owned instance of
NegativeArraySizeException is thrown if an applet
tries to create an array with negative size.

NullPointerException
A JCRE owned instance of NullPointerException is
thrown when an applet attempts to use null in a case where an
object is required.

RuntimeException

RuntimeException is the superclass of those exceptions that
can be thrown during the normal operation of the Java Card
Virtual Machine. A method is not required to declare in its
throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not
caught.

SecurityException

A JCRE owned instance of SecurityException is thrown
by the Java Card Virtual Machine to indicate a security violation.
This exception is thrown when an attempt is made to illegally
access an object belonging to a another applet.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7

Java Card 2.1 API

Package java.lang Description
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

8 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class ArithmeticException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.ArithmeticException

public class ArithmeticException
extends RuntimeException

A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred. For example, a "divide by zero" is an exceptional arithmentic condition.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArithmeticException()
 Constructs an ArithmeticException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 9

Java Card 2.1 API

ArithmeticException
public ArithmeticException()

Constructs an ArithmeticException .

10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class ArrayIndexOutOfBoundsException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.IndexOutOfBoundsException
 |
 +-- java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException
extends IndexOutOfBoundsException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array has
been accessed with an illegal index. The index is either negative or greater than or equal to the size of the
array.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayIndexOutOfBoundsException()
 Constructs an ArrayIndexOutOfBoundsException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 11

Java Card 2.1 API

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException .

12 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class ArrayStoreException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.ArrayStoreException

public class ArrayStoreException
extends RuntimeException

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has been
made to store the wrong type of object into an array of objects. For example, the following code generates
an ArrayStoreException :

 Object x[] = new AID[3];
 x[0] = new OwnerPIN((byte) 3, (byte) 8);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayStoreException()
 Constructs an ArrayStoreException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 13

Java Card 2.1 API

ArrayStoreException
public ArrayStoreException()

Constructs an ArrayStoreException .

14 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class ClassCastException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.ClassCastException

public class ClassCastException
extends RuntimeException

A JCRE owned instance of ClassCastException is thrown to indicate that the code has attempted to
cast an object to a subclass of which it is not an instance. For example, the following code generates a
ClassCastException :

 Object x = new OwnerPIN((byte)3, (byte)8);
 JCSystem.getAppletShareableInterfaceObject((AID)x, (byte)5);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ClassCastException()
 Constructs a ClassCastException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 15

Java Card 2.1 API

ClassCastException
public ClassCastException()

Constructs a ClassCastException .

16 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class Exception
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception

Direct Known Subclasses:
CardException, RuntimeException

public class Exception
extends Throwable

The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Exception()
 Constructs an Exception instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Exception
public Exception()

Constructs an Exception instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 17

Java Card 2.1 API

18 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class IndexOutOfBoundsException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.IndexOutOfBoundsException

Direct Known Subclasses:
ArrayIndexOutOfBoundsException

public class IndexOutOfBoundsException
extends RuntimeException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index of
some sort (such as to an array) is out of range.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
IndexOutOfBoundsException()
 Constructs an IndexOutOfBoundsException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 19

Java Card 2.1 API

IndexOutOfBoundsException
public IndexOutOfBoundsException()

Constructs an IndexOutOfBoundsException .

20 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class NegativeArraySizeException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.NegativeArraySizeException

public class NegativeArraySizeException
extends RuntimeException

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to create an
array with negative size.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NegativeArraySizeException()
 Constructs a NegativeArraySizeException .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 21

Java Card 2.1 API

NegativeArraySizeException
public NegativeArraySizeException()

Constructs a NegativeArraySizeException .

22 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class NullPointerException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.NullPointerException

public class NullPointerException
extends RuntimeException

A JCRE owned instance of NullPointerException is thrown when an applet attempts to use null
in a case where an object is required. These include:

Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NullPointerException()
 Constructs a NullPointerException .

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 23

Java Card 2.1 API

Constructor Detail

NullPointerException
public NullPointerException()

Constructs a NullPointerException .

24 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class Object
java.lang.Object

public class Object

Class Object is the root of the Java Card class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Object()

Method Summary
 boolean equals(Object obj)

 Compares two Objects for equality.

Constructor Detail

Object
public Object()

Method Detail

equals
public boolean equals(Object obj)

Compares two Objects for equality.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 25

Java Card 2.1 API

The equals method implements an equivalence relation:
It is reflexive: for any reference value x , x.equals(x) should return true .
It is symmetric: for any reference values x and y , x.equals(y) should return true if and
only if y.equals(x) returns true .
It is transitive: for any reference values x , y , and z , if x.equals(y) returns true and
y.equals(z) returns true , then x.equals(z) should return true .
It is consistent: for any reference values x and y , multiple invocations of x.equals(y)
consistently return true or consistently return false .
For any reference value x , x.equals(null) should return false .

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any reference values x and y , this method returns true if and only if
x and y refer to the same object (x==y has the value true).
Parameters:

obj - the reference object with which to compare.
Returns:

true if this object is the same as the obj argument; false otherwise.

26 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class RuntimeException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException

Direct Known Subclasses:
ArithmeticException, ArrayStoreException, CardRuntimeException, ClassCastException,
IndexOutOfBoundsException, NegativeArraySizeException, NullPointerException,
SecurityException

public class RuntimeException
extends Exception

RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not caught.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
RuntimeException()
 Constructs a RuntimeException instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 27

Java Card 2.1 API

RuntimeException
public RuntimeException()

Constructs a RuntimeException instance.

28 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class SecurityException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- java.lang.SecurityException

public class SecurityException
extends RuntimeException

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation.

This exception is thrown when an attempt is made to illegally access an object belonging to a another
applet. It may optionally be thrown by a Java Card VM implementation to indicate fundamental language
restrictions, such as attempting to invoke a private method in another class.

For security reasons, the JCRE implementation may mute the card instead of throwing this exception.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
SecurityException()
 Constructs a SecurityException .

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 29

Java Card 2.1 API

Constructor Detail

SecurityException
public SecurityException()

Constructs a SecurityException .

30 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

java.lang
Class Throwable
java.lang.Object
 |
 +-- java.lang.Throwable

Direct Known Subclasses:
Exception

public class Throwable
extends Object

The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language. Only objects that are instances of this class (or of one of its subclasses) are thrown by the Java
Card Virtual Machine or can be thrown by the Java throw statement. Similarly, only this class or one of
its subclasses can be the argument type in a catch clause.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Throwable()
 Constructs a new Throwable .

Methods inherited from class java.lang.Object

equals

Constructor Detail

Throwable
public Throwable()

Constructs a new Throwable .

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 31

Java Card 2.1 API

32 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

See:
 Description

Interface Summary
ISO7816 ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

PIN This interface represents a PIN.

Shareable The Shareable interface serves to identify all shared objects.

Class Summary
AID This class encapsulates the Application Identifier(AID) associated with an applet.

APDU
Application Protocol Data Unit (APDU) is the communication format between the card and
the off-card applications.

Applet This abstract class defines an applet in Java Card.

JCSystem
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

OwnerPIN This class represents an Owner PIN.

Util The Util class contains common utility functions.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 33

Java Card 2.1 API

Exception Summary
APDUException APDUException represents an APDU related exception.

CardException
The CardException class defines a field reason and two accessor
methods getReason() and setReason() .

CardRuntimeException
The CardRuntimeException class defines a field reason and two
accessor methods getReason() and setReason() .

ISOException
ISOException class encapsulates an ISO 7816-4 response status word as
its reason code.

PINException PINException represents a OwnerPIN class access-related exception.

SystemException SystemException represents a JCSystem class related exception.

TransactionException
TransactionException represents an exception in the transaction
subsystem.

UserException UserException represents a User exception.

Package javacard.framework Description
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

34 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class AID
java.lang.Object
 |
 +-- javacard.framework.AID

public final class AID
extends Object

This class encapsulates the Application Identifier(AID) associated with an applet. An AID is defined in
ISO 7816-5 to be a sequence of bytes between 5 and 16 bytes in length.

The JCRE creates instances of AID class to identify and manage every applet on the card. Applets need
not create instances of this class. An applet may request and use the JCRE owned instances to identify
itself and other applet instances.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from any
applet context. References to these permanent objects can be stored and re-used.

An applet instance can obtain a reference to JCRE owned instances of its own AID object by using the
JCSystem.getAID() method and another applet’s AID object via the JCSystem.lookupAID()
method.

An applet uses AID instances to request to share another applet’s object or to control access to its own
shared object from another applet. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem , SystemException

Constructor Summary
AID(byte[] bArray, short offset, byte length)
 The JCRE uses this constructor to create a new AID instance encapsulating the specified AID
bytes.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 35

Java Card 2.1 API

Method Summary
 boolean equals(byte[] bArray, short offset, byte length)

 Checks if the specified AID bytes in bArray are the same as those encapsulated in
this AID object.

 boolean equals(Object anObject)
 Compares the AID bytes in this AID instance to the AID bytes in the specified
object.

 byte getBytes(byte[] dest, short offset)
 Called to get the AID bytes encapsulated within AID object.

 boolean partialEquals(byte[] bArray, short offset, byte length)
 Checks if the specified partial AID byte sequence matches the first length bytes of
the encapsulated AID bytes within this AID object.

 boolean RIDEquals(AID otherAID)
 Checks if the RID (National Registered Application provider identifier) portion of the
encapsulated AID bytes within the otherAID object matches that of this AID object.

Constructor Detail

AID
public AID(byte[] bArray,
 short offset,
 byte length)
 throws SystemException

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
Parameters:

bArray - the byte array containing the AID bytes.
offset - the start of AID bytes in bArray.
length - the length of the AID bytes in bArray.

Throws:
SystemException - with the following reason code:

SystemException.ILLEGAL_VALUE if the length parameter is less than 5 or
greater than 16 .

Method Detail

36 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

getBytes
public byte getBytes(byte[] dest,
 short offset)

Called to get the AID bytes encapsulated within AID object.
Parameters:

dest - byte array to copy the AID bytes.
offset - within dest where the AID bytes begin.

Returns:
the length of the AID bytes.

equals
public boolean equals(Object anObject)

Compares the AID bytes in this AID instance to the AID bytes in the specified object. The result is
true if and only if the argument is not null and is an AID object that encapsulates the same AID
bytes as this object.

This method does not throw NullPointerException .
Parameters:

anObject - the object to compare this AID against.
Returns:

true if the AID byte values are equal, false otherwise.
Overrides:

equals in class Object

equals
public boolean equals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object. The result is true if and only if the bArray argument is not null and the AID bytes
encapsulated in this AID object are equal to the specified AID bytes in bArray .

This method does not throw NullPointerException .
Parameters:

bArray - containing the AID bytes
offset - within bArray to begin
length - of AID bytes in bArray

Returns:
true if equal, false otherwise.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 37

Java Card 2.1 API

partialEquals
public boolean partialEquals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object. The result is true if and only if the bArray
argument is not null and the input length is less than or equal to the length of the encapsulated
AID bytes within this AID object and the specified bytes match.

This method does not throw NullPointerException .
Parameters:

bArray - containing the partial AID byte sequence
offset - within bArray to begin
length - of partial AID bytes in bArray

Returns:
true if equal, false otherwise.

RIDEquals
public boolean RIDEquals(AID otherAID)

Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object. The first 5 bytes of an
AID byte sequence is the RID. See ISO 7816-5 for details. The result is true if and only if the
argument is not null and is an AID object that encapsulates the same RID bytes as this object.

This method does not throw NullPointerException .
Parameters:

otherAID - the AID to compare against.
Returns:

true if the RID bytes match, false otherwise.

38 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class APDU
java.lang.Object
 |
 +-- javacard.framework.APDU

public final class APDU
extends Object

Application Protocol Data Unit (APDU) is the communication format between the card and the off-card
applications. The format of the APDU is defined in ISO specification 7816-4.

This class only supports messages which conform to the structure of command and response defined in
ISO 7816-4. The behavior of messages which use proprietary structure of messages (for example with
header CLA byte in range 0xD0-0xFE) is undefined. This class does not support extended length fields.

The APDU object is owned by the JCRE. The APDU class maintains a byte array buffer which is used to
transfer incoming APDU header and data bytes as well as outgoing data. The buffer length must be at
least 37 bytes (5 bytes of header and 32 bytes of data). The JCRE must zero out the APDU buffer before
each new message received from the CAD.

The JCRE designates the APDU object as a temporary JCRE Entry Point Object (See Java Card Runtime
Environment (JCRE) 2.1 Specification for details). A temporary JCRE Entry Point Object can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

The JCRE similarly marks the APDU buffer as a global array (See Java Card Runtime Environment
(JCRE) 2.1 Specification for details). A global array can be accessed from any applet context. References
to global arrays cannot be stored in class variables or instance variables or array components.

The applet receives the APDU instance to process from the JCRE in the Applet.process(APDU)
method, and the first five bytes [CLA, INS, P1, P2, P3] are available in the APDU buffer.

The APDU class API is designed to be transport protocol independent. In other words, applets can use the
same APDU methods regardless of whether the underlying protocol in use is T=0 or T=1 (as defined in
ISO 7816-3).

The incoming APDU data size may be bigger than the APDU buffer size and may therefore need to be
read in portions by the applet. Similarly, the outgoing response APDU data size may be bigger than the
APDU buffer size and may need to be written in portions by the applet. The APDU class has methods to
facilitate this.

For sending large byte arrays as response data, the APDU class provides a special method
sendBytesLong() which manages the APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 39

Java Card 2.1 API

 // The purpose of this example is to show most of the methods
 // in use and not to depict any particular APDU processing

public void process(APDU apdu){
 // ...
 byte[] buffer = apdu.getBuffer();
 byte cla = buffer[ISO7816.OFFSET_CLA];
 byte ins = buffer[ISO7816.OFFSET_INS];
 ...
 // assume this command has incoming data
 // Lc tells us the incoming apdu command length
 short bytesLeft = (short) (buffer[ISO7816.OFFSET_LC] & 0x00FF);
 if (bytesLeft < (short)55) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

 short readCount = apdu.setIncomingAndReceive();
 while (bytesLeft > 0){
 // process bytes in buffer[5] to buffer[readCount+4];
 bytesLeft -= readCount;
 readCount = apdu.receiveBytes (ISO7816.OFFSET_CDATA);
 }
 //
 //...
 //
 // Note that for a short response as in the case illustrated here
 // the three APDU method calls shown : setOutgoing(),setOutgoingLength() & sendBytes()
 // could be replaced by one APDU method call : setOutgoingAndSend().

 // construct the reply APDU
 short le = apdu.setOutgoing();
 if (le < (short)2) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)3);

 // build response data in apdu.buffer[0.. outCount-1];
 buffer[0] = (byte)1; buffer[1] = (byte)2; buffer[3] = (byte)3;
 apdu.sendBytes ((short)0 , (short)3);
 // return good complete status 90 00
 }

See Also:
APDUException , ISOException

Field Summary
static byte PROTOCOL_T0

 ISO 7816 transport protocol type T=0

static byte PROTOCOL_T1
 ISO 7816 transport protocol type T=1

Method Summary

40 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

 byte[] getBuffer()
 Returns the APDU buffer byte array.

static short getInBlockSize()
 Returns the configured incoming block size. In T=1 protocol, this corresponds to
IFSC (information field size for ICC), the maximum size of incoming data blocks into
the card. In T=0 protocol, this method returns 1.

 byte getNAD()
 In T=1 protocol, this method returns the Node Address byte, NAD. In T=0
protocol, this method returns 0.

static short getOutBlockSize()
 Returns the configured outgoing block size. In T=1 protocol, this corresponds to
IFSD (information field size for interface device), the maximum size of outgoing data
blocks to the CAD. In T=0 protocol, this method returns 258 (accounts for 2 status
bytes).

static byte getProtocol()
 Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

 short receiveBytes(short bOff)
 Gets as many data bytes as will fit without APDU buffer overflow, at the specified
offset bOff . Gets all the remaining bytes if they fit.

 void sendBytes(short bOff, short len)
 Sends len more bytes from APDU buffer at specified offset bOff .

 void sendBytesLong(byte[] outData, short bOff, short len)
 Sends len more bytes from outData byte array starting at specified offset
bOff .

 short setIncomingAndReceive()
 This is the primary receive method.

 short setOutgoing()
 This method is used to set the data transfer direction to outbound and to obtain the
expected length of response (Le).

 void setOutgoingAndSend(short bOff, short len)
 This is the "convenience" send method.

 void setOutgoingLength(short len)
 Sets the actual length of response data.

 short setOutgoingNoChaining()
 This method is used to set the data transfer direction to outbound without using
BLOCK CHAINING(See ISO 7816-3/4) and to obtain the expected length of response
(Le).

 void waitExtension()
 Requests additional processsing time from CAD.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 41

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Field Detail

PROTOCOL_T0
public static final byte PROTOCOL_T0

ISO 7816 transport protocol type T=0

PROTOCOL_T1
public static final byte PROTOCOL_T1

ISO 7816 transport protocol type T=1

Method Detail

getBuffer
public byte[] getBuffer()

Returns the APDU buffer byte array.

Notes:
References to the APDU buffer byte array cannot be stored in class variables or instance
variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification
for details.

Returns:
byte array containing the APDU buffer

getInBlockSize
public static short getInBlockSize()

Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1. IFSC is defined in ISO 7816-3.

42 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

This information may be used to ensure that there is enough space remaining in the APDU buffer
when receiveBytes() is invoked.

Notes:
On receiveBytes() the bOff param should account for this potential blocksize.

Returns:
incoming block size setting.

See Also:
receiveBytes(short)

getOutBlockSize
public static short getOutBlockSize()

Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes). IFSD is defined in ISO 7816-3.

This information may be used prior to invoking the setOutgoingLength() method, to limit the
length of outgoing messages when BLOCK CHAINING is not allowed.

Notes:
On setOutgoingLength() the len param should account for this potential blocksize.

Returns:
outgoing block size setting.

See Also:
setOutgoingLength(short)

getProtocol
public static byte getProtocol()

Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.
Returns:

the protocol type in progress. One of PROTOCOL_T0, PROTOCOL_T1 listed above.

getNAD
public byte getNAD()

In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0. This may be used as additional information to maintain multiple contexts.
Returns:

NAD transport byte as defined in ISO 7816-3.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 43

Java Card 2.1 API

setOutgoing
public short setOutgoing()
 throws APDUException

This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.

Returns:
Le, the expected length of response.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoingNoChaining()
method already invoked.
APDUException.IO_ERROR on I/O error.

setOutgoingNoChaining
public short setOutgoingNoChaining()
 throws APDUException

This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le). This method
should be used in place of the setOutgoing() method by applets which need to be compatible
with legacy CAD/terminals which do not support ISO 7816-3/4 defined block chaining. See Java
Card Runtime Environment (JCRE) 2.1 Specification for details.

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.
When this method is used, the waitExtension() method cannot be used.
In T=1 protocol, retransmission on error may be restricted.
In T=0 protocol, the outbound transfer must be performed without using response status
chaining.
In T=1 protocol, the outbound transfer must not set the More(M) Bit in the PCB of the I block.
See ISO 7816-3.

Returns:
Le, the expected length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoing() method already
invoked.

44 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

APDUException.IO_ERROR on I/O error.

setOutgoingLength
public void setOutgoingLength(short len)
 throws APDUException

Sets the actual length of response data. Default is 0.

Note:
In T=0 (Case 2&4) protocol, the length is used by the JCRE to prompt the CAD for GET
RESPONSE commands.

Parameters:
len - the length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() not called or this method
already invoked.
APDUException.BAD_LENGTH if len is greater than 256 or if non BLOCK
CHAINED data transfer is requested and len is greater than (IFSD-2), where IFSD is the
Outgoing Block Size. The -2 accounts for the status bytes in T=1.
APDUException.IO_ERROR on I/O error.

See Also:
getOutBlockSize()

receiveBytes
public short receiveBytes(short bOff)
 throws APDUException

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff .
Gets all the remaining bytes if they fit.

Notes:
The space in the buffer must allow for incoming block size.
In T=1 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more input data can be received. No output data can be transmitted. No error status response
can be returned.

Parameters:
bOff - the offset into APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 45

Java Card 2.1 API

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() not called or if
setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block
size.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
getInBlockSize()

setIncomingAndReceive
public short setIncomingAndReceive()
 throws APDUException

This is the primary receive method. Calling this method indicates that this APDU has incoming data.
This method gets as many bytes as will fit without buffer overflow in the APDU buffer following the
header. It gets all the incoming bytes if they fit.

Notes:
In T=0 (Case 3&4) protocol, the P3 param is assumed to be Lc.
Data is read into the buffer at offset 5.
In T=1 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
This method sets the transfer direction to be inbound and calls receiveBytes(5) .
This method may only be called once in a Applet.process() method.

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() already invoked
or if setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

46 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

sendBytes
public void sendBytes(short bOff,
 short len)
 throws APDUException

Sends len more bytes from APDU buffer at specified offset bOff .

If the last part of the response is being sent by the invocation of this method, the APDU buffer must
not be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the
buffer not be altered allows the implementation to reduce protocol overhead by transmitting the last
part of the response along with the status bytes.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
bOff - the offset into APDU buffer.
len - the length of the data in bytes to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.BUFFER_BOUNDS if the sum of bOff and len exceeds the buffer
size.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and the CAD does
not respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing() , setOutgoingNoChaining()

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 47

Java Card 2.1 API

sendBytesLong
public void sendBytesLong(byte[] outData,
 short bOff,
 short len)
 throws APDUException

Sends len more bytes from outData byte array starting at specified offset bOff .

If the last of the response is being sent by the invocation of this method, the APDU buffer must not
be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the buffer
not be altered allows the implementation to reduce protocol overhead by transmitting the last part of
the response along with the status bytes.

The JCRE may use the APDU buffer to send data to the CAD.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
outData - the source data byte array.
bOff - the offset into OutData array.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and CAD does not
respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing() , setOutgoingNoChaining()

48 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

setOutgoingAndSend
public void setOutgoingAndSend(short bOff,
 short len)
 throws APDUException

This is the "convenience" send method. It provides for the most efficient way to send a short
response which fits in the buffer and needs the least protocol overhead. This method is a combination
of setOutgoing(), setOutgoingLength(len) followed by sendBytes (bOff,
len) . In addition, once this method is invoked, sendBytes() and sendBytesLong()
methods cannot be invoked and the APDU buffer must not be altered.

Sends len byte response from the APDU buffer at starting specified offset bOff .

Notes:
No other APDU send methods can be invoked.
The APDU buffer must not be altered. If the data is altered, incorrect output may be sent to the
CAD.
The actual data transmission may only take place on return from Applet.process()

Parameters:
bOff - the offset into APDU buffer.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() or
setOutgoingAndSend() previously invoked or response byte count exeeded.
APDUException.IO_ERROR on I/O error.

waitExtension
public void waitExtension()
 throws APDUException

Requests additional processsing time from CAD. The implementation should ensure that this method
needs to be invoked only under unusual conditions requiring excessive processing times.

Notes:
In T=0 protocol, a NULL procedure byte is sent to reset the work waiting time (see ISO
7816-3).
In T=1 protocol, the implementation needs to request the same T=0 protocol work waiting time
quantum by sending a T=1 protocol request for wait time extension(see ISO 7816-3).
If the implementation uses an automatic timer mechanism instead, this method may do nothing.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingNoChaining() previously

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 49

Java Card 2.1 API

invoked.
APDUException.IO_ERROR on I/O error.

50 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class APDUException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.framework.APDUException

public class APDUException
extends CardRuntimeException

APDUException represents an APDU related exception.

The APDU class throws JCRE owned instances of APDUException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 51

Java Card 2.1 API

Field Summary
static short BAD_LENGTH

 This reason code is used by the APDU.setOutgoingLength() method to
indicate that the length parameter is greater that 256 or if non BLOCK CHAINED data
transfer is requested and len is greater than (IFSD-2), where IFSD is the Outgoing
Block Size.

static short BUFFER_BOUNDS
 This reason code is used by the APDU.sendBytes() method to indicate that
the sum of buffer offset parameter and the byte length parameter exceeds the APDU
buffer size.

static short ILLEGAL_USE
 This APDUException reason code indicates that the method should not be
invoked based on the current state of the APDU.

static short IO_ERROR
 This reason code indicates that an unrecoverable error occurred in the I/O
transmission layer.

static short NO_T0_GETRESPONSE
 This reason code indicates that during T=0 protocol, the CAD did not return a
GET RESPONSE command in response to a <61xx> response status to send additional
data.

static short T1_IFD_ABORT
 This reason code indicates that during T=1 protocol, the CAD returned an
ABORT S-Block command and aborted the data transfer.

Constructor Summary
APDUException(short reason)
 Constructs an APDUException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of APDUException with the specified reason.

52 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_USE
public static final short ILLEGAL_USE

This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

BUFFER_BOUNDS
public static final short BUFFER_BOUNDS

This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BAD_LENGTH
public static final short BAD_LENGTH

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

IO_ERROR
public static final short IO_ERROR

This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 53

Java Card 2.1 API

NO_T0_GETRESPONSE
public static final short NO_T0_GETRESPONSE

This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data. The outgoing transfer has
been aborted. No more data or status can be sent to the CAD in this APDU.process() method.

T1_IFD_ABORT
public static final short T1_IFD_ABORT

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer. The incoming or outgoing transfer has been aborted. No
more data can be received from the CAD. No more data or status can be sent to the CAD in this
APDU.process() method.

Constructor Detail

APDUException
public APDUException(short reason)

Constructs an APDUException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of APDUException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

APDUException - always.

54 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 55

Java Card 2.1 API

javacard.framework
Class Applet
java.lang.Object
 |
 +-- javacard.framework.Applet

public abstract class Applet
extends Object

This abstract class defines an applet in Java Card.

The Applet class should be extended by any applet that is intended to be loaded onto, installed into and
executed on a Java Card compliant smart card.

Example usage of Applet

 public class MyApplet extends javacard.framework.Applet{
 static byte someByteArray[];

 public static void install(byte[] bArray, short bOffset, byte bLength) throws ISOException {
 // make all my allocations here, so I do not run
 // out of memory later
 MyApplet theApplet = new MyApplet();

 // check incoming parameter
 byte bLen = bArray[bOffset];
 if (bLen!=0) { someByteArray = new byte[bLen]; theApplet.register(); return; }
 else ISOException.throwIt(ISO7816.SW_FUNC_NOT_SUPPORTED);
 }

 public boolean select(){
 // selection initialization
 someByteArray[17] = 42; // set selection state
 return true;
 }

 public void process(APDU apdu) throws ISOException{
 byte[] buffer = apdu.getBuffer();
 // .. process the incoming data and reply
 if (buffer[ISO7816.OFFSET_CLA] == (byte)0) {
 switch (buffer[ISO7816.OFFSET_INS]) {
 case ISO.INS_SELECT:
 ...
 // send response data to select command
 short Le = apdu.setOutgoing();
 // assume data containing response bytes in replyData[] array.
 if (Le < ..) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)replyData.length);
 apdu.sendBytesLong(replyData, (short) 0, (short)replyData.length);
 break;
 case ...
 }
 }

56 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

 }

 }

See Also:
SystemException , JCSystem

Constructor Summary
protected Applet()

 Only this class’s install() method should create the applet object.

Method Summary
 void deselect()

 Called by the JCRE to inform this currently selected applet that another (or the
same) applet will be selected.

 Shareable getShareableInterfaceObject(AID clientAID, byte parameter)
 Called by the JCRE to obtain a shareable interface object from this server applet,
on behalf of a request from a client applet.

static void install(byte[] bArray, short bOffset, byte bLength)
 To create an instance of the Applet subclass, the JCRE will call this static
method first.

abstract
 void

process(APDU apdu)
 Called by the JCRE to process an incoming APDU command.

protected
 void

register()
 This method is used by the applet to register this applet instance with the JCRE
and to assign the Applet subclass AID bytes as its instance AID bytes.

protected
 void

register(byte[] bArray, short bOffset, byte bLength)
 This method is used by the applet to register this applet instance with the JCRE
and assign the specified AID bytes as its instance AID bytes.

 boolean select()
 Called by the JCRE to inform this applet that it has been selected.

protected
 boolean

selectingApplet()
 This method is used by the applet process() method to distinguish the
SELECT APDU command which selected this applet, from all other other SELECT
APDU commands which may relate to file or internal applet state selection.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 57

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Constructor Detail

Applet
protected Applet()

Only this class’s install() method should create the applet object.

Method Detail

install
public static void install(byte[] bArray,
 short bOffset,
 byte bLength)
 throws ISOException

To create an instance of the Applet subclass, the JCRE will call this static method first.

The applet should perform any necessary initializations and must call one of the register()
methods. The installation is considered successful when the call to register() completes without
an exception. The installation is deemed unsuccessful if the install method does not call a
register() method, or if an exception is thrown from within the install method prior to the
call to a register() method, or if the register() method throws an exception. If the
installation is unsuccessful, the JCRE must perform all the necessary clean up when it receives
control. Successful installation makes the applet instance capable of being selected via a SELECT
APDU command.

Installation parameters are supplied in the byte array parameter and must be in a format defined by
the applet. The bArray object is a global array. If the applet desires to preserve any of this data, it
should copy the data into its own object.

bArray is zeroed by the JCRE after the return from the install() method.

References to the bArray object cannot be stored in class variables or instance variables or array
components. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

58 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

The implementation of this method provided by Applet class throws an ISOException with
reason code = ISO7816.SW_FUNC_NOT_SUPPORTED.

Note:
Exceptions thrown by this method after successful installation are caught by the JCRE and
processed by the Installer.

Parameters:
bArray - the array containing installation parameters.
bOffset - the starting offset in bArray.
bLength - the length in bytes of the parameter data in bArray. The maximum value of bLength
is 32.

process
public abstract void process(APDU apdu)
 throws ISOException

Called by the JCRE to process an incoming APDU command. An applet is expected to perform the
action requested and return response data if any to the terminal.

Upon normal return from this method the JCRE sends the ISO 7816-4 defined success status (90 00)
in APDU response. If this method throws an ISOException the JCRE sends the associated reason
code as the response status instead.

The JCRE zeroes out the APDU buffer before receiving a new APDU command from the CAD. The
five header bytes of the APDU command are available in APDU buffer[0..4] at the time this method
is called.

The APDU object parameter is a temporary JCRE Entry Point Object. A temporary JCRE Entry Point
Object can be accessed from any applet context. References to these temporary objects cannot be
stored in class variables or instance variables or array components.

Notes:
APDU buffer[5..] is undefined and should not be read or written prior to invoking the
APDU.setIncomingAndReceive() method if incoming data is expected. Altering the
APDU buffer[5..] could corrupt incoming data.

Parameters:
apdu - the incoming APDU object

Throws:
ISOException - with the response bytes per ISO 7816-4

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 59

Java Card 2.1 API

select
public boolean select()

Called by the JCRE to inform this applet that it has been selected.

It is called when a SELECT APDU command is received and before the applet is selected. SELECT
APDU commands use instance AID bytes for applet selection. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.

A subclass of Applet should override this method if it should perform any initialization that may be
required to process APDU commands that may follow. This method returns a boolean to indicate that
it is ready to accept incoming APDU commands via its process() method. If this method returns
false, it indicates to the JCRE that this Applet declines to be selected.

The implementation of this method provided by Applet class returns true .

Returns:
true to indicate success, false otherwise.

deselect
public void deselect()

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected. It is called when a SELECT APDU command is received by the JCRE. This method is
invoked prior to another applets or this very applets select() method being invoked.

A subclass of Applet should override this method if it has any cleanup or bookkeeping work to be
performed before another applet is selected.

The default implementation of this method provided by Applet class does nothing.

Notes:
Unchecked exceptions thrown by this method are caught by the JCRE but the applet is
deselected.
Transient objects of JCSystem.CLEAR_ON_DESELECT clear event type are cleared to their
default value by the JCRE after this method.
This method is NOT called on reset or power loss.

getShareableInterfaceObject
public Shareable getShareableInterfaceObject(AID clientAID,
 byte parameter)

60 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet. This method executes in the applet context of this applet instance. The
client applet initiated this request by calling the
JCSystem.getAppletShareableInterfaceObject() method. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Parameters:

clientAID - the AID object of the client applet.
parameter - optional parameter byte. The parameter byte may be used by the client to specify
which shareable interface object is being requested.

Returns:
the shareable interface object or null . Note:

The clientAID parameter is a JCRE owned AID instance. JCRE owned instances of
AID are permanent JCRE Entry Point Objects and can be accessed from any applet
context. References to these permanent objects can be stored and re-used.

See Also:
JCSystem.getAppletShareableInterfaceObject(AID, byte)

register
protected final void register()
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes. One of the register() methods must be
called from within install() to be registered with the JCRE. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Throws:

SystemException - with the following reason codes:
SystemException.ILLEGAL_AID if the Applet subclass AID bytes are in use or if
the applet instance has previously called one of the register() methods.

register
protected final void register(byte[] bArray,
 short bOffset,
 byte bLength)
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes. One of the register() methods must be called
from within install() to be registered with the JCRE. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.
Parameters:

bArray - the byte array containing the AID bytes.
bOffset - the start of AID bytes in bArray.
bLength - the length of the AID bytes in bArray.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 61

Java Card 2.1 API

Throws:
APDUException - with the following reason codes:

SystemException - with the following reason code:
SystemException.ILLEGAL_VALUE if the bLength parameter is less than 5
or greater than 16 .
SystemException.ILLEGAL_AID if the specified instance AID bytes are in use
or if the RID portion of the AID bytes in the bArray parameter does not match the
RID portion of the Applet subclass AID bytes or if the applet instance has
previously called one of the register() methods.

selectingApplet
protected final boolean selectingApplet()

This method is used by the applet process() method to distinguish the SELECT APDU
command which selected this applet, from all other other SELECT APDU commands which
may relate to file or internal applet state selection.
Returns:

true if this applet is being selected.

62 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class CardException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- javacard.framework.CardException

Direct Known Subclasses:
UserException

public class CardException
extends Exception

The CardException class defines a field reason and two accessor methods getReason() and
setReason() . The reason field encapsulates exception cause identifier in Java Card. All Java Card
checked Exception classes should extend CardException . This class also provides a resource-saving
mechanism (throwIt() method) for using a JCRE owned instance of this class.

Constructor Summary
CardException(short reason)
 Construct a CardException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of CardException class with the specified
reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 63

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardException
public CardException(short reason)

Construct a CardException instance with the specified reason. To conserve on resources, use the
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardException

Throw the JCRE owned instance of CardException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1

64 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 65

Java Card 2.1 API

javacard.framework
Class CardRuntimeException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException

Direct Known Subclasses:
APDUException, CryptoException, ISOException, PINException, SystemException,
TransactionException

public class CardRuntimeException
extends RuntimeException

The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason() . The reason field encapulates exception cause identifier in Java
Card. All Java Card unchecked Exception classes should extend CardRuntimeException . This class
also provides a resource-saving mechanism (throwIt() method) for using a JCRE owned instance of
this class.

Constructor Summary
CardRuntimeException(short reason)
 Construct a CardRuntimeException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of the CardRuntimeException class with
the specified reason.

66 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardRuntimeException
public CardRuntimeException(short reason)

Construct a CardRuntimeException instance with the specified reason. To conserve on resources, use
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardRuntimeException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 67

Java Card 2.1 API

Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardRuntimeException - always.

68 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Interface ISO7816

public abstract interface ISO7816

ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4. ISO7816 interface contains
only static fields.

The static fields with SW_ prefixes define constants for the ISO 7816-4 defined response status word. The
fields which use the _00 suffix require the low order byte to be customized appropriately e.g
(ISO7816.SW_CORRECT_LENGTH_00 + (0x0025 & 0xFF)).

The static fields with OFFSET_ prefixes define constants to be used to index into the APDU buffer byte
array to access ISO 7816-4 defined header information.

Field Summary
static byte CLA_ISO7816

 APDU command CLA : ISO 7816 = 0x00

static byte INS_EXTERNAL_AUTHENTICATE
 APDU command INS : EXTERNAL AUTHENTICATE = 0x82

static byte INS_SELECT
 APDU command INS : SELECT = 0xA4

static byte OFFSET_CDATA
 APDU command data offset : CDATA = 5

static byte OFFSET_CLA
 APDU header offset : CLA = 0

static byte OFFSET_INS
 APDU header offset : INS = 1

static byte OFFSET_LC
 APDU header offset : LC = 4

static byte OFFSET_P1
 APDU header offset : P1 = 2

static byte OFFSET_P2
 APDU header offset : P2 = 3

static short SW_APPLET_SELECT_FAILED
 Response status : Applet selection failed = 0x6999;

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 69

Java Card 2.1 API

static short SW_BYTES_REMAINING_00
 Response status : Response bytes remaining = 0x6100

static short SW_CLA_NOT_SUPPORTED
 Response status : CLA value not supported = 0x6E00

static short SW_COMMAND_NOT_ALLOWED
 Response status : Command not allowed (no current EF) = 0x6986

static short SW_CONDITIONS_NOT_SATISFIED
 Response status : Conditions of use not satisfied = 0x6985

static short SW_CORRECT_LENGTH_00
 Response status : Correct Expected Length (Le) = 0x6C00

static short SW_DATA_INVALID
 Response status : Data invalid = 0x6984

static short SW_FILE_FULL
 Response status : Not enough memory space in the file = 0x6A84

static short SW_FILE_INVALID
 Response status : File invalid = 0x6983

static short SW_FILE_NOT_FOUND
 Response status : File not found = 0x6A82

static short SW_FUNC_NOT_SUPPORTED
 Response status : Function not supported = 0x6A81

static short SW_INCORRECT_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6A86

static short SW_INS_NOT_SUPPORTED
 Response status : INS value not supported = 0x6D00

static short SW_NO_ERROR
 Response status : No Error = (short)0x9000

static short SW_RECORD_NOT_FOUND
 Response status : Record not found = 0x6A83

static short SW_SECURITY_STATUS_NOT_SATISFIED
 Response status : Security condition not satisfied = 0x6982

static short SW_UNKNOWN
 Response status : No precise diagnosis = 0x6F00

static short SW_WRONG_DATA
 Response status : Wrong data = 0x6A80

static short SW_WRONG_LENGTH
 Response status : Wrong length = 0x6700

70 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

static short SW_WRONG_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6B00

Field Detail

SW_NO_ERROR
public static final short SW_NO_ERROR

Response status : No Error = (short)0x9000

SW_BYTES_REMAINING_00
public static final short SW_BYTES_REMAINING_00

Response status : Response bytes remaining = 0x6100

SW_WRONG_LENGTH
public static final short SW_WRONG_LENGTH

Response status : Wrong length = 0x6700

SW_SECURITY_STATUS_NOT_SATISFIED
public static final short SW_SECURITY_STATUS_NOT_SATISFIED

Response status : Security condition not satisfied = 0x6982

SW_FILE_INVALID
public static final short SW_FILE_INVALID

Response status : File invalid = 0x6983

SW_DATA_INVALID
public static final short SW_DATA_INVALID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 71

Java Card 2.1 API

Response status : Data invalid = 0x6984

SW_CONDITIONS_NOT_SATISFIED
public static final short SW_CONDITIONS_NOT_SATISFIED

Response status : Conditions of use not satisfied = 0x6985

SW_COMMAND_NOT_ALLOWED
public static final short SW_COMMAND_NOT_ALLOWED

Response status : Command not allowed (no current EF) = 0x6986

SW_APPLET_SELECT_FAILED
public static final short SW_APPLET_SELECT_FAILED

Response status : Applet selection failed = 0x6999;

SW_WRONG_DATA
public static final short SW_WRONG_DATA

Response status : Wrong data = 0x6A80

SW_FUNC_NOT_SUPPORTED
public static final short SW_FUNC_NOT_SUPPORTED

Response status : Function not supported = 0x6A81

SW_FILE_NOT_FOUND
public static final short SW_FILE_NOT_FOUND

Response status : File not found = 0x6A82

72 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

SW_RECORD_NOT_FOUND
public static final short SW_RECORD_NOT_FOUND

Response status : Record not found = 0x6A83

SW_INCORRECT_P1P2
public static final short SW_INCORRECT_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_WRONG_P1P2
public static final short SW_WRONG_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6B00

SW_CORRECT_LENGTH_00
public static final short SW_CORRECT_LENGTH_00

Response status : Correct Expected Length (Le) = 0x6C00

SW_INS_NOT_SUPPORTED
public static final short SW_INS_NOT_SUPPORTED

Response status : INS value not supported = 0x6D00

SW_CLA_NOT_SUPPORTED
public static final short SW_CLA_NOT_SUPPORTED

Response status : CLA value not supported = 0x6E00

SW_UNKNOWN
public static final short SW_UNKNOWN

Response status : No precise diagnosis = 0x6F00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 73

Java Card 2.1 API

SW_FILE_FULL
public static final short SW_FILE_FULL

Response status : Not enough memory space in the file = 0x6A84

OFFSET_CLA
public static final byte OFFSET_CLA

APDU header offset : CLA = 0

OFFSET_INS
public static final byte OFFSET_INS

APDU header offset : INS = 1

OFFSET_P1
public static final byte OFFSET_P1

APDU header offset : P1 = 2

OFFSET_P2
public static final byte OFFSET_P2

APDU header offset : P2 = 3

OFFSET_LC
public static final byte OFFSET_LC

APDU header offset : LC = 4

OFFSET_CDATA
public static final byte OFFSET_CDATA

APDU command data offset : CDATA = 5

74 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

CLA_ISO7816
public static final byte CLA_ISO7816

APDU command CLA : ISO 7816 = 0x00

INS_SELECT
public static final byte INS_SELECT

APDU command INS : SELECT = 0xA4

INS_EXTERNAL_AUTHENTICATE
public static final byte INS_EXTERNAL_AUTHENTICATE

APDU command INS : EXTERNAL AUTHENTICATE = 0x82

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 75

Java Card 2.1 API

javacard.framework
Class ISOException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.framework.ISOException

public class ISOException
extends CardRuntimeException

ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

The APDU class throws JCRE owned instances of ISOException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
ISOException(short sw)
 Constructs an ISOException instance with the specified status word.

Method Summary
static void throwIt(short sw)

 Throws the JCRE owned instance of the ISOException class with the specified
status word.

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

76 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Constructor Detail

ISOException
public ISOException(short sw)

Constructs an ISOException instance with the specified status word. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

sw - the ISO 7816-4 defined status word

Method Detail

throwIt
public static void throwIt(short sw)

Throws the JCRE owned instance of the ISOException class with the specified status word.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

sw - ISO 7816-4 defined status word
Throws:

ISOException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 77

Java Card 2.1 API

javacard.framework
Class JCSystem
java.lang.Object
 |
 +-- javacard.framework.JCSystem

public final class JCSystem
extends Object

The JCSystem class includes a collection of methods to control applet execution, resource management,
atomic transaction management and inter-applet object sharing in Java Card. All methods in JCSystem
class are static methods.

The JCSystem class also includes methods to control the persistence and transience of objects. The term
persistent means that objects and their values persist from one CAD session to the next, indefinitely.
Persistent object values are updated atomically using transactions.

The makeTransient...Array() methods can be used to create transient arrays with primitive data
components. Transient array data is lost (in an undefined state, but the real data is unavailable)
immediately upon power loss, and is reset to the default value at the occurrence of certain events such as
card reset or deselect. Updates to the values of transient arrays are not atomic and are not affected by
transactions.

The JCRE maintains an atomic transaction commit buffer which is initialized on card reset (or power on).
When a transaction is in progress, the JCRE journals all updates to persistent data space into this buffer so
that it can always guarantee, at commit time, that everything in the buffer is written or nothing at all is
written. The JCSystem includes methods to control an atomic transaction. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.

See Also:
SystemException , TransactionException , Applet

Field Summary
static byte CLEAR_ON_DESELECT

 This event code indicates that the contents of the transient object are cleared to the
default value on applet deselection event or in CLEAR_ON_RESET cases.

static byte CLEAR_ON_RESET
 This event code indicates that the contents of the transient object are cleared to the
default value on card reset (or power on) event.

static byte NOT_A_TRANSIENT_OBJECT
 This event code indicates that the object is not transient.

78 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Method Summary
static void abortTransaction()

 Aborts the atomic transaction.

static void beginTransaction()
 Begins an atomic transaction.

static void commitTransaction()
 Commits an atomic transaction.

static AID getAID()
 Returns the JCRE owned instance of the AID object associated with the
current applet context.

static Shareable getAppletShareableInterfaceObject(AID serverAID,
byte parameter)
 This method is called by a client applet to get a server applet’s shareable
interface object.

static short getMaxCommitCapacity()
 Returns the total number of bytes in the commit buffer.

static AID getPreviousContextAID()
 This method is called to obtain the JCRE owned instance of the AID object
associated with the previously active applet context.

static byte getTransactionDepth()
 Returns the current transaction nesting depth level.

static short getUnusedCommitCapacity()
 Returns the number of bytes left in the commit buffer.

static short getVersion()
 Returns the current major and minor version of the Java Card API.

static byte isTransient(Object theObj)
 Used to check if the specified object is transient.

static AID lookupAID(byte[] buffer, short offset, byte length)
 Returns the JCRE owned instance of the AID object, if any, encapsulating
the specified AID bytes in the buffer parameter if there exists a successfully
installed applet on the card whose instance AID exactly matches that of the
specified AID bytes.

static boolean[] makeTransientBooleanArray(short length, byte event)
 Create a transient boolean array with the specified array length.

static byte[] makeTransientByteArray(short length, byte event)
 Create a transient byte array with the specified array length.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 79

Java Card 2.1 API

static Object [] makeTransientObjectArray(short length, byte event)
 Create a transient array of Object with the specified array length.

static short[] makeTransientShortArray(short length, byte event)
 Create a transient short array with the specified array length.

Methods inherited from class java.lang.Object

equals

Field Detail

NOT_A_TRANSIENT_OBJECT
public static final byte NOT_A_TRANSIENT_OBJECT

This event code indicates that the object is not transient.

CLEAR_ON_RESET
public static final byte CLEAR_ON_RESET

This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

CLEAR_ON_DESELECT
public static final byte CLEAR_ON_DESELECT

This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

Notes:
CLEAR_ON_DESELECT transient objects can be accessed only when the applet which created
the object is the currently the selected applet.
The JCRE will throw a SecurityException if a CLEAR_ON_DESELECT transient object
is accessed when the currently selected applet is not the applet which created the object.

Method Detail

80 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

isTransient
public static byte isTransient(Object theObj)

Used to check if the specified object is transient.

Notes:
This method returns NOT_A_TRANSIENT_OBJECT if the specified object is null or is not an
array type.

Parameters:
theObj - the object being queried.

Returns:
NOT_A_TRANSIENT_OBJECT, CLEAR_ON_RESET, or CLEAR_ON_DESELECT.

See Also:
makeTransientBooleanArray(short, byte) ,
makeTransientByteArray(short, byte) ,
makeTransientShortArray(short, byte) ,
makeTransientObjectArray(short, byte)

makeTransientBooleanArray
public static boolean[] makeTransientBooleanArray(short length,
 byte event)
 throws SystemException

Create a transient boolean array with the specified array length.
Parameters:

length - the length of the boolean array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientByteArray
public static byte[] makeTransientByteArray(short length,
 byte event)
 throws SystemException

Create a transient byte array with the specified array length.
Parameters:

length - the length of the byte array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 81

Java Card 2.1 API

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientShortArray
public static short[] makeTransientShortArray(short length,
 byte event)
 throws SystemException

Create a transient short array with the specified array length.
Parameters:

length - the length of the short array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientObjectArray
public static Object [] makeTransientObjectArray(short length,
 byte event)
 throws SystemException

Create a transient array of Object with the specified array length.
Parameters:

length - the length of the Object array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

82 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

getVersion
public static short getVersion()

Returns the current major and minor version of the Java Card API.
Returns:

version number as byte.byte (major.minor)

getAID
public static AID getAID()

Returns the JCRE owned instance of the AID object associated with the current applet context.
Returns null if the Applet.register() method has not yet been invoked.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object.

lookupAID
public static AID lookupAID(byte[] buffer,
 short offset,
 byte length)

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Parameters:

buffer - byte array containing the AID bytes.
offset - offset within buffer where AID bytes begin.
length - length of AID bytes in buffer.

Returns:
the AID object, if any; null otherwise. A VM exception is thrown if buffer is null , or if
offset or length are out of range.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 83

Java Card 2.1 API

beginTransaction
public static void beginTransaction()
 throws TransactionException

Begins an atomic transaction. If a transaction is already in progress (transactionDepth != 0), a
TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.IN_PROGRESS if a transaction is already in progress.

See Also:
commitTransaction() , abortTransaction()

abortTransaction
public static void abortTransaction()
 throws TransactionException

Aborts the atomic transaction. The contents of the commit buffer is discarded.

Notes:
Do not call this method from within a transaction which creates new objects because the JCRE
may not recover the heap space used by the new object instances.
The JCRE ensures that any variable of reference type which references an object instantiated
from within this aborted transaction is equivalent to a null reference.

Throws:
TransactionException - with the following reason codes:

TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.
See Also:

beginTransaction() , commitTransaction()

commitTransaction
public static void commitTransaction()
 throws TransactionException

Commits an atomic transaction. The contents of commit buffer is atomically commited. If a
transaction is not in progress (transactionDepth == 0) then a TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.

See Also:
beginTransaction() , abortTransaction()

84 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

getTransactionDepth
public static byte getTransactionDepth()

Returns the current transaction nesting depth level. At present, only 1 transaction can be in progress
at a time.
Returns:

1 if transaction in progress, 0 if not.

getUnusedCommitCapacity
public static short getUnusedCommitCapacity()

Returns the number of bytes left in the commit buffer.
Returns:

the number of bytes left in the commit buffer
See Also:

getMaxCommitCapacity()

getMaxCommitCapacity
public static short getMaxCommitCapacity()

Returns the total number of bytes in the commit buffer. This is approximately the maximum number
of bytes of persistent data which can be modified during a transaction. However, the transaction
subsystem requires additional bytes of overhead data to be included in the commit buffer, and this
depends on the number of fields modified and the implementation of the transaction subsystem. The
application cannot determine the actual maximum amount of data which can be modified during a
transaction without taking these overhead bytes into consideration.
Returns:

the total number of bytes in the commit buffer
See Also:

getUnusedCommitCapacity()

getPreviousContextAID
public static AID getPreviousContextAID()

This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context. This method is typically used by a server applet, while executing a
shareable interface method to determine the identity of its client and thereby control access
privileges.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 85

Java Card 2.1 API

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object of the previous context, or null if JCRE.

getAppletShareableInterfaceObject
public static Shareable getAppletShareableInterfaceObject(AID serverAID,
 byte parameter)

This method is called by a client applet to get a server applet’s shareable interface object.

This method returns null if the Applet.register() has not yet been invoked or if the server
does not exist or if the server returns null .
Parameters:

serverAID - the AID of the server applet.
parameter - optional parameter data.

Returns:
the shareable interface object or null .

See Also:
Applet.getShareableInterfaceObject(AID, byte)

86 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class OwnerPIN
java.lang.Object
 |
 +-- javacard.framework.OwnerPIN

public class OwnerPIN
extends Object
implements PIN

This class represents an Owner PIN. It implements Personal Identification Number functionality as
defined in the PIN interface. It provides the ability to update the PIN and thus owner functionality.

The implementation of this class must protect against attacks based on program flow prediction.Even if a
transaction is in progress, internal state such as the try counter, the validated flag and the blocking state
must not be conditionally updated during PIN presentation.

If an implementation of this class creates transient arrays, it must ensure that they are CLEAR_ON_RESET
transient objects.

The protected methods getValidatedFlag and setValidatedFlag allow a subclass of this class
to optimize the storage for the validated boolean state.

Some methods of instances of this class are only suitable for sharing when there exists a trust relationship
among the applets. A typical shared usage would use a proxy PIN interface which implements both the
PIN interface and the Shareable interface.

Any of the methods of the OwnerPIN may be called with a transaction in progress. None of the methods
of OwnerPIN class initiate or alter the state of the transaction if one is in progress.

See Also:
PINException , PIN , Shareable , JCSystem

Constructor Summary
OwnerPIN(byte tryLimit, byte maxPINSize)
 Constructor.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 87

Java Card 2.1 API

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented
before the PIN is blocked.

protected
 boolean

getValidatedFlag()
 This protected method returns the validated flag.

 boolean isValidated()
 Returns true if a valid PIN has been presented since the last card reset or last
call to reset() .

 void reset()
 If the validated flag is set, this method resets it.

 void resetAndUnblock()
 This method resets the validated flag and resets the PIN try counter to the
value of the PIN try limit.

protected
 void

setValidatedFlag(boolean value)
 This protected method sets the value of the validated flag.

 void update(byte[] pin, short offset, byte length)
 This method sets a new value for the PIN and resets the PIN try counter to the
value of the PIN try limit.

Methods inherited from class java.lang.Object

equals

Constructor Detail

OwnerPIN
public OwnerPIN(byte tryLimit,
 byte maxPINSize)
 throws PINException

Constructor. Allocates a new PIN instance.
Parameters:

tryLimit - the maximum number of times an incorrect PIN can be presented.
maxPINSize - the maximum allowed PIN size. maxPINSize must be >=1.

88 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if maxPINSize parameter is less than 1.

Method Detail

getValidatedFlag
protected boolean getValidatedFlag()

This protected method returns the validated flag. This method is intended for subclass of this
OwnerPIN to access or override the internal PIN state of the OwnerPIN .
Returns:

the boolean state of the PIN validated flag.

setValidatedFlag
protected void setValidatedFlag(boolean value)

This protected method sets the value of the validated flag. This method is intended for subclass of
this OwnerPIN to control or override the internal PIN state of the OwnerPIN .
Parameters:

value - the new value for the validated flag.

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Specified by:

getTriesRemaining in interface PIN
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN . Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 89

Java Card 2.1 API

Specified by:
check in interface PIN

Parameters:
pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of pin.

Returns:
true if the PIN value matches; false otherwise

isValidated
public boolean isValidated()

Returns true if a valid PIN has been presented since the last card reset or last call to reset() .
Specified by:

isValidated in interface PIN
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.
Specified by:

reset in interface PIN

update
public void update(byte[] pin,
 short offset,
 byte length)
 throws PINException

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit. It also resets the validated flag.

This method copies the input pin parameter into an internal representation. If a transaction is in
progress, the new pin and try counter update must be conditional i.e the copy operation must use the
transaction facility.
Parameters:

pin - the byte array containing the new PIN value
offset - the starting offset in the pin array
length - the length of the new PIN.

90 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if length is greater than configured maximum PIN
size.

See Also:
JCSystem.beginTransaction()

resetAndUnblock
public void resetAndUnblock()

This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.
This method is used by the owner to re-enable the blocked PIN .

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 91

Java Card 2.1 API

javacard.framework
Interface PIN
All Known Implementing Classes:

OwnerPIN

public abstract interface PIN

This interface represents a PIN. An implementation must maintain these internal values:

PIN value
try limit, the maximum number of times an incorrect PIN can be presented before the PIN is blocked.
When the PIN is blocked, it cannot be validated even on valid PIN presentation.
max PIN size, the maximum length of PIN allowed
try counter, the remaining number of times an incorrect PIN presentation is permitted before the PIN
becomes blocked.
validated flag, true if a valid PIN has been presented. This flag is reset on every card reset.

This interface does not make any assumptions about where the data for the PIN value comparison is
stored.

An owner implementation of this interface must provide a way to initialize/update the PIN value.The
owner implemention of the interface must protect against attacks based on program flow prediction. Even
if a transaction is in progress, internal state such as the try counter, the validated flag and the blocking
state must not be conditionally updated during PIN presentation.

A typical card global PIN usage will combine an instance of OwnerPIN class and a a Proxy PIN interface
which implements both the PIN and the Shareable interfaces. The OwnerPIN instance would be
manipulated only by the owner who has update privilege. All others would access the global PIN
functionality via the proxy PIN interface.

See Also:
OwnerPIN , Shareable

92 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented before
the PIN is blocked.

 boolean isValidated()
 Returns true if a valid PIN value has been presented since the last card reset or last
call to reset() .

 void reset()
 If the validated flag is set, this method resets it.

Method Detail

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN . Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.
Parameters:

pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of the PIN value.

Returns:
true if the PIN value matches; false otherwise

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 93

Java Card 2.1 API

isValidated
public boolean isValidated()

Returns true if a valid PIN value has been presented since the last card reset or last call to
reset() .
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.

94 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class PINException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.framework.PINException

public class PINException
extends CardRuntimeException

PINException represents a OwnerPIN class access-related exception.

The OwnerPIN class throws JCRE owned instances of PINException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
OwnerPIN

Field Summary
static short ILLEGAL_VALUE

 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

Constructor Summary
PINException(short reason)
 Constructs a PINException.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 95

Java Card 2.1 API

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of PINException with the specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

Constructor Detail

PINException
public PINException(short reason)

Constructs a PINException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

96 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of PINException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

PINException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 97

Java Card 2.1 API

javacard.framework
Interface Shareable

public abstract interface Shareable

The Shareable interface serves to identify all shared objects. Any object that needs to be shared through
the applet firewall must directly or indirectly implement this interface. Only those methods specified in a
shareable interface are available through the firewall. Implementation classes can implement any number
of shareable interfaces and can extend other shareable implementation classes.

98 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class SystemException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.framework.SystemException

public class SystemException
extends CardRuntimeException

SystemException represents a JCSystem class related exception. It is also thrown by the
javacard.framework.Applet.register() methods and by the AID class constructor.

These API classes throw JCRE owned instances of SystemException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem , Applet , AID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 99

Java Card 2.1 API

Field Summary
static short ILLEGAL_AID

 This reason code is used by the
javacard.framework.Applet.register() method to indicate that the input
AID parameter is not a legal AID value.

static short ILLEGAL_TRANSIENT
 This reason code is used to indicate that the request to create a transient object is
not allowed in the current applet context.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short NO_RESOURCE
 This reason code is used to indicate that there is insufficient resource in the Card
for the request.

static short NO_TRANSIENT_SPACE
 This reason code is used by the makeTransient..() methods to indicate that
no room is available in volatile memory for the requested object.

Constructor Summary
SystemException(short reason)
 Constructs a SystemException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of SystemException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

100 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

NO_TRANSIENT_SPACE
public static final short NO_TRANSIENT_SPACE

This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

ILLEGAL_TRANSIENT
public static final short ILLEGAL_TRANSIENT

This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

ILLEGAL_AID
public static final short ILLEGAL_AID

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

NO_RESOURCE
public static final short NO_RESOURCE

This reason code is used to indicate that there is insufficient resource in the Card for the request.

For example, the Java Card Virtual Machine may throw this exception reason when there is
insufficient heap space to create a new instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 101

Java Card 2.1 API

Constructor Detail

SystemException
public SystemException(short reason)

Constructs a SystemException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of SystemException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

SystemException - always.

102 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class TransactionException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.framework.TransactionException

public class TransactionException
extends CardRuntimeException

TransactionException represents an exception in the transaction subsystem. The methods referred
to in this class are in the JCSystem class.

The JCSystem class and the transaction facility throw JCRE owned instances of
TransactionException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 103

Java Card 2.1 API

Field Summary
static short BUFFER_FULL

 This reason code is used during a transaction to indicate that the commit buffer is
full.

static short IN_PROGRESS
 This reason code is used by the beginTransaction method to indicate a
transaction is already in progress.

static short INTERNAL_FAILURE
 This reason code is used during a transaction to indicate an internal JCRE problem
(fatal error).

static short NOT_IN_PROGRESS
 This reason code is used by the abortTransaction and
commintTransaction methods when a transaction is not in progress.

Constructor Summary
TransactionException(short reason)
 Constructs a TransactionException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of TransactionException with the
specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

Methods inherited from class java.lang.Object

equals

104 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Field Detail

IN_PROGRESS
public static final short IN_PROGRESS

This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

NOT_IN_PROGRESS
public static final short NOT_IN_PROGRESS

This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

BUFFER_FULL
public static final short BUFFER_FULL

This reason code is used during a transaction to indicate that the commit buffer is full.

INTERNAL_FAILURE
public static final short INTERNAL_FAILURE

This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

Constructor Detail

TransactionException
public TransactionException(short reason)

Constructs a TransactionException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 105

Java Card 2.1 API

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of TransactionException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Throws:

TransactionException - always.

106 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.framework
Class UserException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- javacard.framework.CardException
 |
 +-- javacard.framework.UserException

public class UserException
extends CardException

UserException represents a User exception. This class also provides a resource-saving mechanism
(the throwIt() method) for user exceptions by using a JCRE owned instance.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
UserException()
 Constructs a UserException with reason = 0.

UserException(short reason)
 Constructs a UserException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of UserException with the specified reason.

Methods inherited from class javacard.framework.CardException

getReason , setReason

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 107

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Constructor Detail

UserException
public UserException()

Constructs a UserException with reason = 0. To conserve on resources use throwIt() to use
the JCRE owned instance of this class.

UserException
public UserException(short reason)

Constructs a UserException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)
 throws UserException

Throws the JCRE owned instance of UserException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

UserException - always.

108 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 109

Java Card 2.1 API

javacard.framework
Class Util
java.lang.Object
 |
 +-- javacard.framework.Util

public class Util
extends Object

The Util class contains common utility functions. Some of the methods may be implemented as native
functions for performance reasons. All methods in Util , class are static methods.

Some methods of Util namely arrayCopy() , arrayCopyNonAtomic() ,
arrayFillNonAtomic() and setShort() , refer to the persistence of array objects. The term
persistent means that arrays and their values persist from one CAD session to the next, indefinitely. The
JCSystem class is used to control the persistence and transience of objects.

See Also:
JCSystem

110 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Method Summary
static byte arrayCompare(byte[] src, short srcOff, byte[] dest,

short destOff, short length)
 Compares an array from the specified source array, beginning at the specified
position, with the specified position of the destination array from left to right.

static short arrayCopy(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

static short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array (non-atomically).

static short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen,
byte bValue)
 Fills the byte array (non-atomically) beginning at the specified position, for the
specified length with the specified byte value.

static short getShort(byte[] bArray, short bOff)
 Concatenates two bytes in a byte array to form a short value.

static short makeShort(byte b1, byte b2)
 Concatenates the two parameter bytes to form a short value.

static short setShort(byte[] bArray, short bOff, short sValue)
 Deposits the short value as two successive bytes at the specified offset in the byte
array.

Methods inherited from class java.lang.Object

equals

Method Detail

arrayCopy
public static final short arrayCopy(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 111

Java Card 2.1 API

 short length)
 throws IndexOutOfBoundsException ,
 NullPointerException ,
 TransactionException

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length , the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length , the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If the destination array is persistent, the entire copy is performed atomically.
The copy operation is subject to atomic commit capacity limitations. If the commit capacity is
exceeded, no copy is performed and a TransactionException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null .
TransactionException - - if copying would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCopyNonAtomic
public static final short arrayCopyNonAtomic(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException ,
 NullPointerException

112 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

This method does not use the transaction facility during the copy operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the destination array can be
left in a partially modified state in the event of a power loss in the middle of the copy operation.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length , the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length , the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If power is lost during the copy operation and the destination array is persistent, a partially
changed destination array could result.
The copy length parameter is not constrained by the atomic commit capacity limitations.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null .

See Also:
JCSystem.getUnusedCommitCapacity()

arrayFillNonAtomic
public static final short arrayFillNonAtomic(byte[] bArray,
 short bOff,
 short bLen,
 byte bValue)
 throws IndexOutOfBoundsException ,
 NullPointerException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 113

Java Card 2.1 API

Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

This method does not use the transaction facility during the fill operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the byte array can be left in
a partially filled state in the event of a power loss in the middle of the fill operation.

Notes:
If bOff or bLen parameter is negative an IndexOutOfBoundsException exception is
thrown.
If bOff+bLen is greater than bArray.length , the length of the bArray array an
IndexOutOfBoundsException exception is thrown.
If bArray parameter is null a NullPointerException exception is thrown.
If power is lost during the copy operation and the byte array is persistent, a partially changed
byte array could result.
The bLen parameter is not constrained by the atomic commit capacity limitations.

Parameters:
bArray - the byte array.
bOff - offset within byte array to start filling bValue into.
bLen - byte length to be filled.
bValue - the value to fill the byte array with.

Returns:
bOff+bLen

Throws:
IndexOutOfBoundsException - - if the fill operation would cause access of data outside array
bounds.
NullPointerException - - if bArray is null

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCompare
public static final byte arrayCompare(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException ,
 NullPointerException

Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right. Returns the ternary result of the
comparison : less than(-1), equal(0) or greater than(1).

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.

114 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

If srcOff+length is greater than src.length , the length of the src array a
IndexOutOfBoundsException exception is thrown.
If destOff+length is greater than dest.length , the length of the dest array an
IndexOutOfBoundsException exception is thrown.
If src or dest parameter is null a NullPointerException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start compare.
dest - destination byte array.
destOff - offset within destination byte array to start compare.
length - byte length to be compared.

Returns:
the result of the comparison as follows:

0 if identical
-1 if the first miscomparing byte in source array is less than that in destination array,
1 if the first miscomparing byte in source array is greater that that in destination array.

Throws:
IndexOutOfBoundsException - - if comparing all bytes would cause access of data outside array
bounds.
NullPointerException - - if either src or dest is null .

makeShort
public static final short makeShort(byte b1,
 byte b2)

Concatenates the two parameter bytes to form a short value.
Parameters:

b1 - the first byte (high order byte).
b2 - the second byte (low order byte).

Returns:
the short value - the concatenated result

getShort
public static final short getShort(byte[] bArray,
 short bOff)

Concatenates two bytes in a byte array to form a short value.
Parameters:

bArray - byte array.
bOff - offset within byte array containing first byte (the high order byte).

Returns:
the short value - the concatenated result

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 115

Java Card 2.1 API

setShort
public static final short setShort(byte[] bArray,
 short bOff,
 short sValue)
 throws TransactionException

Deposits the short value as two successive bytes at the specified offset in the byte array.
Parameters:

bArray - byte array.
bOff - offset within byte array to deposit the first byte (the high order byte).
sValue - the short value to set into array.

Returns:
bOff+2

Note:
If the byte array is persistent, this operation is performed atomically. If the commit
capacity is exceeded, no operation is performed and a TransactionException
exception is thrown.

Throws:
TransactionException - - if the operation would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

116 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Package javacard.security
Provides the classes and interfaces for the Java Card security framework.

See:
 Description

Interface Summary

DESKey
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES
operations.

DSAKey
The DSAKey interface is the base interface for the DSA algorithms private and
public key implementaions.

DSAPrivateKey The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey
The DSAPublicKey interface is used to verify signatures on signed data using the
DSA algorithm.

Key The Key interface is the base interface for all keys.

PrivateKey
The PrivateKey class is the base class for private keys used in asymmetric
algorithms.

PublicKey
The PublicKey class is the base class for public keys used in asymmetric
algorithms.

RSAPrivateCrtKey
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm
in its Chinese Remainder Theorem form.

RSAPrivateKey
The RSAPrivateKey class is used to sign data using the RSA algorithm in its
modulus/exponent form.

RSAPublicKey
The RSAPublicKey is used to verify signatures on signed data using the RSA
algorithm.

SecretKey
The SecretKey class is the base interface for keys used in symmetric alogrightms
(e.g. DES).

Class Summary
KeyBuilder The KeyBuilder class is a key object factory.

MessageDigest The MessageDigest class is the base class for hashing algorthims.

RandomData The RandomData abstract class is the base class for random number generation.

Signature The Signature class is the base class for Signature algorthims.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 117

Java Card 2.1 API

Exception Summary
CryptoException CryptoException represents a cryptography-related exception.

Package javacard.security Description
Provides the classes and interfaces for the Java Card security framework.

118 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Class CryptoException
java.lang.Object
 |
 +-- java.lang.Throwable
 |
 +-- java.lang.Exception
 |
 +-- java.lang.RuntimeException
 |
 +-- javacard.framework.CardRuntimeException
 |
 +-- javacard.security.CryptoException

public class CryptoException
extends CardRuntimeException

CryptoException represents a cryptography-related exception.

The API classes throw JCRE owned instances of SystemException .

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

See Also:
KeyBuilder , MessageDigest , Signature , RandomData , Cipher

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 119

Java Card 2.1 API

Field Summary
static short ILLEGAL_USE

 This reason code is used to indicate that the signature or cipher algorithm does not
pad the incoming message and the input message is not block aligned.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short INVALID_INIT
 This reason code is used to indicate that the signature or cipher object has not
been correctly initialized for the requested operation.

static short NO_SUCH_ALGORITHM
 This reason code is used to indicate that the requested algorithm or key type is not
supported.

static short UNINITIALIZED_KEY
 This reason code is used to indicate that the key is uninitialized.

Constructor Summary
CryptoException(short reason)
 Constructs a CryptoException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of CryptoException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason , setReason

Methods inherited from class java.lang.Object

equals

120 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

UNINITIALIZED_KEY
public static final short UNINITIALIZED_KEY

This reason code is used to indicate that the key is uninitialized.

NO_SUCH_ALGORITHM
public static final short NO_SUCH_ALGORITHM

This reason code is used to indicate that the requested algorithm or key type is not supported.

INVALID_INIT
public static final short INVALID_INIT

This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

ILLEGAL_USE
public static final short ILLEGAL_USE

This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 121

Java Card 2.1 API

CryptoException
public CryptoException(short reason)

Constructs a CryptoException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of CryptoException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

CryptoException - always.

122 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface DESKey

public abstract interface DESKey
extends SecretKey

DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

When the key data is set, the key is initialized and ready for use.

See Also:
KeyBuilder , Signature , Cipher , KeyEncryption

Method Summary
 byte getKey(byte[] keyData, short kOff)

 Returns the Key data in plain text.

 void setKey(byte[] keyData, short kOff)
 Sets the Key data.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

setKey
public void setKey(byte[] keyData,
 short kOff)
 throws CryptoException

Sets the Key data. The plaintext length of input key data is 8 bytes for DES, 16 bytes for 2 key triple
DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

keyData - byte array containing key initialization data
kOff - offset within keyData to start

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 123

Java Card 2.1 API

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , keyData is decrypted
using the Cipher object.

getKey
public byte getKey(byte[] keyData,
 short kOff)

Returns the Key data in plain text. The length of output key data is 8 bytes for DES, 16 bytes for 2
key triple DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

keyData - byte array to return key data
kOff - offset within keyData to start.

Returns:
the byte length of the key data returned.

124 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface DSAKey
All Known Subinterfaces:

DSAPrivateKey, DSAPublicKey

public abstract interface DSAKey

The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions. A DSA private key implementation must also implement the DSAPrivateKey
interface methods. A DSA public key implementation must also implement the DSAPublicKey
interface methods.

When all four components of the key (X or Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey , DSAPrivateKey , KeyBuilder , Signature , KeyEncryption

Method Summary
 short getG(byte[] buffer, short offset)

 Returns the subprime parameter value of the key in plain text.

 short getP(byte[] buffer, short offset)
 Returns the base parameter value of the key in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the prime parameter value of the key in plain text.

 void setG(byte[] buffer, short offset, short length)
 Sets the subprime parameter value of the key.

 void setP(byte[] buffer, short offset, short length)
 Sets the base parameter value of the key.

 void setQ(byte[] buffer, short offset, short length)
 Sets the prime parameter value of the key.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 125

Java Card 2.1 API

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the base parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input base parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the base parameter value begins
length - the length of the base parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the base parameter
value is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the prime parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input prime parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the prime parameter value begins
length - the length of the prime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the prime parameter
value is decrypted using the Cipher object.

126 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

setG
public void setG(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the subprime parameter value of the key. The plaintext data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte). Input subprime
parameter data is copied into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the subprime parameter value begins
length - the length of the subprime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the subprime
parameter value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the base parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the base parameter value starts

Returns:
the byte length of the base parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the prime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 127

Java Card 2.1 API

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the prime parameter value begins

Returns:
the byte length of the prime parameter value returned

getG
public short getG(byte[] buffer,
 short offset)

Returns the subprime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the subprime parameter value begins

Returns:
the byte length of the subprime parameter value returned

128 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface DSAPrivateKey

public abstract interface DSAPrivateKey
extends PrivateKey, DSAKey

The DSAPrivateKey interface is used to sign data using the DSA algorithm. An implementation of
DSAPrivateKey interface must also implement the DSAKey interface methods.

When all four components of the key (X,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey , KeyBuilder , Signature , KeyEncryption

Method Summary
 short getX(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setX(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG , getP , getQ , setG , setP , setQ

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 129

Java Card 2.1 API

setX
public void setX(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the key value is
decrypted using the Cipher object.

getX
public short getX(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the key value starts

Returns:
the byte length of the key value returned

130 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface DSAPublicKey

public abstract interface DSAPublicKey
extends PublicKey, DSAKey

The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm. An
implementation of DSAPublicKey interface must also implement the DSAKey interface methods.

When all four components of the key (Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPrivateKey , KeyBuilder , Signature , KeyEncryption

Method Summary
 short getY(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setY(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG , getP , getQ , setG , setP , setQ

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 131

Java Card 2.1 API

setY
public void setY(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the key value begins
length - the length of the key value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the key value is
decrypted using the Cipher object.

getY
public short getY(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the key value starts

Returns:
the byte length of the key value returned

132 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface Key
All Known Subinterfaces:

DESKey, DSAPrivateKey, DSAPublicKey, PrivateKey, PublicKey, RSAPrivateCrtKey,
RSAPrivateKey, RSAPublicKey, SecretKey

public abstract interface Key

The Key interface is the base interface for all keys.

See Also:
KeyBuilder

Method Summary
 void clearKey()

 Clears the key and sets its initialized state to false.

 short getSize()
 Returns the key size in number of bits.

 byte getType()
 Returns the key interface type.

 boolean isInitialized()
 Reports the initialized state of the key.

Method Detail

isInitialized
public boolean isInitialized()

Reports the initialized state of the key. Keys must be initialized before being used.

A Key object sets its initialized state to true only when all the associated set methods have been
invoked at least once since the time the initialized state was set to false.

A newly created Key object sets its initialized state to false. Invocation of the clearKey() method
sets the initialized state to false. A key with transient key data sets its initialized state to false on the
associated clear events.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 133

Java Card 2.1 API

Returns:
true if the key has been initialized.

clearKey
public void clearKey()

Clears the key and sets its initialized state to false.

getType
public byte getType()

Returns the key interface type.
Returns:

the key interface type.

See Also:
KeyBuilder

getSize
public short getSize()

Returns the key size in number of bits.
Returns:

the key size in number of bits.

134 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Class KeyBuilder
java.lang.Object
 |
 +-- javacard.security.KeyBuilder

public class KeyBuilder
extends Object

The KeyBuilder class is a key object factory.

Field Summary
static short LENGTH_DES

 DES Key Length LENGTH_DES = 64.

static short LENGTH_DES3_2KEY
 DES Key Length LENGTH_DES3_2KEY = 128.

static short LENGTH_DES3_3KEY
 DES Key Length LENGTH_DES3_3KEY = 192.

static short LENGTH_DSA_1024
 DSA Key Length LENGTH_DSA_1024 = 1024.

static short LENGTH_DSA_512
 DSA Key Length LENGTH_DSA_512 = 512.

static short LENGTH_DSA_768
 DSA Key Length LENGTH_DSA_768 = 768.

static short LENGTH_RSA_1024
 RSA Key Length LENGTH_RSA_1024 = 1024.

static short LENGTH_RSA_2048
 RSA Key Length LENGTH_RSA_2048 = 2048.

static short LENGTH_RSA_512
 RSA Key Length LENGTH_RSA_512 = 512.

static short LENGTH_RSA_768
 RSA Key Length LENGTH_RSA_768 = 768.

static byte TYPE_DES
 Key object which implements interface type DESKey with persistent key data.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 135

Java Card 2.1 API

static byte TYPE_DES_TRANSIENT_DESELECT
 Key object which implements interface type DESKey with
CLEAR_ON_DESELECT transient key data.

static byte TYPE_DES_TRANSIENT_RESET
 Key object which implements interface type DESKey with CLEAR_ON_RESET
transient key data.

static byte TYPE_DSA_PRIVATE
 Key object which implements the interface type DSAPrivateKey for the DSA
algorithm.

static byte TYPE_DSA_PUBLIC
 Key object which implements the interface type DSAPublicKey for the DSA
algorithm.

static byte TYPE_RSA_CRT_PRIVATE
 Key object which implements interface type RSAPrivateCrtKey which uses
Chinese Remainder Theorem.

static byte TYPE_RSA_PRIVATE
 Key object which implements interface type RSAPrivateKey which uses
modulus/exponent form.

static byte TYPE_RSA_PUBLIC
 Key object which implements interface type RSAPublicKey .

Method Summary
static Key buildKey(byte keyType, short keyLength,

boolean keyEncryption)
 Creates cryptographic keys for signature and cipher algorithms.

Methods inherited from class java.lang.Object

equals

Field Detail

136 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

TYPE_DES_TRANSIENT_RESET
public static final byte TYPE_DES_TRANSIENT_RESET

Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

This Key object implicitly performs a clearKey() on power on or card reset.

TYPE_DES_TRANSIENT_DESELECT
public static final byte TYPE_DES_TRANSIENT_DESELECT

Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

This Key object implicitly performs a clearKey() on power on, card reset and applet deselection.

TYPE_DES
public static final byte TYPE_DES

Key object which implements interface type DESKey with persistent key data.

TYPE_RSA_PUBLIC
public static final byte TYPE_RSA_PUBLIC

Key object which implements interface type RSAPublicKey .

TYPE_RSA_PRIVATE
public static final byte TYPE_RSA_PRIVATE

Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_CRT_PRIVATE
public static final byte TYPE_RSA_CRT_PRIVATE

Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 137

Java Card 2.1 API

TYPE_DSA_PUBLIC
public static final byte TYPE_DSA_PUBLIC

Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_DSA_PRIVATE
public static final byte TYPE_DSA_PRIVATE

Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

LENGTH_DES
public static final short LENGTH_DES

DES Key Length LENGTH_DES = 64.

LENGTH_DES3_2KEY
public static final short LENGTH_DES3_2KEY

DES Key Length LENGTH_DES3_2KEY = 128.

LENGTH_DES3_3KEY
public static final short LENGTH_DES3_3KEY

DES Key Length LENGTH_DES3_3KEY = 192.

LENGTH_RSA_512
public static final short LENGTH_RSA_512

RSA Key Length LENGTH_RSA_512 = 512.

LENGTH_RSA_768
public static final short LENGTH_RSA_768

RSA Key Length LENGTH_RSA_768 = 768.

138 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

LENGTH_RSA_1024
public static final short LENGTH_RSA_1024

RSA Key Length LENGTH_RSA_1024 = 1024.

LENGTH_RSA_2048
public static final short LENGTH_RSA_2048

RSA Key Length LENGTH_RSA_2048 = 2048.

LENGTH_DSA_512
public static final short LENGTH_DSA_512

DSA Key Length LENGTH_DSA_512 = 512.

LENGTH_DSA_768
public static final short LENGTH_DSA_768

DSA Key Length LENGTH_DSA_768 = 768.

LENGTH_DSA_1024
public static final short LENGTH_DSA_1024

DSA Key Length LENGTH_DSA_1024 = 1024.

Method Detail

buildKey
public static Key buildKey(byte keyType,
 short keyLength,
 boolean keyEncryption)
 throws CryptoException

Creates cryptographic keys for signature and cipher algorithms. Instances created by this method may
be the only key objects used to initialize instances of Signature and Cipher . Note that the object
returned must be cast to their appropriate key type interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 139

Java Card 2.1 API

Parameters:
keyType - the type of key to be generated. Valid codes listed in TYPE.. constants.
keyLength - the key size in bits. The valid key bit lengths are key type dependent. See above.
keyEncryption - if true this boolean requests a key implementation which implements the
javacardx.cipher.KeyEncryption interface.

Returns:
the key object instance of the requested key type, length and encrypted access.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm associated
with the specified type, size of key and key encryption interface is not supported.

140 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Class MessageDigest
java.lang.Object
 |
 +-- javacard.security.MessageDigest

public abstract class MessageDigest
extends Object

The MessageDigest class is the base class for hashing algorthims. Implementations of MessageDigest
algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_MD5

 Message Digest algorithm MD5.

static byte ALG_RIPEMD160
 Message Digest algorithm RIPE MD-160.

static byte ALG_SHA
 Message Digest algorithm SHA.

Constructor Summary
protected MessageDigest()

 Protected Constructor

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 141

Java Card 2.1 API

Method Summary
abstract short doFinal(byte[] inBuff, short inOffset,

short inLength, byte[] outBuff, short outOffset)
 Generates a hash of all/last input data.

abstract byte getAlgorithm()
 Gets the Message digest algorithm.

static MessageDigest getInstance(byte algorithm, boolean externalAccess)
 Creates a MessageDigest object instance of the selected algorithm.

abstract byte getLength()
 Returns the byte length of the hash.

abstract void update(byte[] inBuff, short inOffset,
short inLength)
 Accumulates a hash of the input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_SHA
public static final byte ALG_SHA

Message Digest algorithm SHA.

ALG_MD5
public static final byte ALG_MD5

Message Digest algorithm MD5.

ALG_RIPEMD160
public static final byte ALG_RIPEMD160

142 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Message Digest algorithm RIPE MD-160.

Constructor Detail

MessageDigest
protected MessageDigest()

Protected Constructor

Method Detail

getInstance
public static final MessageDigest getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a MessageDigest object instance of the selected algorithm.
Parameters:

algorithm - the desired message digest algorithm. Valid codes listed in ALG_.. constants.
See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the MessageDigest instance will also be accessed (via a Shareable
interface) when the owner of the MessageDigest instance is not the currently selected
applet.

Returns:
the MessageDigest object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Message digest algorithm.
Returns:

the algorithm code defined above.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 143

Java Card 2.1 API

getLength
public abstract byte getLength()

Returns the byte length of the hash.
Returns:

hash length

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)

Generates a hash of all/last input data. Completes and returns the hash computation after performing
final operations such as padding. The MessageDigest object is reset after this call is made.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes of hash output in outBuff

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)

Accumulates a hash of the input data. When this method is used temporary storage of intermediate
results is required. This method should only be used if all the input data required for the hash is not
available in one byte array. The doFinal() method is recommended whenever possible.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash

See Also:
doFinal(byte[], short, short, byte[], short)

144 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 145

Java Card 2.1 API

javacard.security
Interface PrivateKey
All Known Subinterfaces:

DSAPrivateKey, RSAPrivateCrtKey, RSAPrivateKey

public abstract interface PrivateKey
extends Key

The PrivateKey class is the base class for private keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

146 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface PublicKey
All Known Subinterfaces:

DSAPublicKey, RSAPublicKey

public abstract interface PublicKey
extends Key

The PublicKey class is the base class for public keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 147

Java Card 2.1 API

javacard.security
Interface RSAPrivateCrtKey

public abstract interface RSAPrivateCrtKey
extends PrivateKey

The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form. It may also be used by the javacardx.crypto.Cipher class to
encrypt/decrypt messages.

Let S = md mod n, where m is the data to be signed, d is the private key exponent, and n is private key
modulus composed of two prime numbers p and q. The following names are used in the initializer
methods in this interface:

P, the prime factor p
Q, the prime factor q.
PQ = q-1 mod p
DP1 = d mod (p - 1)
DQ1 = d mod (q - 1)

When all five components (P,Q,PQ,DP1,DQ1) of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey , RSAPublicKey , KeyBuilder , Signature , Cipher , KeyEncryption

148 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Method Summary
 short getDP1(byte[] buffer, short offset)

 Returns the value of the DP1 parameter in plain text.

 short getDQ1(byte[] buffer, short offset)
 Returns the value of the DQ1 parameter in plain text.

 short getP(byte[] buffer, short offset)
 Returns the value of the P parameter in plain text.

 short getPQ(byte[] buffer, short offset)
 Returns the value of the PQ parameter in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the value of the Q parameter in plain text.

 void setDP1(byte[] buffer, short offset, short length)
 Sets the value of the DP1 parameter.

 void setDQ1(byte[] buffer, short offset, short length)
 Sets the value of the DQ1 parameter.

 void setP(byte[] buffer, short offset, short length)
 Sets the value of the P parameter.

 void setPQ(byte[] buffer, short offset, short length)
 Sets the value of the PQ parameter.

 void setQ(byte[] buffer, short offset, short length)
 Sets the value of the Q parameter.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 149

Java Card 2.1 API

Sets the value of the P parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input P parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the P parameter value
is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the Q parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input Q parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the Q parameter value
is decrypted using the Cipher object.

150 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

setDP1
public void setDP1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DP1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DP1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the DP1 parameter
value is decrypted using the Cipher object.

setDQ1
public void setDQ1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DQ1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DQ1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the DQ1 parameter
value is decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 151

Java Card 2.1 API

setPQ
public void setPQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the PQ parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input PQ parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the PQ parameter
value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the value of the P parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the P parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the value of the Q parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

152 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the Q parameter value returned

getDP1
public short getDP1(byte[] buffer,
 short offset)

Returns the value of the DP1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DP1 parameter value returned

getDQ1
public short getDQ1(byte[] buffer,
 short offset)

Returns the value of the DQ1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DQ1 parameter value returned

getPQ
public short getPQ(byte[] buffer,
 short offset)

Returns the value of the PQ parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the PQ parameter value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 153

Java Card 2.1 API

154 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Interface RSAPrivateKey

public abstract interface RSAPrivateKey
extends PrivateKey

The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent form.
It may also be used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPublicKey , RSAPrivateCrtKey , KeyBuilder , Signature , Cipher ,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the private exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 155

Java Card 2.1 API

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the private exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the exponent value is
decrypted using the Cipher object.

156 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the private exponent value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 157

Java Card 2.1 API

javacard.security
Interface RSAPublicKey

public abstract interface RSAPublicKey
extends PublicKey

The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm. It may also
used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey , RSAPrivateCrtKey , KeyBuilder , Signature , Cipher ,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the public exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

Method Detail

158 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the byte length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the public exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the byte length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null , the exponent value is
decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 159

Java Card 2.1 API

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the public exponent returned

160 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Class RandomData
java.lang.Object
 |
 +-- javacard.security.RandomData

public abstract class RandomData
extends Object

The RandomData abstract class is the base class for random number generation. Implementations of
RandomData algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_PSEUDO_RANDOM

 Utility pseudo random number generation algorithms.

static byte ALG_SECURE_RANDOM
 Cryptographically secure random number generation algorithms.

Constructor Summary
protected RandomData()

 Protected constructor for subclassing.

Method Summary
abstract void generateData(byte[] buffer, short offset, short length)

 Generates random data.

static RandomData getInstance(byte algorithm)
 Creates a RandomData instance of the selected algorithm.

abstract void setSeed(byte[] buffer, short offset, short length)
 Seeds the random data generator.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 161

Java Card 2.1 API

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_PSEUDO_RANDOM
public static final byte ALG_PSEUDO_RANDOM

Utility pseudo random number generation algorithms.

ALG_SECURE_RANDOM
public static final byte ALG_SECURE_RANDOM

Cryptographically secure random number generation algorithms.

Constructor Detail

RandomData
protected RandomData()

Protected constructor for subclassing.

Method Detail

getInstance
public static final RandomData getInstance(byte algorithm)
 throws CryptoException

Creates a RandomData instance of the selected algorithm. The pseudo random RandomData
instance’s seed is initialized to a internal default value.
Parameters:

algorithm - the desired random number algorithm. Valid codes listed in ALG_.. constants.
See above.

Returns:
the RandomData object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

162 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

generateData
public abstract void generateData(byte[] buffer,
 short offset,
 short length)

Generates random data.
Parameters:

buffer - the output buffer
offset - the offset into the output buffer
length - the length of random data to generate

setSeed
public abstract void setSeed(byte[] buffer,
 short offset,
 short length)

Seeds the random data generator.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer
length - the length of the seed data

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 163

Java Card 2.1 API

javacard.security
Interface SecretKey
All Known Subinterfaces:

DESKey

public abstract interface SecretKey
extends Key

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).

Methods inherited from interface javacard.security.Key

clearKey , getSize , getType , isInitialized

164 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacard.security
Class Signature
java.lang.Object
 |
 +-- javacard.security.Signature

public abstract class Signature
extends Object

The Signature class is the base class for Signature algorthims. Implementations of Signature
algorithms must extend this class and implement all the abstract methods.

The term "pad" is used in the public key signature algorithms below to refer to all the operations specified
in the referenced scheme to transform the message digest into the encryption block size.

Field Summary
static byte ALG_DES_MAC4_ISO9797_M1

 Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 1 scheme.

static byte ALG_DES_MAC4_ISO9797_M2
 Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC4_NOPAD
 Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

static byte ALG_DES_MAC4_PKCS5
 Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5
scheme.

static byte ALG_DES_MAC8_ISO9797_M1
 Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 1 scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 165

Java Card 2.1 API

static byte ALG_DES_MAC8_ISO9797_M2
 Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC8_NOPAD
 Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. This
algorithm does not pad input data.

static byte ALG_DES_MAC8_PKCS5
 Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. Input
data is padded according to the PKCS#5 scheme.

static byte ALG_DSA_SHA
 Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using
DSA.

static byte ALG_RSA_MD5_PKCS1
 Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_MD5_RFC2409
 Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte ALG_RSA_RIPEMD160_ISO9796
 Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte
RIPE MD-160 digest using RSA. The digest is padded according to the ISO 9796
scheme.

static byte ALG_RSA_RIPEMD160_PKCS1
 Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE
MD-160 digest using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_ISO9796
 Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_SHA_PKCS1
 Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_RFC2409
 Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte MODE_SIGN
 Used in init() methods to indicate signature sign mode.

166 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

static byte MODE_VERIFY
 Used in init() methods to indicate signature verify mode.

Constructor Summary
protected Signature()

 Protected Constructor

Method Summary
abstract byte getAlgorithm()

 Gets the Signature algorithm.

static Signature getInstance(byte algorithm, boolean externalAccess)
 Creates a Signature object instance of the selected algorithm.

abstract short getLength()
 Returns the byte length of the signature data.

abstract void init(Key theKey, byte theMode)
 Initializes the Signature object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray,
short bOff, short bLen)
 Initializes the Signature object with the appropriate Key and algorithm
specific parameters.

abstract short sign(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset)
 Generates the signature of all/last input data.

abstract void update(byte[] inBuff, short inOffset, short inLength)
 Accumulates a signature of the input data.

abstract
 boolean

verify(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset, short sigLength)
 Verifies the signature of all/last input data against the passed in signature.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 167

Java Card 2.1 API

Field Detail

ALG_DES_MAC4_NOPAD
public static final byte ALG_DES_MAC4_NOPAD

Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_MAC8_NOPAD
public static final byte ALG_DES_MAC8_NOPAD

Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data. If the input data is not (8 byte) block aligned it throws CryptoExeption with the reason
code ILLEGAL_USE.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_ISO9797_M1
public static final byte ALG_DES_MAC4_ISO9797_M1

Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M1
public static final byte ALG_DES_MAC8_ISO9797_M1

Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

168 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

ALG_DES_MAC4_ISO9797_M2
public static final byte ALG_DES_MAC4_ISO9797_M2

Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

ALG_DES_MAC8_ISO9797_M2
public static final byte ALG_DES_MAC8_ISO9797_M2

Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_PKCS5
public static final byte ALG_DES_MAC4_PKCS5

Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_PKCS5
public static final byte ALG_DES_MAC8_PKCS5

Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 169

Java Card 2.1 API

ALG_RSA_SHA_ISO9796
public static final byte ALG_RSA_SHA_ISO9796

Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1
public static final byte ALG_RSA_SHA_PKCS1

Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_PKCS1
public static final byte ALG_RSA_MD5_PKCS1

Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_RIPEMD160_ISO9796
public static final byte ALG_RSA_RIPEMD160_ISO9796

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1
public static final byte ALG_RSA_RIPEMD160_PKCS1

Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_DSA_SHA
public static final byte ALG_DSA_SHA

Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

170 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

ALG_RSA_SHA_RFC2409
public static final byte ALG_RSA_SHA_RFC2409

Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_MD5_RFC2409
public static final byte ALG_RSA_MD5_RFC2409

Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

MODE_SIGN
public static final byte MODE_SIGN

Used in init() methods to indicate signature sign mode.

MODE_VERIFY
public static final byte MODE_VERIFY

Used in init() methods to indicate signature verify mode.

Constructor Detail

Signature
protected Signature()

Protected Constructor

Method Detail

getInstance
public static final Signature getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 171

Java Card 2.1 API

Creates a Signature object instance of the selected algorithm.
Parameters:

algorithm - the desired Signature algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Signature instance will also be accessed (via a Shareable interface)
when the owner of the Signature instance is not the currently selected applet.

Returns:
the Signature object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Signature object with the appropriate Key. This method should be used for
algorithms which do not need initialization parameters or use default parameter values.

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_SIGN or MODE_VERIFY

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with theMode or with the Signature implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Signature object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray .

172 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE .
Parameters:

theKey - the key object to use for signing
theMode - one of MODE_SIGN or MODE_VERIFY
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with
theMode or with the Signature implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Signature algorithm.
Returns:

the algorithm code defined above.

getLength
public abstract short getLength()

Returns the byte length of the signature data.
Returns:

the byte length of the signature data.

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)
 throws CryptoException

Accumulates a signature of the input data. When this method is used temporary storage of
intermediate results is required. This method should only be used if all the input data required for the
signature is not available in one byte array. The sign() or verify() method is recommended
whenever possible.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 173

Java Card 2.1 API

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
See Also:

sign(byte[], short, short, byte[], short) , verify(byte[], short,
short, byte[], short, short)

sign
public abstract short sign(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset)
 throws CryptoException

Generates the signature of all/last input data. A call to this method also resets this Signature
object to the state it was in when previously initialized via a call to init() . That is, the object is
reset and available to sign another message.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the output buffer to store signature data
sigOffset - the offset into sigBuff at which to begin signature data

Returns:
number of bytes of signature output in sigBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature verify mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

verify
public abstract boolean verify(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset,
 short sigLength)
 throws CryptoException

174 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Verifies the signature of all/last input data against the passed in signature. A call to this method also
resets this Signature object to the state it was in when previously initialized via a call to init() .
That is, the object is reset and available to verify another message.
Parameters:

inBuff - the input buffer of data to be verified
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the input buffer containing signature data
sigOffset - the offset into sigBuff where signature data begins.
sigLength - the byte length of the signature data

Returns:
true if signature verifies false otherwise.

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature sign mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 175

Java Card 2.1 API

Package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

See:
 Description

Interface Summary

KeyEncryption
KeyEncryption interface defines the methods used to enable encrypted key data
access to a key implementation.

Class Summary
Cipher The Cipher class is the abstract base class for Cipher algorthims.

Package javacardx.crypto Description
Extension package containing security classes and interfaces for export-controlled functionality.

176 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

javacardx.crypto
Class Cipher
java.lang.Object
 |
 +-- javacardx.crypto.Cipher

public abstract class Cipher
extends Object

The Cipher class is the abstract base class for Cipher algorthims. Implementations of Cipher algorithms
must extend this class and implement all the abstract methods.

The term "pad" is used in the public key cipher algorithms below to refer to all the operations specified in
the referenced scheme to transform the message block into the cipher block size.

Field Summary
static byte ALG_DES_CBC_ISO9797_M1

 Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 1 scheme.

static byte ALG_DES_CBC_ISO9797_M2
 Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_CBC_NOPAD
 Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

static byte ALG_DES_CBC_PKCS5
 Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the PKCS#5 scheme.

static byte ALG_DES_ECB_ISO9797_M1
 Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 1 scheme.

static byte ALG_DES_ECB_ISO9797_M2
 Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4,
EMV’96) scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 177

Java Card 2.1 API

static byte ALG_DES_ECB_NOPAD
 Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB
mode. This algorithm does not pad input data.

static byte ALG_DES_ECB_PKCS5
 Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB
mode. Input data is padded according to the PKCS#5 scheme.

static byte ALG_RSA_ISO14888
 Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data
is padded according to the ISO 14888 scheme.

static byte ALG_RSA_ISO9796
 Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is
padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_PKCS1
 Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is
padded according to the PKCS#1 (v1.5) scheme.

static byte MODE_DECRYPT
 Used in init() methods to indicate decryption mode.

static byte MODE_ENCRYPT
 Used in init() methods to indicate encryption mode.

Constructor Summary
protected Cipher()

 Protected Constructor

178 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Method Summary
abstract

 short
doFinal(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from all/last input data.

abstract byte getAlgorithm()
 Gets the Cipher algorithm.

static Cipher getInstance(byte algorithm, boolean externalAccess)
 Creates a Cipher object instance of the selected algorithm.

abstract void init(Key theKey, byte theMode)
 Initializes the Cipher object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray, short bOff,
short bLen)
 Initializes the Cipher object with the appropriate Key and algorithm specific
parameters.

abstract
 short

update(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_DES_CBC_NOPAD
public static final byte ALG_DES_CBC_NOPAD

Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data. If the input data is
not (8 byte) block aligned it throws CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_CBC_ISO9797_M1
public static final byte ALG_DES_CBC_ISO9797_M1

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 179

Java Card 2.1 API

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2
public static final byte ALG_DES_CBC_ISO9797_M2

Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_PKCS5
public static final byte ALG_DES_CBC_PKCS5

Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_NOPAD
public static final byte ALG_DES_ECB_NOPAD

Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_ECB_ISO9797_M1
public static final byte ALG_DES_ECB_ISO9797_M1

Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2
public static final byte ALG_DES_ECB_ISO9797_M2

Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

180 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

ALG_DES_ECB_PKCS5
public static final byte ALG_DES_ECB_PKCS5

Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_RSA_ISO14888
public static final byte ALG_RSA_ISO14888

Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_PKCS1
public static final byte ALG_RSA_PKCS1

Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to
the PKCS#1 (v1.5) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k-11, where k is the RSA key’s modulus size in bytes.

ALG_RSA_ISO9796
public static final byte ALG_RSA_ISO9796

Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k/2, where k is the RSA key’s modulus size in bytes.

MODE_DECRYPT
public static final byte MODE_DECRYPT

Used in init() methods to indicate decryption mode.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 181

Java Card 2.1 API

MODE_ENCRYPT
public static final byte MODE_ENCRYPT

Used in init() methods to indicate encryption mode.

Constructor Detail

Cipher
protected Cipher()

Protected Constructor

Method Detail

getInstance
public static final Cipher getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a Cipher object instance of the selected algorithm.
Parameters:

algorithm - the desired Cipher algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Cipher instance will also be accessed (via a Shareable interface)
when the owner of the Cipher instance is not the currently selected applet.

Returns:
the Cipher object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Cipher object with the appropriate Key. This method should be used for algorithms
which do not need initialization parameters or use default parameter values.

182 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_DECRYPT or MODE_ENCRYPT

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with the Cipher implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray .
RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE .

Parameters:
theKey - the key object to use for signing
theMode - one of MODE_DECRYPT or MODE_ENCRYPT
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with the
Cipher implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Cipher algorithm.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 183

Java Card 2.1 API

Returns:
the algorithm code defined above.

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from all/last input data. A call to this method also resets this
Cipher object to the state it was in when previously initialized via a call to init() . That is, the
object is reset and available to encrypt or decrypt (depending on the operation mode that was
specified in the call to init()) more data.

The input and output buffer data may overlap.

Notes:
On decryption operations (except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff .
On encryption operations, the number of bytes output into outBuff may be larger than
inLength .

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if this Cipher algorithm does not pad the
message and the message is not block aligned or if the input message length is not
supported.

update
public abstract short update(byte[] inBuff,
 short inOffset,

184 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from input data. When this method is used temporary storage
of intermediate results is required. This method should only be used if all the input data required for
the cipher is not available in one byte array. The doFinal() method is recommended whenever
possible.

The input and output buffer data may overlap.

Notes:
On decryption operations(except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff .
On encryption operations, the number of bytes output into outBuff may be larger than
inLength .
On encryption and decryption operations(except when ISO 9797 method 1 padding is used),
block alignment considerations may require that the number of bytes output into outBuff be
smaller than inLength or even 0.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if the input message length is not supported.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 185

Java Card 2.1 API

javacardx.crypto
Interface KeyEncryption

public abstract interface KeyEncryption

KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

See Also:
KeyBuilder , Cipher

Method Summary
 Cipher getKeyCipher()

 Returns the Cipher object to be used to decrypt the input key data and key parameters
in the set methods. Default is null - no decryption performed.

 void setKeyCipher(Cipher keyCipher)
 Sets the Cipher object to be used to decrypt the input key data and key parameters in
the set methods. Default Cipher object is null - no decryption performed.

Method Detail

setKeyCipher
public void setKeyCipher(Cipher keyCipher)

Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default Cipher object is null - no decryption performed.
Parameters:

keyCipher - the decryption Cipher object to decrypt the input key data. null parameter
indicates that no decryption is required.

getKeyCipher
public Cipher getKeyCipher()

186 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default is null - no decryption performed.
Returns:

keyCipher the decryption Cipher object to decrypt the input key data. null return indicates
that no decryption is performed.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 187

Java Card 2.1 API

A B C D E G I J K L M N O P R S T U V W

A
abortTransaction() - Static method in class javacard.framework.JCSystem

Aborts the atomic transaction.
AID - class javacard.framework.AID.

This class encapsulates the Application Identifier(AID) associated with an applet.
AID(byte[], short, byte) - Constructor for class javacard.framework.AID

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
ALG_DES_CBC_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

ALG_DES_CBC_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_ECB_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data.

ALG_DES_ECB_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_DES_MAC4_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC4_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

188 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

ALG_DES_MAC4_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data.

ALG_DES_MAC4_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_MAC8_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

ALG_DES_MAC8_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

ALG_DSA_SHA - Static variable in class javacard.security.Signature
Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

ALG_MD5 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm MD5.

ALG_PSEUDO_RANDOM - Static variable in class javacard.security.RandomData
Utility pseudo random number generation algorithms.

ALG_RIPEMD160 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm RIPE MD-160.

ALG_RSA_ISO14888 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_ISO9796 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_MD5_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_PKCS1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 189

Java Card 2.1 API

the PKCS#1 (v1.5) scheme.
ALG_RSA_RIPEMD160_ISO9796 - Static variable in class javacard.security.Signature

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_ISO9796 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_SECURE_RANDOM - Static variable in class javacard.security.RandomData
Cryptographically secure random number generation algorithms.

ALG_SHA - Static variable in class javacard.security.MessageDigest
Message Digest algorithm SHA.

APDU - class javacard.framework.APDU.
Application Protocol Data Unit (APDU) is the communication format between the card and the
off-card applications.

APDUException - exception javacard.framework.APDUException.
APDUException represents an APDU related exception.

APDUException(short) - Constructor for class javacard.framework.APDUException
Constructs an APDUException.

Applet - class javacard.framework.Applet.
This abstract class defines an applet in Java Card.

Applet() - Constructor for class javacard.framework.Applet
Only this class’s install() method should create the applet object.

ArithmeticException - exception java.lang.ArithmeticException.
A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred.

ArithmeticException() - Constructor for class java.lang.ArithmeticException
Constructs an ArithmeticException .

arrayCompare(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right.

arrayCopy(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

arrayCopyNonAtomic(byte[], short, byte[], short, short) - Static method in class
javacard.framework.Util

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

190 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

arrayFillNonAtomic(byte[], short, short, byte) - Static method in class javacard.framework.Util
Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

ArrayIndexOutOfBoundsException - exception java.lang.ArrayIndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array
has been accessed with an illegal index.

ArrayIndexOutOfBoundsException() - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs an ArrayIndexOutOfBoundsException .
ArrayStoreException - exception java.lang.ArrayStoreException.

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has
been made to store the wrong type of object into an array of objects.

ArrayStoreException() - Constructor for class java.lang.ArrayStoreException
Constructs an ArrayStoreException .

B
BAD_LENGTH - Static variable in class javacard.framework.APDUException

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

beginTransaction() - Static method in class javacard.framework.JCSystem
Begins an atomic transaction.

BUFFER_BOUNDS - Static variable in class javacard.framework.APDUException
This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BUFFER_FULL - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate that the commit buffer is full.

buildKey(byte, short, boolean) - Static method in class javacard.security.KeyBuilder
Creates cryptographic keys for signature and cipher algorithms.

C
CardException - exception javacard.framework.CardException.

The CardException class defines a field reason and two accessor methods getReason()
and setReason() .

CardException(short) - Constructor for class javacard.framework.CardException
Construct a CardException instance with the specified reason.

CardRuntimeException - exception javacard.framework.CardRuntimeException.
The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason() .

CardRuntimeException(short) - Constructor for class javacard.framework.CardRuntimeException
Construct a CardRuntimeException instance with the specified reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 191

Java Card 2.1 API

check(byte[], short, byte) - Method in class javacard.framework.OwnerPIN
Compares pin against the PIN value.

check(byte[], short, byte) - Method in interface javacard.framework.PIN
Compares pin against the PIN value.

Cipher - class javacardx.crypto.Cipher.
The Cipher class is the abstract base class for Cipher algorthims.

Cipher() - Constructor for class javacardx.crypto.Cipher
Protected Constructor

CLA_ISO7816 - Static variable in interface javacard.framework.ISO7816
APDU command CLA : ISO 7816 = 0x00

ClassCastException - exception java.lang.ClassCastException.
A JCRE owned instance of ClassCastException is thrown to indicate that the code has
attempted to cast an object to a subclass of which it is not an instance.

ClassCastException() - Constructor for class java.lang.ClassCastException
Constructs a ClassCastException .

CLEAR_ON_DESELECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

CLEAR_ON_RESET - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

clearKey() - Method in interface javacard.security.Key
Clears the key and sets its initialized state to false.

commitTransaction() - Static method in class javacard.framework.JCSystem
Commits an atomic transaction.

CryptoException - exception javacard.security.CryptoException.
CryptoException represents a cryptography-related exception.

CryptoException(short) - Constructor for class javacard.security.CryptoException
Constructs a CryptoException with the specified reason.

D
deselect() - Method in class javacard.framework.Applet

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected.

DESKey - interface javacard.security.DESKey.
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

doFinal(byte[], short, short, byte[], short) - Method in class javacard.security.MessageDigest
Generates a hash of all/last input data.

doFinal(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from all/last input data.

DSAKey - interface javacard.security.DSAKey.
The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions.

192 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

DSAPrivateKey - interface javacard.security.DSAPrivateKey.
The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey - interface javacard.security.DSAPublicKey.
The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm.

E
equals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object.

equals(Object) - Method in class java.lang.Object
Compares two Objects for equality.

equals(Object) - Method in class javacard.framework.AID
Compares the AID bytes in this AID instance to the AID bytes in the specified object.

Exception - exception java.lang.Exception.
The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

Exception() - Constructor for class java.lang.Exception
Constructs an Exception instance.

G
generateData(byte[], short, short) - Method in class javacard.security.RandomData

Generates random data.
getAID() - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object associated with the current applet context.
getAlgorithm() - Method in class javacard.security.MessageDigest

Gets the Message digest algorithm.
getAlgorithm() - Method in class javacard.security.Signature

Gets the Signature algorithm.
getAlgorithm() - Method in class javacardx.crypto.Cipher

Gets the Cipher algorithm.
getAppletShareableInterfaceObject(AID, byte) - Static method in class javacard.framework.JCSystem

This method is called by a client applet to get a server applet’s shareable interface object.
getBuffer() - Method in class javacard.framework.APDU

Returns the APDU buffer byte array.
getBytes(byte[], short) - Method in class javacard.framework.AID

Called to get the AID bytes encapsulated within AID object.
getDP1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DP1 parameter in plain text.
getDQ1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DQ1 parameter in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 193

Java Card 2.1 API

getExponent(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the private exponent value of the key in plain text.

getExponent(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the private exponent value of the key in plain text.

getG(byte[], short) - Method in interface javacard.security.DSAKey
Returns the subprime parameter value of the key in plain text.

getInBlockSize() - Static method in class javacard.framework.APDU
Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1.

getInstance(byte) - Static method in class javacard.security.RandomData
Creates a RandomData instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.MessageDigest
Creates a MessageDigest object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.Signature
Creates a Signature object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacardx.crypto.Cipher
Creates a Cipher object instance of the selected algorithm.

getKey(byte[], short) - Method in interface javacard.security.DESKey
Returns the Key data in plain text.

getKeyCipher() - Method in interface javacardx.crypto.KeyEncryption
Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default is null - no decryption performed.

getLength() - Method in class javacard.security.MessageDigest
Returns the byte length of the hash.

getLength() - Method in class javacard.security.Signature
Returns the byte length of the signature data.

getMaxCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the total number of bytes in the commit buffer.

getModulus(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the modulus value of the key in plain text.

getModulus(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the modulus value of the key in plain text.

getNAD() - Method in class javacard.framework.APDU
In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0.

getOutBlockSize() - Static method in class javacard.framework.APDU
Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes).

getP(byte[], short) - Method in interface javacard.security.DSAKey
Returns the base parameter value of the key in plain text.

getP(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the P parameter in plain text.

getPQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the PQ parameter in plain text.

194 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

getPreviousContextAID() - Static method in class javacard.framework.JCSystem
This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context.

getProtocol() - Static method in class javacard.framework.APDU
Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

getQ(byte[], short) - Method in interface javacard.security.DSAKey
Returns the prime parameter value of the key in plain text.

getQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the Q parameter in plain text.

getReason() - Method in class javacard.framework.CardRuntimeException
Get reason code

getReason() - Method in class javacard.framework.CardException
Get reason code

getShareableInterfaceObject(AID, byte) - Method in class javacard.framework.Applet
Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet.

getShort(byte[], short) - Static method in class javacard.framework.Util
Concatenates two bytes in a byte array to form a short value.

getSize() - Method in interface javacard.security.Key
Returns the key size in number of bits.

getTransactionDepth() - Static method in class javacard.framework.JCSystem
Returns the current transaction nesting depth level.

getTriesRemaining() - Method in class javacard.framework.OwnerPIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getTriesRemaining() - Method in interface javacard.framework.PIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getType() - Method in interface javacard.security.Key
Returns the key interface type.

getUnusedCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the number of bytes left in the commit buffer.

getValidatedFlag() - Method in class javacard.framework.OwnerPIN
This protected method returns the validated flag.

getVersion() - Static method in class javacard.framework.JCSystem
Returns the current major and minor version of the Java Card API.

getX(byte[], short) - Method in interface javacard.security.DSAPrivateKey
Returns the value of the key in plain text.

getY(byte[], short) - Method in interface javacard.security.DSAPublicKey
Returns the value of the key in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 195

Java Card 2.1 API

I
ILLEGAL_AID - Static variable in class javacard.framework.SystemException

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

ILLEGAL_TRANSIENT - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context.

ILLEGAL_USE - Static variable in class javacard.framework.APDUException
This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

ILLEGAL_USE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

ILLEGAL_VALUE - Static variable in class javacard.framework.PINException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

IndexOutOfBoundsException - exception java.lang.IndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index
of some sort (such as to an array) is out of range.

IndexOutOfBoundsException() - Constructor for class java.lang.IndexOutOfBoundsException
Constructs an IndexOutOfBoundsException .

init(Key, byte) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key.

init(Key, byte) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key.

init(Key, byte, byte[], short, short) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key and algorithm specific parameters.

init(Key, byte, byte[], short, short) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

INS_EXTERNAL_AUTHENTICATE - Static variable in interface javacard.framework.ISO7816
APDU command INS : EXTERNAL AUTHENTICATE = 0x82

INS_SELECT - Static variable in interface javacard.framework.ISO7816
APDU command INS : SELECT = 0xA4

install(byte[], short, byte) - Static method in class javacard.framework.Applet
To create an instance of the Applet subclass, the JCRE will call this static method first.

INTERNAL_FAILURE - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

196 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

INVALID_INIT - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

IO_ERROR - Static variable in class javacard.framework.APDUException
This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

isInitialized() - Method in interface javacard.security.Key
Reports the initialized state of the key.

ISO7816 - interface javacard.framework.ISO7816.
ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

ISOException - exception javacard.framework.ISOException.
ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

ISOException(short) - Constructor for class javacard.framework.ISOException
Constructs an ISOException instance with the specified status word.

isTransient(Object) - Static method in class javacard.framework.JCSystem
Used to check if the specified object is transient.

isValidated() - Method in class javacard.framework.OwnerPIN
Returns true if a valid PIN has been presented since the last card reset or last call to reset() .

isValidated() - Method in interface javacard.framework.PIN
Returns true if a valid PIN value has been presented since the last card reset or last call to
reset() .

J
java.lang - package java.lang

Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

javacard.framework - package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

javacard.security - package javacard.security
Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto - package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

JCSystem - class javacard.framework.JCSystem.
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

K
Key - interface javacard.security.Key.

The Key interface is the base interface for all keys.
KeyBuilder - class javacard.security.KeyBuilder.

The KeyBuilder class is a key object factory.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 197

Java Card 2.1 API

KeyEncryption - interface javacardx.crypto.KeyEncryption.
KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

L
LENGTH_DES - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES = 64.
LENGTH_DES3_2KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_2KEY = 128.
LENGTH_DES3_3KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_3KEY = 192.
LENGTH_DSA_1024 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_1024 = 1024.
LENGTH_DSA_512 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_512 = 512.
LENGTH_DSA_768 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_768 = 768.
LENGTH_RSA_1024 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_1024 = 1024.
LENGTH_RSA_2048 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_2048 = 2048.
LENGTH_RSA_512 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_512 = 512.
LENGTH_RSA_768 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_768 = 768.
lookupAID(byte[], short, byte) - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

M
makeShort(byte, byte) - Static method in class javacard.framework.Util

Concatenates the two parameter bytes to form a short value.
makeTransientBooleanArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient boolean array with the specified array length.
makeTransientByteArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient byte array with the specified array length.
makeTransientObjectArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient array of Object with the specified array length.
makeTransientShortArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient short array with the specified array length.

198 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

MessageDigest - class javacard.security.MessageDigest.
The MessageDigest class is the base class for hashing algorthims.

MessageDigest() - Constructor for class javacard.security.MessageDigest
Protected Constructor

MODE_DECRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate decryption mode.

MODE_ENCRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate encryption mode.

MODE_SIGN - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature sign mode.

MODE_VERIFY - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature verify mode.

N
NegativeArraySizeException - exception java.lang.NegativeArraySizeException.

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to
create an array with negative size.

NegativeArraySizeException() - Constructor for class java.lang.NegativeArraySizeException
Constructs a NegativeArraySizeException .

NO_RESOURCE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that there is insufficient resource in the Card for the request.

NO_SUCH_ALGORITHM - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the requested algorithm or key type is not supported.

NO_T0_GETRESPONSE - Static variable in class javacard.framework.APDUException
This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data.

NO_TRANSIENT_SPACE - Static variable in class javacard.framework.SystemException
This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

NOT_A_TRANSIENT_OBJECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the object is not transient.

NOT_IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

NullPointerException - exception java.lang.NullPointerException.
A JCRE owned instance of NullPointerException is thrown when an applet attempts to use
null in a case where an object is required.

NullPointerException() - Constructor for class java.lang.NullPointerException
Constructs a NullPointerException .

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 199

Java Card 2.1 API

O
Object - class java.lang.Object.

Class Object is the root of the Java Card class hierarchy.
Object() - Constructor for class java.lang.Object

OFFSET_CDATA - Static variable in interface javacard.framework.ISO7816

APDU command data offset : CDATA = 5
OFFSET_CLA - Static variable in interface javacard.framework.ISO7816

APDU header offset : CLA = 0
OFFSET_INS - Static variable in interface javacard.framework.ISO7816

APDU header offset : INS = 1
OFFSET_LC - Static variable in interface javacard.framework.ISO7816

APDU header offset : LC = 4
OFFSET_P1 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P1 = 2
OFFSET_P2 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P2 = 3
OwnerPIN - class javacard.framework.OwnerPIN.

This class represents an Owner PIN.
OwnerPIN(byte, byte) - Constructor for class javacard.framework.OwnerPIN

Constructor.

P
partialEquals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object.

PIN - interface javacard.framework.PIN.
This interface represents a PIN.

PINException - exception javacard.framework.PINException.
PINException represents a OwnerPIN class access-related exception.

PINException(short) - Constructor for class javacard.framework.PINException
Constructs a PINException.

PrivateKey - interface javacard.security.PrivateKey.
The PrivateKey class is the base class for private keys used in asymmetric algorithms.

process(APDU) - Method in class javacard.framework.Applet
Called by the JCRE to process an incoming APDU command.

PROTOCOL_T0 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=0

PROTOCOL_T1 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=1

PublicKey - interface javacard.security.PublicKey.
The PublicKey class is the base class for public keys used in asymmetric algorithms.

200 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

R
RandomData - class javacard.security.RandomData.

The RandomData abstract class is the base class for random number generation.
RandomData() - Constructor for class javacard.security.RandomData

Protected constructor for subclassing.
receiveBytes(short) - Method in class javacard.framework.APDU

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff .
Gets all the remaining bytes if they fit.

register() - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes.

register(byte[], short, byte) - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes.

reset() - Method in class javacard.framework.OwnerPIN
If the validated flag is set, this method resets it.

reset() - Method in interface javacard.framework.PIN
If the validated flag is set, this method resets it.

resetAndUnblock() - Method in class javacard.framework.OwnerPIN
This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.

RIDEquals(AID) - Method in class javacard.framework.AID
Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object.

RSAPrivateCrtKey - interface javacard.security.RSAPrivateCrtKey.
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form.

RSAPrivateKey - interface javacard.security.RSAPrivateKey.
The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent
form.

RSAPublicKey - interface javacard.security.RSAPublicKey.
The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm.

RuntimeException - exception java.lang.RuntimeException.
RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine. A method is not required to declare in its throws clause
any subclasses of RuntimeException that might be thrown during the execution of the method
but not caught.

RuntimeException() - Constructor for class java.lang.RuntimeException
Constructs a RuntimeException instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 201

Java Card 2.1 API

S
SecretKey - interface javacard.security.SecretKey.

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).
SecurityException - exception java.lang.SecurityException.

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation. This exception is thrown when an attempt is made to illegally access an
object belonging to a another applet.

SecurityException() - Constructor for class java.lang.SecurityException
Constructs a SecurityException .

select() - Method in class javacard.framework.Applet
Called by the JCRE to inform this applet that it has been selected.

selectingApplet() - Method in class javacard.framework.Applet
This method is used by the applet process() method to distinguish the SELECT APDU command
which selected this applet, from all other other SELECT APDU commands which may relate to
file or internal applet state selection.

sendBytes(short, short) - Method in class javacard.framework.APDU
Sends len more bytes from APDU buffer at specified offset bOff .

sendBytesLong(byte[], short, short) - Method in class javacard.framework.APDU
Sends len more bytes from outData byte array starting at specified offset bOff .

setDP1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DP1 parameter.

setDQ1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DQ1 parameter.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the private exponent value of the key.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the public exponent value of the key.

setG(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the subprime parameter value of the key.

setIncomingAndReceive() - Method in class javacard.framework.APDU
This is the primary receive method.

setKey(byte[], short) - Method in interface javacard.security.DESKey
Sets the Key data.

setKeyCipher(Cipher) - Method in interface javacardx.crypto.KeyEncryption
Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default Cipher object is null - no decryption performed.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the modulus value of the key.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the modulus value of the key.

setOutgoing() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

202 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

setOutgoingAndSend(short, short) - Method in class javacard.framework.APDU
This is the "convenience" send method.

setOutgoingLength(short) - Method in class javacard.framework.APDU
Sets the actual length of response data.

setOutgoingNoChaining() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le).

setP(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the base parameter value of the key.

setP(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the P parameter.

setPQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the PQ parameter.

setQ(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the prime parameter value of the key.

setQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the Q parameter.

setReason(short) - Method in class javacard.framework.CardRuntimeException
Set reason code

setReason(short) - Method in class javacard.framework.CardException
Set reason code

setSeed(byte[], short, short) - Method in class javacard.security.RandomData
Seeds the random data generator.

setShort(byte[], short, short) - Static method in class javacard.framework.Util
Deposits the short value as two successive bytes at the specified offset in the byte array.

setValidatedFlag(boolean) - Method in class javacard.framework.OwnerPIN
This protected method sets the value of the validated flag.

setX(byte[], short, short) - Method in interface javacard.security.DSAPrivateKey
Sets the value of the key.

setY(byte[], short, short) - Method in interface javacard.security.DSAPublicKey
Sets the value of the key.

Shareable - interface javacard.framework.Shareable.
The Shareable interface serves to identify all shared objects.

sign(byte[], short, short, byte[], short) - Method in class javacard.security.Signature
Generates the signature of all/last input data.

Signature - class javacard.security.Signature.
The Signature class is the base class for Signature algorthims.

Signature() - Constructor for class javacard.security.Signature
Protected Constructor

SW_APPLET_SELECT_FAILED - Static variable in interface javacard.framework.ISO7816
Response status : Applet selection failed = 0x6999;

SW_BYTES_REMAINING_00 - Static variable in interface javacard.framework.ISO7816
Response status : Response bytes remaining = 0x6100

SW_CLA_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : CLA value not supported = 0x6E00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 203

Java Card 2.1 API

SW_COMMAND_NOT_ALLOWED - Static variable in interface javacard.framework.ISO7816
Response status : Command not allowed (no current EF) = 0x6986

SW_CONDITIONS_NOT_SATISFIED - Static variable in interface javacard.framework.ISO7816
Response status : Conditions of use not satisfied = 0x6985

SW_CORRECT_LENGTH_00 - Static variable in interface javacard.framework.ISO7816
Response status : Correct Expected Length (Le) = 0x6C00

SW_DATA_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : Data invalid = 0x6984

SW_FILE_FULL - Static variable in interface javacard.framework.ISO7816
Response status : Not enough memory space in the file = 0x6A84

SW_FILE_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : File invalid = 0x6983

SW_FILE_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : File not found = 0x6A82

SW_FUNC_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : Function not supported = 0x6A81

SW_INCORRECT_P1P2 - Static variable in interface javacard.framework.ISO7816
Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_INS_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : INS value not supported = 0x6D00

SW_NO_ERROR - Static variable in interface javacard.framework.ISO7816
Response status : No Error = (short)0x9000

SW_RECORD_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : Record not found = 0x6A83

SW_SECURITY_STATUS_NOT_SATISFIED - Static variable in interface
javacard.framework.ISO7816

Response status : Security condition not satisfied = 0x6982
SW_UNKNOWN - Static variable in interface javacard.framework.ISO7816

Response status : No precise diagnosis = 0x6F00
SW_WRONG_DATA - Static variable in interface javacard.framework.ISO7816

Response status : Wrong data = 0x6A80
SW_WRONG_LENGTH - Static variable in interface javacard.framework.ISO7816

Response status : Wrong length = 0x6700
SW_WRONG_P1P2 - Static variable in interface javacard.framework.ISO7816

Response status : Incorrect parameters (P1,P2) = 0x6B00
SystemException - exception javacard.framework.SystemException.

SystemException represents a JCSystem class related exception.
SystemException(short) - Constructor for class javacard.framework.SystemException

Constructs a SystemException.

T
T1_IFD_ABORT - Static variable in class javacard.framework.APDUException

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer.

204 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Throwable - class java.lang.Throwable.
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language.

Throwable() - Constructor for class java.lang.Throwable
Constructs a new Throwable .

throwIt(short) - Static method in class javacard.framework.CardRuntimeException
Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.PINException
Throws the JCRE owned instance of PINException with the specified reason.

throwIt(short) - Static method in class javacard.framework.ISOException
Throws the JCRE owned instance of the ISOException class with the specified status word.

throwIt(short) - Static method in class javacard.framework.CardException
Throw the JCRE owned instance of CardException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.UserException
Throws the JCRE owned instance of UserException with the specified reason.

throwIt(short) - Static method in class javacard.framework.SystemException
Throws the JCRE owned instance of SystemException with the specified reason.

throwIt(short) - Static method in class javacard.framework.TransactionException
Throws the JCRE owned instance of TransactionException with the specified reason.

throwIt(short) - Static method in class javacard.framework.APDUException
Throws the JCRE owned instance of APDUException with the specified reason.

throwIt(short) - Static method in class javacard.security.CryptoException
Throws the JCRE owned instance of CryptoException with the specified reason.

TransactionException - exception javacard.framework.TransactionException.
TransactionException represents an exception in the transaction subsystem.

TransactionException(short) - Constructor for class javacard.framework.TransactionException
Constructs a TransactionException with the specified reason.

TYPE_DES - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with persistent key data.

TYPE_DES_TRANSIENT_DESELECT - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

TYPE_DES_TRANSIENT_RESET - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

TYPE_DSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

TYPE_DSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_RSA_CRT_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

TYPE_RSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPublicKey .

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 205

Java Card 2.1 API

U
UNINITIALIZED_KEY - Static variable in class javacard.security.CryptoException

This reason code is used to indicate that the key is uninitialized.
update(byte[], short, byte) - Method in class javacard.framework.OwnerPIN

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit.

update(byte[], short, short) - Method in class javacard.security.MessageDigest
Accumulates a hash of the input data.

update(byte[], short, short) - Method in class javacard.security.Signature
Accumulates a signature of the input data.

update(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from input data.

UserException - exception javacard.framework.UserException.
UserException represents a User exception.

UserException() - Constructor for class javacard.framework.UserException
Constructs a UserException with reason = 0.

UserException(short) - Constructor for class javacard.framework.UserException
Constructs a UserException with the specified reason.

Util - class javacard.framework.Util .
The Util class contains common utility functions.

V
verify(byte[], short, short, byte[], short, short) - Method in class javacard.security.Signature

Verifies the signature of all/last input data against the passed in signature.

W
waitExtension() - Method in class javacard.framework.APDU

Requests additional processsing time from CAD.

A B C D E G I J K L M N O P R S T U V W

206 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

	
	Java CardTM 2.1 Platform API Specification Final Revision 1.0

	Java Card 2.1 API Notes
	Referenced Standards
	ISO - International Standards Organization
	RSA Data Security, Inc.
	EMV
	IPSec

	Standard Names for Security and Crypto

	Parameter Checking
	Policy
	Exceptions to the Policy

	
	Hierarchy For All Packages
	Class Hierarchy
	Interface Hierarchy

	
	Package java.lang
	Package java.lang Description

	
	java.lang Class ArithmeticException
	ArithmeticException

	
	java.lang Class ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException

	
	java.lang Class ArrayStoreException
	ArrayStoreException

	
	java.lang Class ClassCastException
	ClassCastException

	
	java.lang Class Exception
	Exception

	
	java.lang Class IndexOutOfBoundsException
	IndexOutOfBoundsException

	
	java.lang Class NegativeArraySizeException
	NegativeArraySizeException

	
	java.lang Class NullPointerException
	NullPointerException

	
	java.lang Class Object
	Object
	equals

	
	java.lang Class RuntimeException
	RuntimeException

	
	java.lang Class SecurityException
	SecurityException

	
	java.lang Class Throwable
	Throwable

	
	Package javacard.framework
	Package javacard.framework Description

	
	javacard.framework Class AID
	AID
	getBytes
	equals
	equals
	partialEquals
	RIDEquals

	
	javacard.framework Class APDU
	PROTOCOL_T0
	PROTOCOL_T1
	getBuffer
	getInBlockSize
	getOutBlockSize
	getProtocol
	getNAD
	setOutgoing
	setOutgoingNoChaining
	setOutgoingLength
	receiveBytes
	setIncomingAndReceive
	sendBytes
	sendBytesLong
	setOutgoingAndSend
	waitExtension

	
	javacard.framework Class APDUException
	ILLEGAL_USE
	BUFFER_BOUNDS
	BAD_LENGTH
	IO_ERROR
	NO_T0_GETRESPONSE
	T1_IFD_ABORT
	APDUException
	throwIt

	
	javacard.framework Class Applet
	Applet
	install
	process
	select
	deselect
	getShareableInterfaceObject
	register
	register
	selectingApplet

	
	javacard.framework Class CardException
	CardException
	getReason
	setReason
	throwIt

	
	javacard.framework Class CardRuntimeException
	CardRuntimeException
	getReason
	setReason
	throwIt

	
	javacard.framework Interface ISO7816
	SW_NO_ERROR
	SW_BYTES_REMAINING_00
	SW_WRONG_LENGTH
	SW_SECURITY_STATUS_NOT_SATISFIED
	SW_FILE_INVALID
	SW_DATA_INVALID
	SW_CONDITIONS_NOT_SATISFIED
	SW_COMMAND_NOT_ALLOWED
	SW_APPLET_SELECT_FAILED
	SW_WRONG_DATA
	SW_FUNC_NOT_SUPPORTED
	SW_FILE_NOT_FOUND
	SW_RECORD_NOT_FOUND
	SW_INCORRECT_P1P2
	SW_WRONG_P1P2
	SW_CORRECT_LENGTH_00
	SW_INS_NOT_SUPPORTED
	SW_CLA_NOT_SUPPORTED
	SW_UNKNOWN
	SW_FILE_FULL
	OFFSET_CLA
	OFFSET_INS
	OFFSET_P1
	OFFSET_P2
	OFFSET_LC
	OFFSET_CDATA
	CLA_ISO7816
	INS_SELECT
	INS_EXTERNAL_AUTHENTICATE

	
	javacard.framework Class ISOException
	ISOException
	throwIt

	
	javacard.framework Class JCSystem
	NOT_A_TRANSIENT_OBJECT
	CLEAR_ON_RESET
	CLEAR_ON_DESELECT
	isTransient
	makeTransientBooleanArray
	makeTransientByteArray
	makeTransientShortArray
	makeTransientObjectArray
	getVersion
	getAID
	lookupAID
	beginTransaction
	abortTransaction
	commitTransaction
	getTransactionDepth
	getUnusedCommitCapacity
	getMaxCommitCapacity
	getPreviousContextAID
	getAppletShareableInterfaceObject

	
	javacard.framework Class OwnerPIN
	OwnerPIN
	getValidatedFlag
	setValidatedFlag
	getTriesRemaining
	check
	isValidated
	reset
	update
	resetAndUnblock

	
	javacard.framework Interface PIN
	getTriesRemaining
	check
	isValidated
	reset

	
	javacard.framework Class PINException
	ILLEGAL_VALUE
	PINException
	throwIt

	
	javacard.framework Interface Shareable

	
	javacard.framework Class SystemException
	ILLEGAL_VALUE
	NO_TRANSIENT_SPACE
	ILLEGAL_TRANSIENT
	ILLEGAL_AID
	NO_RESOURCE
	SystemException
	throwIt

	
	javacard.framework Class TransactionException
	IN_PROGRESS
	NOT_IN_PROGRESS
	BUFFER_FULL
	INTERNAL_FAILURE
	TransactionException
	throwIt

	
	javacard.framework Class UserException
	UserException
	UserException
	throwIt

	
	javacard.framework Class Util
	arrayCopy
	arrayCopyNonAtomic
	arrayFillNonAtomic
	arrayCompare
	makeShort
	getShort
	setShort

	
	Package javacard.security
	Package javacard.security Description

	
	javacard.security Class CryptoException
	ILLEGAL_VALUE
	UNINITIALIZED_KEY
	NO_SUCH_ALGORITHM
	INVALID_INIT
	ILLEGAL_USE
	CryptoException
	throwIt

	
	javacard.security Interface DESKey
	setKey
	getKey

	
	javacard.security Interface DSAKey
	setP
	setQ
	setG
	getP
	getQ
	getG

	
	javacard.security Interface DSAPrivateKey
	setX
	getX

	
	javacard.security Interface DSAPublicKey
	setY
	getY

	
	javacard.security Interface Key
	isInitialized
	clearKey
	getType
	getSize

	
	javacard.security Class KeyBuilder
	TYPE_DES_TRANSIENT_RESET
	TYPE_DES_TRANSIENT_DESELECT
	TYPE_DES
	TYPE_RSA_PUBLIC
	TYPE_RSA_PRIVATE
	TYPE_RSA_CRT_PRIVATE
	TYPE_DSA_PUBLIC
	TYPE_DSA_PRIVATE
	LENGTH_DES
	LENGTH_DES3_2KEY
	LENGTH_DES3_3KEY
	LENGTH_RSA_512
	LENGTH_RSA_768
	LENGTH_RSA_1024
	LENGTH_RSA_2048
	LENGTH_DSA_512
	LENGTH_DSA_768
	LENGTH_DSA_1024
	buildKey

	
	javacard.security Class MessageDigest
	ALG_SHA
	ALG_MD5
	ALG_RIPEMD160
	MessageDigest
	getInstance
	getAlgorithm
	getLength
	doFinal
	update

	
	javacard.security Interface PrivateKey

	
	javacard.security Interface PublicKey

	
	javacard.security Interface RSAPrivateCrtKey
	setP
	setQ
	setDP1
	setDQ1
	setPQ
	getP
	getQ
	getDP1
	getDQ1
	getPQ

	
	javacard.security Interface RSAPrivateKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Interface RSAPublicKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Class RandomData
	ALG_PSEUDO_RANDOM
	ALG_SECURE_RANDOM
	RandomData
	getInstance
	generateData
	setSeed

	
	javacard.security Interface SecretKey

	
	javacard.security Class Signature
	ALG_DES_MAC4_NOPAD
	ALG_DES_MAC8_NOPAD
	ALG_DES_MAC4_ISO9797_M1
	ALG_DES_MAC8_ISO9797_M1
	ALG_DES_MAC4_ISO9797_M2
	ALG_DES_MAC8_ISO9797_M2
	ALG_DES_MAC4_PKCS5
	ALG_DES_MAC8_PKCS5
	ALG_RSA_SHA_ISO9796
	ALG_RSA_SHA_PKCS1
	ALG_RSA_MD5_PKCS1
	ALG_RSA_RIPEMD160_ISO9796
	ALG_RSA_RIPEMD160_PKCS1
	ALG_DSA_SHA
	ALG_RSA_SHA_RFC2409
	ALG_RSA_MD5_RFC2409
	MODE_SIGN
	MODE_VERIFY
	Signature
	getInstance
	init
	init
	getAlgorithm
	getLength
	update
	sign
	verify

	
	Package javacardx.crypto
	Package javacardx.crypto Description

	
	javacardx.crypto Class Cipher
	ALG_DES_CBC_NOPAD
	ALG_DES_CBC_ISO9797_M1
	ALG_DES_CBC_ISO9797_M2
	ALG_DES_CBC_PKCS5
	ALG_DES_ECB_NOPAD
	ALG_DES_ECB_ISO9797_M1
	ALG_DES_ECB_ISO9797_M2
	ALG_DES_ECB_PKCS5
	ALG_RSA_ISO14888
	ALG_RSA_PKCS1
	ALG_RSA_ISO9796
	MODE_DECRYPT
	MODE_ENCRYPT
	Cipher
	getInstance
	init
	init
	getAlgorithm
	doFinal
	update

	
	javacardx.crypto Interface KeyEncryption
	setKeyCipher
	getKeyCipher

	
	A
	B
	C
	D
	E
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

