Java Card ™ 2.1 Runtime Environment (JCRE)
Specification

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Final Revison 1.0, February 24, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, worldwide, limited license
(without the right to sublicense) under SUN's intellectual property rights that are essential to practice the Java ™ Card ™
Runtime Environment (JCRE) 2.1 Specification ("Specification™) to use the Specification for internal evaluation purposes only.
Other than this limited license, you acquire no right, title, or interest in or to the Specification and you shall havéonasegh

the Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views, Visual Java, Solal
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Contents
[= = (ol TP Vi
R 1 o1 4 oo [1 Tox oo RS 1-1
2. Lifetime of the Java Card Virtual Machine...........cccocoevviniinicncnnenn 2-1
3. Java Card Applet Lifetime. ..o 31
31 TheMehodi NSt al | ..o 31
32 TheMehod Sel ECT ..o 3-2
3.3 TheMethod PrOCESS ..o e 3-2
34 TheMethod desel Ctcccooiiiiiiiii e 33
35 Power LOSSand RESEL........ccceviiiiiiiie e 33
VS < 1= ot £ o o TSP 4-1
41 TheDefault APPIEL.. ..o 4-1
4.2 SELECT Command ProCESSING.......cccuervereerienienresee s s 4-2
4.3 Non-SELECT Command ProCESSING......ccceerveereereereenieesieenieenn 4-3
5. Transient ODJECES.ooiuiiiieiieieeieeeeeee et 51
51 EventsThat Clear Transient ODJECES.........cccocvvvviriieiirieeeeieene 5-2
6. Applet Isolation and Object Sharing........cccceeveeieeiienienieneeneeee 6-3
6.1 Applet Firewall.......ccooiiiiiiiii 6-3
6.1.1 Contexts and Context Switching 6-3

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. iii

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

iv

6.1.2 Object Ownership 6-4
6.1.3 Object Access 6-4
6.1.4 Firewall Protection 6-4
6.1.5 Static Fiddsand Methods 6-5

6.2 Object AcCess ACTOSS CONLEXES.......cuvvvireeiiirie e 6-5
6.2.1 JCRE Entry Point Objects 6-6
6.2.2 Global Arrays 6-6
6.2.3 JCRE Privileges 6-7
6.2.4 Shareable Interfaces 6-7
6.2.5 Determining the Previous Context 6-9
6.2.6 Shareable Interface Details 6-9
6.2.7 Obtaining Shareable Interface Objects 6-10
6.2.8 Classand Object Access Behavior 6-11

6.3 Trandent Objects and CONtEXLS..........ceecuerrieeerieeesiee e 6-14
7. Transactions and ATOMICITYeeveereenienierieseesee s 7-1
7.1 ATOMICITY .ot 7-1
7.2 TraNSACHIONS.eiiuieiiieiiie ettt 7-1
7.3 TransaCtion DUrationcccecveeiieeiieeiieecee e 7-2
7.4 Nested TranSaCtioNS.......ccceeeieeerieeeiee et 7-2
7.5 Tear or Resat Transaction Failure.........ooooeeieiiiiiiciiiiiciecs 7-2
7.6 ADOrting aTranSactioncccceeveeieeieeneeneesee e 7-3
7.6.1 Programmatic Abortion 7-3
7.6.2 Abortion by the JCRE 7-3
7.6.3 Cleanup Responsihilities of the JCRE 7-3

7.7 Trangent ODJECES.......ccueiuiriiriiiieeie et 7-3
7.8 COMMIt CAPACITY...ccuverurerireeieeie ettt 7-3
7.9 Context SWItChINGccoiiiiiiiiiiie s 7-4
8. AP TOPICS ittt ettt sttt a e 85
8.1 Resource Use Withinthe APlcccoooiiiiiiiienieeeeeeeee 85

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8.2 Exceptionsthrown by APl classes.........ccoceveeiiiiiiiienicce 8-5

8.3 Transactionswithin the AP ..o 8-5

84 TheAPDU CIBSS....cciciiiiiieciie et 8-6
8.4.1 T=0 specificsfor outgoing data transfers 8-6

8.4.2 T=1 specificsfor outgoing data transfers 8-8

8.4.3 T=1 specifics for incoming datatransfers 8-8

8.5 The Security and Crypto PackagesS...........ceereerveeniereereeneenieenieas 8-9

8.6 JCSYSEM ClASS.....ciiiieiiieiieeiiee e sieesiee et sree e e saeeenaeeseee s 8-9

9. Virtual Maching TOPICS......cciuiiiiiiiiii e 9-1
9.1 ReSOUrCEFaIIUrEScueeiiieie e 9-1

10. APPIEL INSLAIIEN ... 10-1
10.1 ThelNSalEr ...cooeee e e 10-1
10.1.1 Indaller Implementation 10-1

10.1.2 Ingaller AID 10-2

10.1.3 Ingaller APDUs 10-2

10.1.4 Indaller Behavior 10-2

10.1.5 Indaller Privileges 10-3

10.2 TheNewly Installed APPIELc.ovvvveeeeeeeeeeeeeeeeeeee e, 10-3
10.2.1 Indallation Parameters 10-3

12 AP CONSLANTS....ciiiirieirie et 1

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. v

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Preface

Java CardD technology combines a portion of the Java programming language with aruntime environment
optimized for smart cards and related, small-memory embedded devices. The goal of Java Card technology isto
bring many of the benefits of Java software programming to the resource-constrained world of smart cards.

This document is a specification of the Java Card 2.1 Runtime Environment (JCRE). A vendor of a Java Card-
enabled device provides an implementation of the JCRE. A JCRE implementation within the context of this
specification refers to a vendor’s implementation of the Java Card Virtual Machine (VM), the Java Card
Application Programming Interface (API), or other component, based on the Java Card technology
specifications. AReference Implementation is an implementation produced by Sun Microsystems, Inc. Applets
written for the Java Card platform are referred to as Java Card applets.

Who Should Use This Specification?

This specification is intended to assist JCRE implementers in creating an implementation, developing a
specification to extend the Java Card technology specifications, or in creating an extension to the Java Card
Runtime Environment (JCRE). This specification is also intended for Java Card applet developers who want a
greater understanding of the Java Card technology specifications.

Before Y ou Read This Specification

Before reading this guide, you should be familiar with the Java programming language, the Java Card
technology specifications, and smart card technology. A good resource for becoming familiar with Java
technology and Java Card technology is the Sun Microsystems, Inc. website, located at:

http://java. sun. com

How This Specification Is Organized

Chapter 1, “The Scope and Responsibilities of the JCREgives an overview of the services required of a
JCRE implementation.

Chapter 2, “Lifetime of the Java Card Virtual Machine,” defines the lifetime of the Java Card Virtual
Machine.

Vi Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Chapter 3, “Java Card Applet Lifetime,” defines the lifetime of an applet.

Chapter 4, “Selection,” describes how the JCRE handles appl et selection.

Chapter 5, “Transient Objects,” describes the properties of transient objects.

Chapter 6, “Applet Isolation and Object Sharing,” describes applet isolation and object sharing.
Chapter 7, “Transactions and Atomicity,” describes the functionality of atomicity and transactions.

Chapter 8, “API Topics,” describes API functionality required of a JCRE but not completely specified in the
Java Card 2.1 APl Specification.

Chapter 9, “Virtual Machine Topics,” describes virtua machine specifics.
Chapter 10, “Applet Installer,” provides an overview of the Applet Ingaller and JCRE required behavior.

Chapter 11, “API Constants,” provides the numeric value of constantsthat are not specified in the Java Card
2.1 API Specification.

Glossaryisalist of words and their definitionsto assist you in using this book.

Related Documents and Publications

References to various documents or products are made in this manual. Y ou should have the following
documents available:

Java Card 2.1 APl Specification, Sun Microsystems, Inc.
Java Card 2.1 Virtual Machine Specification, Sun Microsystems, Inc.
Java Card Applet Developer’'s Guidayn Microsystems, Inc.

The Java Language SpecificatiopnJames Godling, Bill Joy, and Guy L. Steele. Addison-Wesley, 1996,
ISBN 0-201-63451-1.

m The Java Virtual Machine Specificati@dava Series) by Tim Lindholm and Frank Y ellin. Addison-
Wesley, 1996, |SBN 0-201-63452-X.

m The Java Class Libraries: An Annotated Reference (Java Skyi€sjrick Chan and Rosanna Lee.
Addison-Wedl ey, two volumes, ISBN: 0201310023 and 0201310031.

m |SO 7816 Specification Parts 1-6.
m EMV 96 Integrated Circuit Card Specification for Payment Systems.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. Vii

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Introduction

The Java Card 2.1 Runtime Environment (JCRE) contains the Java Card Virtual Machine (VM), the Java Card
Application Programming Interface (API) classes (and industry-specific extensions), and support services.

This document, the Java Card 2.1 Environment (JCRE) Specification, specifies the JCRE functionality required
by the Java Card technology. Any implementation of Java Card technology shall provide this necessary
behavior and environment.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

2. Lifetime of the Java Card Virtual Machine

In aPC or workstation, the Java Virtual Machine runs as an operating system process. When the OS processis
terminated, the Java applications and their objects are automatically destroyed.

In Java Card technol ogy the execution lifetime of the Virtual Machine (VM) isthe lifetime of the card. Most of
the information stored on a card shall be preserved even when power isremoved from the card. Persistent
memory technology (such as EEPROM) enables a smart card to store information when power is removed.
Since the VM and the objects created on the card are used to represent application information that is persistent,
the Java Card VM appearsto run forever. When power isremoved, the VM only stops temporarily. When the
card isnext reset, the VM starts up again and recovers its previous object heap from persistent storage.

Aside from its persistent nature, the Java Card Virtual Machineis just like the Java Virtual Machine.

The card initiaization timeisthe time after masking, and prior to thetime of card personalization and issuance.
At thetime of card initidization, the JCRE isinitialized. The framework objects created by the JCRE exist for
thelifetime of the Virtual Machine. Because the execution lifetime of the Virtual Machine and the JCRE
framework span CAD sessions of the card, the lifetimes of objects created by appletswill also span CAD
sessions. (CAD means Card Acceptance Device, or card reader. Card sessions are those periods when the card
isinserted in the CAD, powered up, and exchanging streams of APDUs with the CAD. The card session ends
when the card isremoved from the CAD.) Objects that have this property are called persistent objects.

The JCRE implementer shall make an object persistent when:

* TheAppl et . register method iscaled. The JCRE stores areference to the instance of the applet object.
The JCRE implementer shall ensure that instances of classappl et are persistent.

» Areference to an object is stored in a field of any other persistent object or in a class’s static field. This
requirement stems from the need to preserve the integrity of the JCRE's internal data structures.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 2-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Java Card Applet Lifetime

For the purposes of this specification, a Java Card applet’s lifetime begins at the point that it has been correctly
loaded into card memory, linked, and otherwise prepared for execution. (For the remainder of this specification,
applet refers to an applet written for the Java Card platform.) Applets registered wighplhet . r egi st er

method exist for the lifetime of the card. The JCRE initiates interactions with the applet via the applet’s public
methodsd nst al | , sel ect, desel ect, andpr ocess. An applet shall implement the static

install (byte[], short, byte) method. Ifthe nstal | (byte[], short, byte) method is not
implemented, the applet’s objects cannot be created or initialized. A JCRE implementation shall call an applet’'s
install,sel ect,desel ect, andprocess methods as described below

When the applet is installed on the smart card, the stadical | (byte[], short, byte) method is called
once by the JCRE for each applet instance created. The JCRE shall not call the applet’s constructor directly.

3.1

The Method 1 nst al |

When thda nstal | (byte[], short, byte) method is called, no objects of the applet exist. The main task

of thei nst al | method within the applet is to create an instance ofgbket subclass using its constructor,

and to register the instance. All other objects that the applet will need during its lifetime can be created as is
feasible. Any other preparationsaessary for the applet to be selected and accessed by a CAD also can be done
as is feasible. Thienst al | method obtains initialization parameters from the contents of the incoming byte

array parameter.

Typically, an applet creates various objects, initializes them with predefined values, sets some internal state
variables, and calls either thgpl et . r egi st er () method or the Appl et . regi st er (byte[], short,

byt e) method to specify the AID (applet IDentifier as defined in ISO 7816-5) to be used to select it. This
installation is considered successful when the call tagbeet . r egi st er method completes without an
exception. The installation is deemed unsuccessful ifileeal | method does not call the

Appl et . regi st er method, or if an exception is thrown from within thest al I method prior to the

Appl et . regi st er method being called, or if tppl et . regi st er method throws an exception. If the
installation is unsuccessful, the JCRE shall perform all cleanup when it regains control. That is, all persistent
objects shall be returned to the state they had prior to callinghel | method. If the installation is

successful, the JCRE can mark the applet as available for selection.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

3.2 TheMethod sel ect

Appletsremain in a suspended state until they are explicitly selected. Selection occurs when the JCRE receives
a SELECT APDU in which the name data matches the AID of the applet. Selection causes an applet to become
the currently selected appl et.

Prior to calling SELECT, the JCRE shall deselect the previoudly selected applet. The JCRE indicates thisto the
applet by invoking the applettesel ect method.

The JCRE informs the applet of selection by invokingé@kect () method.

The applet may decline to be selected by returhiigse from the call to theel ect method or by throwing

an exception. If the applet returnisue, the actual SELECT APDU command is supplied to the applet in the
subsequent call to ifsr ocess method, so that the applet can examine the APDU contents. The applet can
process the SELECT APDU command exactly like it processes any other APDU command. It can respond to
the SELECT APDU with data (see theocess method for details), or it can flag errors by throwing an

| SCExcept i on with the appropriate SW (returned status word). The SW and optional response data are
returned to the CAD.

TheAppl et . sel ecti ngAppl et method shall return true when called duringgbkeect method. The
Appl et . sel ecti ngAppl et method will continue to return true during the subseqpent¢ess method,
which is called to process the SELEBPDU command.

If the applet declines to be selected, the JCRE will return an APDU response status word of
| SO7816. SW APPLET_SELECT_FAI LEDto the CAD. Upon selection failure, the JCRE state is set to indicate
that no applet is selected. (See section 4.2 for more details).

After successful selection, all subsequent APDUs are delivered to the currently selected applpt visetise
method.

3.3 TheMethod pr ocess

All APDUs are received by the JCRE, which passes an instance of the APDU clagsrtodbe s (APDU)
method of the currently selected applet.

Note — A SELECT APDU might cause a changein the currently selected applet prior to the cdl to the
pr ocess method. (Theactua change occurs before the call to thesel ect method).

On normal return, the JCRE automatically appends 0x9000 as the compl etion response SW to any data already
sent by the applet.

At any time during pr ocess, the applet may throw an | SOExcept i on with an appropriate SW, in which case
the JCRE catches the exception and returns the SW to the CAD.

If any other exception isthrown during pr ocess, the JCRE catches the exception and returns the status word
| SO7816. SW UNKNOWN to the CAD.

3-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

3.4 The Method desel ect

When the JCRE receives a SELECT APDU command in which the name matches the AID of an applet, the

JCRE callsthedesel ect () method of the currently selected applet. This allows the applet to perform any
cleanup operationsthat may be required in order to allow some other appl et to execute.

The Appl et . sel ecti ngAppl et method shall return false when caled during the desel ect method.
Exceptionsthrown by the desel ect method are caught by the JCRE, but the applet is desel ected.

3.5 Power Loss and Reset

Power 1oss occurs when the card is withdrawn from the CAD or if thereis some other mechanical or eectrica
failure. When power isreapplied to the card and on card reset (warm or cold) the JCRE shall ensure that:

* Trandent dataisreset to the default value.
* Thetransaction in progress, if any, when power was lost (or reset occurred) is aborted.

» Theapplet that was selected when power was lost (or reset occurred) becomes implicitly desdlected. (In
thiscasethe desel ect method isnot called.)

* If the JCRE implements default applet selection (see section 4.1), the default applet is selected asthe
currently selected applet, and the default appsetffct method is called. Otherwise, the JCRE sets its
state to indicate that no applet is selected.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3-3

4.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Selection

Cardsreceive requests for service from the CAD in the form of APDUs. The SELECT APDU isused by the
JCRE to designate a currently selected applet. Once selected, an applet receives al subsequent APDUs until the
appl et becomes desdl ected.

Thereisno currently selected applet when either of the following occurs:

* Thecardisreset and no applet has been pre-designated as the default applet.
* A SELECT command fails when attempting to select an applet viaitssel ect method .

4.1

The Default Applet

Normally, applets become selected only via a successful SELECT command. However, some smart card CAD
applications require that there be a default applet that isimplicitly selected after every card reset. The behavior
is:

1 After card reset (or power on, which isaform of reset) the JCRE performsitsinitializations and checks
to seeif itsinternal state indicates that a particular applet isthe default applet. If so, the JCRE makes this
applet the currently selected applet, and the applet'sct method is called. If the apple®l ect
method throws an exception or retufred se, then the JCRE sets its state to indicate that no applet is
selected. (The appletfs ocess method is not called during default applet selection because there is no

SELECT APDU.) When a default applet is selected at card reset, it shall not requiredtss
method to be called.

2. The JCRE ensures that the ATR has been sent and the card is now ready to accept APDU commands.

If a default applet was successfully selected, then APDU commands can be sent directly to this applet. If a
default applet was not selected, then only SELECT commands for applet selection can be processed.

The mechanism for specifying a default applet is not defined in the Java Card 2.1 API. It is a JCRE
implementation detail and is left to the individual JCRE implementers.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 4-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

4.2 SELECT Command Processing

The SELECT APDU command is used to select an applet. Its behavior is:
1. The SELECT APDU isdways processed by the JCRE regardless of which, if any, applet isactive.

2. The JCRE searchestheinternal applet table which listsall successfully installed applets on the card for a
matching AID. The JCRE shall support selecting an applet where the full AID is present in the SELECT
command.

JCRE implementers are free to enhance their JCRE to support other selection criterion. An example of this
is selection via partial AID match as specified in 1SO 7816-4. The specific requirements are as follows:

Note — An asterisk indicates binary notation(%b) using bit numbering asin 1SO7816. Most significant bit = b8.
Least significant bit = bl.

a) Applet SELECT command uses CLA=0x00, INS=0xA4.
b) Applet SELECT command uses "Selection by DF name'. Therefore, P1=0x04.

€) Any other value of P1 impliesthat isnot an applet select. The APDU is processed by the currently
selected applet.

d) JCRE shall support exact DF name (AID) selection (i.e. P2=%b0000xx00). (b4,b3* are don't
care).

€) All other partial DF name SELECT options (b2,b1*) are JCRE implementation dependent.

f) All file contral information option codes (b4,b3*) shall be supported by the JCRE and interpreted
and processed by the applet.

3. If no AID match is found:

a. If thereisno currently selected applet, the JCRE responds to the SELECT command with status code
0x6999 (SW_APPLET_SELECT_FAILED).

b. Otherwise, the SELECT command is forwarded to the currently selected applet'ess method.
A context switch into the applet’s context occurs at this point. (Context of an applet is defined in
section 6.1.1.) Applets may use the SELECT APDidim@and for their own internal SELECT
processing.

4. If a matching AID is found, the JCRE prepares to select the new applet. If there is an currently selected
applet, it is deselected via a call todissel ect method. A context switch into the deselected applet’s
context occurs at this point. The JCRE context is restored upon exité&sel ect .

5. The JCRE now clears the fields of all CLEAR_ON_DESELECT transient objects (see section 5.1) owned
by the applet being deselected.

6. The JCRE sets the new currently selected applet. The new applet is selected via a call to its select method,
and a context switch into the new applet’s context occurs

a. Ifthe applet'ssel ect method throws an exception or retufred se, then the JCRE state is set so

that no applet is selected. The JCRE responds to the SELECT command with status code 0x6999
(SW_APPLET_SELECT_FAILED).

4-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

b. The new currently selected applgtisocess method is then called with the SELECT APDU as an
input parameter. A context switch into the applet’s context occurs.

Notes —

If thereisno matching AID, the SELECT command is forwarded to the currently selected applet (if any) for
processing as anormal applet APDU command.

If thereisamatching AID and the SELECT command fails, the JCRE always enters the state where no applet is
selected.

If the matching AID isthe same as the currently selected applet, the JCRE still goes through the process of
deselecting the applet and then selecting it. Resdl ection could fail, leaving the card in a state where no applet is
selected.

4.3

Non-SELECT Command Processing

When anon-SELECT APDU isreceived and thereisno currently selected applet, the JCRE shall respond to the
APDU with status code 0x6999 (SW_APPLET_SELECT_FAILED).

When anon-SELECT APDU isreceived and thereis a currently selected applet, the JCRE invokes the

pr ocess method of the currently selected applet passing the APDU as a parameter. This causes a context

switch from the JCRE context into the currently selected applet’s context. Whamatbess method exits,
the VM switches back to the JCRE context. The JCRE sends a response APDditsifiat whe next command
APDU.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 4-3

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Transient Objects

Applets sometimes require objects that contain temporary (trans ent) data that need not be persistent across
CAD sessions. Java Card does not support the Java keyword t r ansi ent . However, Java Card technology
provides methods to create transient arrays with primitive components or references to oj ect .

The term “transient object” is a misnomer. It can be incorrectly interpreted to mean that the object itself is
transient. However, only treontents of the fields of the object (except for the length field) have a transient
nature. As with any other object in the Java programming language, transient objects within the Java Card
platform exist as long as they are referenced from:

e The stack

* Local variables

» Aclass static field

» Afield in another existing object

A transient object within the Java Card platform has the following required behavior:

* The fields of a transient object shalldeared to the field's default value (zero, false,nad 1) at the
occurrence of certain events (see section 5.1).

» For security reasons, the fields of a transient object shall never be stored in a “persistent memory
technology.” Using current smart card technology as an example, the contents of transient objects can be
stored in RAM, but never in EEPROM. The purpose of this requirement is to allow transient objects to be
used to store session keys.

* Writes to the fields of a transient object shall not have a performance penalty. (Using current smart card
technology as an example, the contents of transient objects can be stored in RAM, while the contents of
persistent objects can be stored in EEPROM. Typically, RAM technology has a much faster write cycle
time than EEPROM.)

* Writes to the fields of a transient object shall not be affected by “transactions.” That is, an
abort Transact i on will never cause a field in a transient object to be restored to a previous value.

This behavior makes transient objects ideal for small amounts of temporary applet data that is frequently
modified, but that need not be preserved across CAD or select sessions.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 5-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

5.1 EventsThat Clear Transient Objects

Persistent objects are used for maintaining states that shall be preserved across card resets. When atransient
object is created, one of two eventsis specified that causesits fieldsto be cleared. CLEAR_ON_RESET
transient objects are used for maintaining states that shall be preserved across applet selections, but not across
card resets. CLEAR_ON_DESEL ECT trandent objects are used for maintaining states that must be preserved
while an applet is salected, but not across applet selections or card resets.

Details of the two clear events are asfollows:

* CLEAR_ON_RESET—the object’s fields (except for the length field) are cleared when the card is reset.
When a card is powered on, this also causes a card reset.

Note — It isnot necessary to clear the fields of transent objects before power isremoved from a card.
However, it isnecessary to guarantee that the previous contents of such fields cannot be recovered once
power islost.

» CLEAR_ON_DESELECT—the object’s fields (except for the length field) are cleared whenever the applet
is deselected. Because a card reset implicitly deselects the currently selected applet, the fields of
CLEAR_ON_DESELECT objects are also cleared by the same events specified for CLEAR_ON_RESET.

The currently selected applet is explicitly deselectedlétsel ect method is called) only when a SELECT
command is processed. The currently selected applet is deselected and then the fields of all
CLEAR_ON_DESELECT transient objects owned by the applet are cleared regardless of whether the SELECT
command:

* Failsto select an applet.
* Selects a different applet.
* Reselects the same applet.

5-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Applet Isolation and Object Sharing

Any implementation of the JCRE shall support isolation of contexts and applets. | solation means that one applet
can not access the fields or objects of an applet in another context unless the other applet explicitly provides an
interface for access. The JCRE mechanisms for applet isolation and object sharing are detailed in the sections
bel ow.

6.1

6.1.1

Applet Firewall

The applet firewall within Java Card technology is runtime-enforced protection and is separate from the Java
technology protections. The Java language protections still apply to Java Card applets. The Javalanguage
ensures that strong typing and protection attributes are enforced.

Applet firewalls are always enforced in the Java Card VM. They allow the VM to automatically perform
additional security checks at runtime.

Contexts and Context Switching

Firewalls essentially partition the Java Card platform’s object system into separate protected object spaces
calledcontexts. The firewall is the boundary between one context and another. The JCRE shall allocate and
manage @ontext for each applet that is installed on the card. (But see section 6.1.1.2 below for a discussion of
group contexts.)

In addition, the JCRE maintains its 0M@RE context. This context is much like the context of an applet, but it
has special system privileges so that it can perform operations that are denied to contexts of applets.

At any point in time, there is only ormetive context within the VM. (This is called theurrently active

context.) All bytecodes thataess objects are checkedwattime against the currently active context in order to
determine if the access is allowedj Ava. | ang. Securi t yExcept i on is thrown when an access is
disallowed.

When certain well-defined conditions are met during the execution of invoke-type bytecodes as described in
section 6.2.8, the VM performscantext switch. The previous context is pushed on an internal VM stack, a new
context becomes the currently active context, and the invoked method executes in this new context. Upon exit
from that method the VM performs a restoring context switch. The original context (of the caller of the method)
is popped from the stack and is restored as the currently active context. Context switches can be nested. The
maximum depth depends on the amount of VM stack space available.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-3

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Most method invocations in Java Card technology do not cause a context switch. Context switches only occur
during invocation of and return from certain methods, aswell as during exception exits from those methods (see
6.2.8).

During a context-switching method invocation, an additional piece of data, indicating the currently active
context, is pushed onto the return stack. This context is restored when the method is exited.

Further details of contexts and context switching are provided in later sections of this chapter.

6.1.1.1 Group Contexts

Usually, each ingtance of a Java Card appl et defines a separate context. But with Java Card 2.1 technol ogy, the
concept of group context isintroduced. If more than one applet is contained in a single Java package, they share
the same context. Additionally, al ingances of the same applet class share the same context. In other words,
thereisno firewall between two applet instances in a group context.

The discussion of contexts and context switching above in section 6.1.1 assumes that each applet instanceis
associated with a separate context. In Java Card 2.1 technol ogy, contexts are compared to enforce the firewall,
and theinstance AID is pushed onto the stack. Additionally, this happens not only when the context switches,
but also when control switches from an object owned by one applet instance to an object owned by another
instance within the same package.

6.1.2 Object Ownership

When anew object is created, it is associated with the currently active context. But the object is owned by the
applet ingtance within the currently active context when the object isinstantiated. An object is owned by an
applet ingance, or by the JCRE.

6.1.3 Object Access

In general, an object can only be accessed by its owning context, that is, when the owning context isthe
currently active context. Thefirewall prevents an object from being accessed by ancther applet in a different
context.

In implementation terms, each time an object is accessed, the object’s owner context is compared to the
currently active context. If these do not match, the access is not performe8eamd iat yExcepti on is
thrown.

An object is accessed when one of the following bytecodes is executed using the object’s reference:
getfield, putfield, invokevirtual, invokeinterface,
at hrow, <T>al oad, <T>astore, arraylength, checkcast, instanceof

<T> refers to the various types of array bytecodes, subhlasd, sast or e, etc.

This list includes any special or optimized forms of these bytecodes implemented in the Java Card VM, such as
getfield_b,sgetfield_s_this, etc.

6.1.4 Firewall Protection

The Java Card firewall provides protection against the most frequently anticipated security concern: developer
mistakes and design oversights that might allow sensitive data to be “leaked” to another applet. An applet may
be able to obtain an object reference from a publicly accessible location, but if the object is owned by an applet
in another context, the firewall ensures security.

6-4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.1.5

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

The firewall also provides protection against incorrect code. If incorrect code is loaded onto a card, the firewall
il protects objects from being accessed by this code.

The Java Card 2.1 JCRE Specification specifies the basic minimum protection requirements of contexts and
firewalls because the features described in this document are not transparent to the applet developer. Developers
shall be aware of the behavior of objects, APIs, and exceptions re ated to the firewall.

JCRE implementers are free to implement additiona security mechanisms beyond those of the applet firewall,
as long as these mechanisms are transparent to applets and do not change the externaly visible operation of the
VM.

Static Fields and Methods

It should aso be noted that classes are not owned by contexts. There isno runtime context check that can be
performed when aclass static field is accessed. Neither isthere a context switch when a gatic method is
invoked. (Similarly, i nvokespeci al causesno context switch.)

Public static fields and public static methods are accessible from any context: static methods execute in the
same context astheir cdler.

Objects referenced in gatic fields are just regular objects. They are owned by whomever created them and
standard firewall access rules apply. If it is necessary to share them across multiple contexts, then these objects
need to be Shareable Interface Objects (SIOs). (See section 6.2.4 below.)

Of coursg, the conventional Javatechnology protections are still enforced for static fields and methods. In
addition, when applets are installed, the Ingtaller verifies that each attempt to link to an external static field or
method is permitted. Installation and specifics about linkage are beyond the scope of this specification.

6.1.5.1 Optional static access checks

The JCRE may perform optional runtime checks that are redundant with the constraints enforced by a verifier.
A Java Card VM may detect when code violates fundamental language restrictions, such asinvoking a private
method in another class, and report or otherwise address the violation.

6.2

Object Access Across Contexts

To enable appletsto interact with each other and with the JCRE, some well-defined yet secure mechanisms are
provided so one context can access an object belonging to another context.

These mechanisms are provided in the Java Card 2.1 APl and are discussed in the following sections:

* JCRE Entry Point Objects
* Global Arrays

* JCRE Privileges

» Shareable Interfaces

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-5

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-6

6.2.1

6.2.2

JCRE Entry Point Objects

Secure computer systems must have away for non-privileged user processes (that are restricted to a subset of
resources) to request system services performed by privileged “system” routines.

In the Java Card 2.1 API, this is accomplished u3€RE Entry Point Objects. These are objects owned by the
JCRE context, but they have been flagged as containing entry point methods.

The firewall protects these objects from access by applets. The entry point designation allows the methods of
these objects to be invoked from any context. When that occurs, a context switch to the JCRE context is
performed. These methods are the gateways through which applets request privileged JCRE system services.

There are two categories of JCRE Entry Point Objects :
= Temporary JCRE Entry Point Objects

Like all JCRE Entry Point Objects, methods of temporary JCRE Entry Point Objects can be invoked from
any context. However, references to these objects cannot be stored in class variables, instance variables or
array components. The JCRE detects and restricts attempts to store references to these objects as part of tl
firewall functionality to prevent unauthorized re-use.

The APDU object and all JCRE owned exception objects are examples of temporary JCRE Entry Point
Objects.

= Permanent JCRE Entry Point Objects

Like all JCRE Entry Point Objects, methods of permanent JCRE Entry Point Objects can be invoked from
any context. Additionally, references to these objects can be stored and freely re-used.

JCRE owned AID instances are examples of permanent JCRE Entry Point Objects.
The JCRE is responsible for:

» Determining what privileged services are provided to applets.

» Defining classes containing the entry point methods for those services.
» Creating one or more object instances of those classes.

» Designating those instances as JCRE Entry Point Objects.

» Designating JCRE Entry Point Objects as temporary or permanent.

* Making references to those objects available to applets as needed.

Note — Only the methods of these objects are accessible through the firewall. The fields of these objects are still
protected by the firewall and can only be accessed by the JCRE context.

Only the JCRE itself can designate Entry Point Objects and whether they are temporary or permanent. JCRE
implementers areresponsible for implementing the mechanism by which JCRE Entry Point Objects are
designated and how they become temporary or permanent.

Global Arrays

The global nature of some objects requiresthat they be accessible from any context. The firewall would
ordinarily prevent these objects from being used in aflexible manner. The Java Card VM allows an object to be
designated as global.

All global arrays aretemporary global array objects. These objects are owned by the JCRE context, but can be
accessed from any context. However, references to these objects cannot be stored in class variables, instance

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.2.3

6.2.4

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

variables or array components. The JCRE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized re-use.

For added security, only arrays can be designated as global and only the JCRE itself can designate global
arrays. Because applets cannot create them, no APl methods are defined. JCRE implementers are responsible
for implementing the mechanism by which global arrays are designated.

At thetime of publication of this specification, the only global arrays required in the Java Card 2.1 APl arethe
APDU buffer and the byte array input parameter (bAr r ay) to the applet’si nst al | method.

Note — Because of its global status, the Java Card 2.1 APl Specification specifies that the APDU buffer is

cleared to zeroes whenever an applet is selected, before the JCRE accepts anew APDU command. Thisisto

prevent an applet’s potentially sensitive data from being “leaked” to another applet via the global APDU buffer.
The APDU buffer can be accessed from a shared interface object context dtadblis &r passing data across
different contexts. The applet is responsible for protecting secret data that may be accessed from the APDU
buffer.

JCRE Privileges

Because it is the “system” context, the JCRE context has a special privilege. It can invoke a method of any
object on the card. For example, assume that object X is owned by applet A. Normally, only the context of A
can access the fields and methods of X. But the JCRE context is allowed to invoke any of the methods of X.
During such an invocation, a context switch occurs from the JCRE context to the context of the applet that
owns X.

Note — The JCRE can access both methods and fields of X. Method access is the mechanism by which the
JCRE entersthe context of an applet. Although the JCRE could invoke any method through the firewall, it shall
only invokethesel ect, pr ocess, desel ect, and get Shar eabl el nt er f aceObj ect (see 6.2.7.1) methods
defined in the Appl et class, and methods on the objects passed to the APl as parameters.

The JCRE context is the currently active context when the VM begins running after a card reset. The JCRE
context is the “root” context and is always either the currently active context or the bottom context saved on the
stack.

Shareable Interfaces

Shareable interfaces are a new feature in the Java Card 2.1 API to enable applet interaction. A shareable
interface defines a set of shared interface methods. These interface methods can be invoked from one context
even if the object implementing them is owned by an applet in another context.

In this specification, an object instance of a class implementing a shareable interface isShalleabke
Interface Object (S 0O).

To the owning context, the SIO is a normal object whose fields and methods can be accessed. To any other
context, the SIO is an instance of the shareable interface, and only the methods defined in the shareable
interface are accessible. All other fields and methods of the SIO are protected by the firewall.

Shareable interfaces provide a secure mechanism for inter-applet communication, as follows:

6.2.4.1 Server applet A builds a Shareable Interface Object

1. To make an object available for sharing with another applet in a different context, applet A first defines a
shareable interface, Sl. A shareable interface extends the interface

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-7

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-8

6.2.4.2

j avacard. f ramewor k. Shar eabl e. The methods defined in the shareable interface, Sl, represent the
services that applet A makes accessible to other applets.

Applet A then defines a class C that implements the shareable interface Sl. C implements the methods
defined in SI. C may also define other methods and fields, but these are protected by the applet firewall.
Only the methods defined in S| are accessible to other applets.

Applet A creates an object ingtance O of class C. O belongs to applet A, and the firewall alows A to access
any of the fields and methods of O.

Client applet B obtains the Shareable Interface Object
To access applet A’s object O, applet B creates an object reference SIO of type SI.

Applet B invokes a special methatlOGy st em get Appl et Shar eabl el nt er f ace(hj ect , described in
section 6.2.7.2) to request a shared interface object reference from applet A.

Applet A receives the request and the AID of the requester (B) via
Appl et . get Shar eabl el nt er f acej ect , and determines whether or not it will share object O with
applet B. A’s implementation of thyet Shar eabl el nt er f aceCbj ect method executes in A’s context.

If applet A agrees to share with applet B, A responds to the request with a reference to O. As this reference
is returned as typshar eabl e, none of the fields or methods of O are visible.

Applet B receives the object reference from applet A, casts it to the interface type Sl, and stores it in object
reference variable SIO. Even though SIO actually refers to A’s object O, SIO is an interface of type SI.
Only the shareable interface methods defined in Sl are visible to B. The firewall prevents the other fields
and methods of O from being accessed by B.

In the above sequence, applet B initiates communication with applet A using the special system method in the
JCSyst emclass to request a Shareable Interface Object from applet A. Once this communication is established,
applet B can obtain other Shareable Interface Objects from applet A using normal parameter passing and return
mechanisms. It can also continue to use the sprcslst emmethod described above to obtain other

Shareable Interface Objects.

6.2.4.3

1.

Client applet B requests services from applet A

Applet B can request service from applet A by invoking one of the shareable interface methods of SIO.
During the invocation the Java Card VM performs a context switch. The original currently active context

(B) is saved on a stack and the context of the owner (A) of the actual object (O) becomes the new currently
active context. A’s implementation of the shareable interface method (SI method) executes in A’s context.

The Sl method can find out the AID of its client (B) via Jl@Syst em get Pr evi ousCont ext Al D
method. This is described in section 6.2.5. The method determines whether or not it will perform the
service for applet B.

Because of the context switch, the firewall allows the SI methactesa all the fields and methods of

object O and any other object in the context of A. At the same time, the firewall prevents the method from
accessing non-shared objects in the context of B.

The Sl method can access the parameters passed by B and can provide a return value to B.

During the return, the Java Card VM performs a restoring context switch. The original currently active
context (B) is popped from the stack, and again becomes the current context.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6. Because of the context switch, the firewall again allows B to access any of its objects and prevents B from
accessing non-shared objects in the context of A.

6.25 Determining the Previous Context

When an applet callsJCSyst em get Pr evi ousCont ext Al D, the JCRE shall return the instance AID of the
applet instance active at the time of the last context switch.

6.2.5.1 The JCRE Context

The JCRE context does not have an AID. If an applet callsthe get Pr evi ousCont ext Al D method when the
context of the applet was entered directly from the JCRE context, this method returnsnul | .

If the applet callsget Pr evi ousCont ext Al D from a method that may be accessed either from within the
applet itself or when accessed via a shareabl e interface from an external applet, it shall check for nul | return
before performing caller AlID authentication.

6.2.6 Shareable Interface Details

A shareable interface is Smply one that extends (either directly or indirectly) the tagging interface
j avacard. f ramewor k. Shar eabl e. This Shar eabl e interface is smilar in concept to the Renot e interface
used by the RMI facility, in which calls to the interface methods take place across alocal/remote boundary.

6.2.6.1 The Java Card Shareable Interface

Interfaces extending the Shar eabl e tagging interface have this special property: callsto the interface
methods take place across Java Card’s applet firewall boundary via a context switch.

The Shareable interface serves to identify all shared objects. Any object that needs to be shared through the
applet firewall shall directly or indirectly implement this interface. Only those methods specified in a shareable
interface are available through the firewall.

Implementation classes can implement any number of shareable interfaces and can extend other shareable
implementation classes.

Like any Java platform interface, a shareable interface simply defines a set of service methods. A service
provider class declares that it “implements” the shareable interface and provides implementations for each of
the service methods of the interface. A service client class accesses the services by obtaining an object
reference, casting it to the shareable interface type, and invoking the service methods of the interface.

The shareable interfaces within the Java Card technology shall have the following properties:

* When a method in a shareable interface is invoked, a context switch occurs to the context of the object’s
owner.

 When the method exits, the context of the caller is restored.

» Exception handling is enhanced so that the currently active context is correctly restored during the stack
frame unwinding that occurs as an exception is thrown.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-9

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6.2.7 Obtaining Shareable Interface Objects

Inter-applet communication is accomplished when a client appl et invokes a shareabl e interface method of a SIO
bel onging to a server applet. In order for thisto work, there must be away for the client applet to obtain the SIO
from the server applet in the first place. The JCRE provides a mechanism to make this possible. The Appl et
class and the JCSy st emclass provide methods to enable a client to request services from the server.

6.2.7.1 The Method Appl et . get Shar eabl el nt er f aceCbj ect (Al D, byte)

Thismethod is implemented by the server applet instance. It shall be called by the JCRE to mediate between a
client applet that requests to use an object belonging to another applet, and the server applet that makesiits
objects available for sharing.

The default behavior shall return nul |, which indicates that an applet does not participate in inter-applet
communication.

A server applet that isintended to be invoked from another applet needs to override this method. This method
should examinethecl i ent Al Dand the par anet er . If thecl i ent Al Disnot one of the expected AIDs, the
method should return nul | . Smilarly, if the par anet er isnot recognized or if it isnot allowed for the

cl i ent Al D, then the method a so should return nul | . Otherwise, the applet should return an SIO of the
shareabl e interface type that the client has requested.

The server applet need not respond with the same SIO to all clients. The server can support multiple types of
shared interfaces for different purposes and usecl i ent Al Dand par anet er to determine which kind of SIO
to return to the client.

6.2.7.2 The Method JCSyst em get Appl et Shar eabl el nt er f aceCbj ect

The JCSyst emclass contains the method get Appl et Shar eabl el nt er f acebj ect , which isinvoked by a
client applet to communicate with a server applet.

The JCRE shall implement this method to behave as follows:

1. TheJCRE searchesitsinternal applet table which listsall successfully installed applets on the card for one
with server Al D. If not found, nul | isreturned.

2. The JCRE invokes this appletjet Shar eabl el nt er f ace(j ect method, passing the i ent Al D of
the caller and thpar anet er .

3. A context switch occurs to the server applet, and its implementatiwt 8har eabl el nt er f aceQbj ect
proceeds as described in the previous section. The server applet returns an8IO)(or

4. get Appl et Shar eabl el nt er f acebj ect returns the same SIO (oul |) to its caller.

For enhanced security, the implementation shall make it impossible for the client to tell which of the following
conditions caused a null value to be returned:

* Theserver Al Dwas not found.

* The server applet does not participate in inter-applet communication.

* The server applet does not recognizecthieent Al D or thepar anet er .

* The server applet won’'t communicate with this client.

» The server applet won't communicate with this client as specified tpatremet er .

6-10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.2.8

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Class and Object Access Behavior

A static classfield is accessed when one of the following Java bytecodes is executed:
getstatic, putstatic
An object is accessed when one of the following Java bytecodes is executed using the object’s reference:

getfield, putfield, invokevirtual, invokeinterface, athrow,
<T>al oad, <T>astore, arraylength, checkcast, instanceof

<T> refers to the various types of array bytecodes, subhlasd, sast or e, etc.

This list also includes any special or optimized forms of these bytecodes that may be implemented in the Java
Card VM, such agetfield_b,sgetfiel d_s_this, etc.

Prior to performing the work of the bytecode as specified by the Java VM, the Java Card VM will perform an
access check on the referenced object. If access is denied, thema | ang. Securi t yExcepti on is thrown.

The access checks performed by the Java Card VM depend on the type and owner of the referenced object, the
bytecode, and the currently active context. They are described in the following sections.

6.2.8.1 Accessing Static Class Fields

Bytecodes:

getstatic, putstatic

m If the JCRE is the currently active context, then access is allowed.

m Otherwise, if the bytecode st st at i ¢ and the field being stored is a reference type and the reference
being stored is a reference to a temporary JCRE Entry Point Object or a global array, then access is denied

m Otherwise, access is allowed.

6.2.8.2 Accessing Array Objects

Bytecodes:

<T>al oad, <T>astore, arraylength, checkcast, instanceof

If the JCRE is the currently active context, then access is allowed.

m Otherwise, if the bytecode émst or e and the component being stored is a reference type and the
reference being stored is a reference to a temporary JCRE Entry Point Object or a global array, then access
is denied.

m Otherwise, if the array is owned by an applet in the currently active context, then access is allowed.
m Otherwise, if the array is designated global, then access is allowed.

m Otherwise, access is denied.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-11

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6.2.8.3 Accessing Class Instance Object Fields

Bytecodes:

getfield, putfield

m If the JCRE isthe currently active context, then accessis allowed.
m Otherwisg, if the bytecodeisput fi el d and thefield being stored is areference type and the reference
being stored isareference to atemporary JCRE Entry Point Object or aglobal array, then accessis denied.
m Otherwiseif the object is owned by an applet in the currently active context, then accessis alowed.
m Otherwise, accessisdenied.
6.2.8.4 Accessing Class Instance Object Methods
Bytecodes:

i nvokevi rt ual

m If theobject is owned by an applet in the currently active context, then accessis allowed. Context is
switched to the object owner’s context.

m Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed. Context is
switched to the object owner’s context (shall be JCRE).

m Otherwise, if JCRE is the currently active context, then access is allowed. Context is switched to the object
owner’s context.

m Otherwise, access is denied.

6.2.8.5 Accessing Standard Interface Methods
Bytecodes:

i nvokei nterface

m If the object is owned by an applet in the currently active context, then access is allowed.
m Otherwise, if the JCRE is the currently active context, then access is allowed. Context is switched to the
object owner’s context.
m Otherwise, access is denied.
6.2.8.6 Accessing Shareable Interface Methods
Bytecodes:

i nvokei nterface

If the object is owned by an applet in the currently active context, then access is allowed.

Otherwise, if the object’s class implementhar eabl e interface, and if the interface being invoked
extends th&har eabl e interface, then access is allowed. Context is switched to the object owner’s
context.

6-12 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

m Otherwisg, if the JCRE isthe currently active context, then access is allowed. Context is switched to the
object owner’s context.

m Otherwise, access is denied.

6.2.8.7 Throwing Exception Objects

Bytecodes:

at hr ow

m If the object is owned by an applet in the currently active context, then access is allowed.
m Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed.
m Otherwise, if the JCRE is the currently active context, then access is allowed.

m Otherwise, access is denied.

6.2.8.8 Accessing Class Instance Objects

Bytecodes:

checkcast, instanceof

If the object is owned by an applet in the currently active context, then access is allowed.
Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed.
Otherwise, if the JCRE is the currently active context, then access is allowed.

Otherwise, access is denied.

6.2.8.9 Accessing Standard Interfaces

Bytecodes:

checkcast, i nstanceof

m If the object is owned by an applet in the currently active context, then access is allowed.
m Otherwise, if the JCRE is the currently active context, then access is allowed.

m Otherwise, access is denied.

6.2.8.10 Accessing Shareable Interfaces

Bytecodes:

checkcast, i nstanceof

m If the object is owned by an applet in the currently active context, then access is allowed.

m Otherwise, if the object’s class implementhar eabl e interface, and if the object is being cast into
(checkcast) or is an instance of (instanceof) an interface that extersiiatleabl e interface, then access
is allowed.

m Otherwise, if the JCRE is the currently active context, then access is allowed.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-13

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

m Otherwise, accessis denied.

6.3

Transient Objects and Contexts

Transent objects of CLEAR_ON_RESET type behave like persistent objects in that they can be accessed only
when the currently active context isthe same context as the owner of the object (the currently active context at
the time when the object was created).

Transent objects of CLEAR_ON_DESEL ECT type can only be created or accessed when the currently active
context is the context of the currently selected applet. If any of the makeTr ansi ent factory methods of
JCSyst emclass are called to create a CLEAR_ON_DESEL ECT type transient object when the currently active
context isnot the context of the currently selected appl et, the method shall throw a

java. |l ang. Syst enExcept i on with reason code of | LLEGAL_TRANSI ENT. If an attempt is made to
access a trangent object of CLEAR_ON_DESELECT type when the currently active context isnot the context of
the currently selected applet, the JCRE shall throw aj ava. | ang. Securi t yExcepti on.

Appletsthat are part of the same package share the same group context. Every applet instance from a package
shares all its object instances with all other instances from the same package. (Thisincludes transient objects of
both CLEAR_ON_RESET type and CLEAR_ON_DESELECT type owned by these applet instances.)

The transient objects of CLEAR_ON_DESELECT type owned by any applet instance within the same package
shall be accessible when any of the applet ingtances in this package is the currently selected applet.

6-14 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Transactions and Atomicity

A transactionisalogical set of updates of persistent data. For example, transferring some amount of money
from one account to another is abanking transaction. It isimportant for transactionsto be atomic: either all of
the data fields are updated, or none are. The JCRE provides robust support for atomic transactions, so that card
dataisrestored toitsoriginal pre-transaction state if the transaction does not complete normally. This
mechanism protects againg events such as power 1oss in the middle of atransaction, and against program errors
that might cause data corruption should all steps of a transaction not complete normally.

7.1

7.2

Atomicity

Atomicity defines how the card handles the contents of persistent storage after a stop, failure, or fatal exception
during an update of a single object or class field or array component. If power islost during the update, the
applet devel oper shall be able to rely on what thefield or array component contains when power isrestored.

The Java Card platform guarantees that any update to a single persistent object or class field will be atomic. In
addition, the Java Card platform provides single component level atomicity for persistent arrays. That is, if the
smart card loses power during the update of a data element (field in an object/class or component of an array)
that shall be preserved across CAD sessions, that data element shall be restored to its previous value.

Some methods al so guarantee atomicity for block updates of multiple data elements. For example, the atomicity

of theU i | . arr ayCopy method guarantees that either al bytes are correctly copied or € se the destination
array isrestored to its previous byte values.

An applet might not require atomicity for array updates. The Ut i | . ar r ay Copy NonAt oni ¢ method is provided
for this purpose. It does not use the transaction commit buffer even when called with a transaction in progress.

Transactions

An applet might need to atomically update several different fields or array componentsin several different
objects. Either all updatestake place correctly and consistently, or else dl fields’components are restored to
their previous values.

The Java Card platform supports a transactional model in which an applet can designate the beginning of an
atomic set of updates with a call to the JCSyst em begi nTr ansact i on method. Each object update after this

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

point is conditionally updated. The field or array component appears to be updated—reading the field/array
component back yields its latest conditional value—but the update is not yet committed.

When the applet callBcCSyst em conmi t Transact i on, all conditional updates are committed to persistent
storage. If power is lost or if some other system failure occurs prior to the completion of

JCSyst em conmi t Transact i on, all conditionally updated fields or array components are restored to their
previous values. If the applet encounters an internal problem or decides to cancel the transaction, it can
programmatically undo conditional updates by calli@§yst em abor t Tr ansact i on.

7.3 Transaction Duration

A transaction always ends when the JCRE regains programmatic control upon return from thesapptat's
desel ect, process orinstall methods.. This is true whether a transaction ends normally, with an applet’s
call tocomni t Tr ansact i on, or with an abortion of the transaction (either programmatically by the applet, or
by default by the JCRE). For more details on transaction abortion, refer to section 7.6.

Transaction duration is the life of a transaction between the call@Syst em begi nTr ansact i on, and either
a call toconmi t Tr ansact i on or an abortion of the transaction.

7.4 Nested Transactions

The model currently assumes that nested transactions are not possible. There can be only one transaction in
progress at a time. JfCSyst em begi nTransact i on is called while a transaction is already in progress, then
aTransacti onExcept i on is thrown.

TheJCSyst em t ransact i onDept h method is provided to allow you to determine if a transaction is in
progress.

7.5 Tear or Reset Transaction Fallure

If power is lost (tear) or the card is reset or some other system failure occurs while a transaction is in progress,
then the JCRE shall restore to their previous values all fields and array components conditionally updated since
the previous call tdCSyst em begi nTransact i on.

This action is performed automatically by the JCRE when it reinitializes the card after recovering from the
power loss, reset, or failure. The JCRE determines which of those objects (if any) were conditionally updated,
and restores them.

Note — Object space used by instances created during the transaction that failed due to power loss or card reset
can be recovered by the JCRE.

7-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

7.6 Aborting a Transaction

Transactions can be aborted either by an applet or by the JCRE.

7.6.1 Programmatic Abortion

If an applet encounters an internal problem or decides to cancel the transaction, it can programmatically undo
conditional updates by calling JCSyst em abort Tr ansact i on. If thismethod is called, all conditionally
updated fields and array components since the previous call to JCSyst em begi nTr ansact i on arerestored to
their previous values, and the JCSyst em t r ansact i onDept h valueisreset to 0.

7.6.2 Abortion by the JCRE

If an applet returnsfrom thesel ect , desel ect, process, or instal | methodswith atransaction in
progress, the JCRE automatically aborts the transaction. If areturn from any of sel ect , desel ect, process
or install methods occurswith atransaction in progress, the JCRE acts asif an exception was thrown.

7.6.3 Cleanup Responsihbilities of the JCRE

Object instances created during the transaction that is being aborted can be deleted only if references to these
deleted objects can no longer be used to access these objects. The JCRE shall ensure that areferenceto an
object created during the aborted transaction is equivalent toanul | reference.

7.7 Transient Objects

Only updates to persistent objects participate in the transaction. Updates to transient objects are never undone,
regardless of whether or not they were “inside a transaction.”

7.8 Commit Capacity

Since platform resources are limited, the number of bytes of conditionally updated data that can be accumulatec
during a transaction is limited. The Java Card technology provides methods to determine h@anmmitch

capacity is available on the implementation. The commit capacity represents an upper bound on the number of
conditional byte updates available. The actual number of conditional byte updates available may be lower due
to management overhead.

A Transacti onExcept i on is thrown if the commit capacity is exceeded during a transaction.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7-3

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

7.9 Context Switching

Context switches shall not alter the state of a transaction in progress. If atransaction isin progress at the time of
a context switch (see section 6.1.1), updatesto persistent data continue to be conditiona in the new context
until the transaction is committed or aborted.

7-4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

8.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

APl Topics

Thetopicsin this chapter complement the requirements specified in the Java Card 2.1 APl Specification.

8.1 Resource Usewithinthe API

Unless specified in the Java Card 2.1 APl Specification, the implementation shall support the invocation of AP
instance methods, even when the owner of the object instance is not the currently selected applet. In other
words, unless specifically called out, the implementation shall not use resources such as transient objects of
CLEAR_ON_DESELECT type.

8.2

Exceptions thrown by API classes

All exception objects thrown by the API implementation shall be temporary JCRE Entry Point Objects.
Temporary JCRE Entry Point Objects cannot be stored in class variables, instance variables or array
components (See section 6.2.1).

8.3

Transactions within the API

Unless explicitly called out in the API descriptions, implementation of the Java Card 2.1 APl methods shall not
initiate or otherwise alter the state of a transaction in progress. Even if atransaction isin progress, updatesto
implementation persistent state within the API need not be conditiona unless specifically called out by the API
method.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-5

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8.4

8.4.1

The APDU Class

The APDU class encapsulates access to the SO 7816-4 based 1/O across the card serid line. The APDU Class is
designed to be independent of the underlying 1/O transport protocol.

The JCRE may support T=0 or T=1 transport protocols or both.

T=0 specifics for outgoing data transfers

For compatibility with legacy CAD/terminals that do not support block chained mechanisms, the APDU Class
allows mode selection viatheset Qut goi ngNoChai ni ng method.

8.4.1.1 Constrained transfers with no chaining

When the no chaining mode of output transfer is requested by the applet by calling the
set Qut goi ngNoChai ni ng method, the following protocol sequence shall be followed:

Note — when the no chaining mode is used (i.e. after the invocation of the set Qut goi ngNoChai ni ng
method), callsto thewai t Ext ensi on method shall throw an APDUExcept i on with reason code
| LLEGAL_USE.

Notation
Le = CAD expected length.

Lr = Applet response length set viaset Qut goi ngLengt h method.

<INS> =the protocol byte equal to the incoming header INS byte, which indicatesthat all data bytes
will be transferred next.

<~INS> = the protocol byte that isthe complement of theincoming header INS byte, which indicates
that 1 data byte will be transferred next.

<SW1,SW2> = the response status bytes asin 1SO7816-4.

ISO 7816-4 CASE 2

Le ==Lr
1. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS> procedure
byte mechanism.

2. The card sends <SW1,SW2> completion status on completion of the Appl et . process
method.

Lr<Le
1. The card sends <Ox61,Lr> completion status bytes

2. The CAD sends GET RESPONSE command with Le= Lr.

8-6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification
3. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS> procedure
byte mechanism.
4. The card sends <SW1,SW2> completion status on completion of the Appl et . pr ocess
method.

Lr > Le

1. The card sends Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

2. The card sends <0x61,(Lr-Le)> completion status bytes
3. The CAD sends GET RESPONSE command with new Le <=Lr.

4. The card sends (new) Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

5. Repeat steps 2-4 as necessary to send the remaining output data bytes (Lr) asrequired.

6. The card sends <SW1,SW2> completion status on completion of the Appl et . process
method.

ISO 7816-4 CASE 4
In Case 4, Leis determined after the following initial exchange:

1. The card sends <0x61,Lr status bytes>
2. The CAD sends GET RESPONSE command with Le<=Lr.
Therest of the protocol sequenceisidentical to CASE 2 described above.

If the applet aborts early and sends |ess than Le bytes, zeros shall be sent instead to fill out the length of the
transfer expected by the CAD.

8.4.1.2 Regular Output transfers

When the no chaining mode of output transfer is not requested by the applet (that is, the set Qut goi ng
method is used), any ISO-7816-3/4 compliant T=0 protocol transfer sequence may be used.

Note — Thewai t Ext ensi on method may be invoked by the applet a any time. Thewai t Ext ensi on
method shall request an additional work waiting time (1SO 7816-3) using the 0x60 procedure byte.

8.4.1.3 Additiona T=0 requirements

At any time, when the T=0 output transfer protocol isin use, and the APDU classis awaiting a GET
RESPONSE command from the CAD in reaction to aresponse status of <0x61, xx> from the card, if the CAD
sends in a different command, the sendByt es or the sendByt esLong methods shall throw an

APDUEXxcept i on with reason code NO_TO_GETRESPONSE.

CallstosendByt es or sendByt esLong methods from this point on shall result in an APDUExcept i on with
reason code | LLEGAL _USE. If an| SOExcept i on isthrown by the applet after the NO_TO_GETRESPONSE
exception has been thrown, the JCRE shall discard the response statusin itsreason code. The JCRE shall restart
APDU processing with the newly received command and resume APDU dispatching.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-7

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8-8

8.4.2

T=1 specifics for outgoing data transfers

8.4.2.1 Constrained transfers with no chaining

When the no chaining mode of output transfer isrequested by the applet by calling the
set Qut goi ngNoChai ni ng method, the following protocol specifics shall be followed:

Notation

Le = CAD expected length.

Lr = Applet response length set viaset Qut goi ngLengt h method.
The transport protocol sequence shall not use block chaining. Specifically, the M-bit (more data bit) shall not be
set in the PCB of the I-blocks during the transfers (ISO 7816-3). In other words, the entire outgoing data (Lr
bytes) shall be transferred in one I-block.

If the applet aborts early and sendslessthan Lr bytes, zeros shall be sent instead to fill out the remaining length
of the block.

Note — When the no chaining mode isused (i.e. after theinvocation of theset Cut goi ngNoChai ni ng
method), callsto thewai t Ext ensi on method shall throw an APDUExcept i on with reason code
| LLEGAL_USE.

8.4.2.2 Regular Output transfers

When the no chaining mode of output transfer is not requested by the applet (i.e. the set Qut goi ng method is
used) any 1SO-7816-3/4 compliant T=1 protocol transfer sequence may be used.

Note — Thewai t Ext ensi on method may be invoked by the applet at anytime. Thewai t Ext ensi on
method shall send an S-block command with WTX request of INF units, which is equivalent to arequest of 1
additional work waiting timein T=0 mode. (See SO 7816-3).

8.4.2.2.1 Chain abortion by the CAD

8.4.3

If the CAD aborts a chained outbound transfer using an S-block ABORT request (see SO 7816-3), the
sendByt es or sendByt esLong method shall throw an APDUEXxception with reason code T1_IFD_ABORT.

CallstosendByt es or sendByt esLong methods from this point on shall result in an APDUExcept i on with
reason code | LLEGAL_USE. If an | SCExcept i on isthrown by the applet after the T1_I FD_ABORT exception
has been thrown, the JCRE shall discard the response statusin its reason code. The JCRE shall restart APDU

processing with the newly received command, and resume APDU dispatching.

T=1 specifics for incoming data transfers

8.4.3.1 Incoming transfers using chaining

8.4.3.1.1 Chain abortion by the CAD

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

If the CAD aborts a chained inbound transfer using an S-block ABORT request (see SO 7816-3), the

set I nconmi ngAndRecei ve orr ecei veByt es method shall throw an APDUEXxception with reason code
T1 | FD_ABORT.

Cadllstor ecei veByt es , sendByt es or sendByt esLong methods from this point on shall result in an
APDUExcept i on with reason code | LLEGAL_USE. If an | SOExcept i on isthrown by the applet after the

T1_I FD_ABORT exception has been thrown, the JCRE shall discard the response statusin its reason code. The
JCRE shall restart APDU processing with the newly received command, and resume APDU dispatching.

8.5 The Security and Crypto packages

Theget | nst ance method in the following classes return an implementation instance in the context of the
calling applet of the requested algorithm:

javacard. security. MessageDi gest
javacard. security. Si gnature
javacard. security. RandonDat a

j avacar dx. crypt o. G pher

An implementation of the JCRE may implement O or more of the algorithmslisted in the Java Card 2.1 API
Soecification. When an algorithm that isnot implemented is requested this method shall throw a
Crypt oExcept i on with reason code NO_SUCH ALGORI THM

Implementations of the above classes shall extend the corresponding base class and implement all the abstract
methods. All data allocation associated with the implementation instance shall be performed at the time of
instance construction to ensure that any lack of required resources can be flagged early during the ingallation of
the applet.

Similarly, the bui | dKey method of thej avacar d. security. keyBui | der classreturnsan
implementation instance of the requested Key type. The JCRE may implement O or more types of keys. When a
key type that is not implemented is requested, the method shall throw a Cr ypt oExcept i on with reason code
NO_SUCH_ALGORI THM

Implementations of key types shall implement the associated interface. All data allocation associated with the
key implementation instance shall be performed at the time of instance construction to ensure that any lack of
required resources can be flagged early during the installation of the applet.

8.6 JCSystem Class

In JavaCard 2.1, the get Ver si on method shall return (short) 0x0201.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-9

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8-10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

9. Virtual Machine Topics

Thetopicsin this chapter detail virtual machine specifics.

9.1

Resource Fallures

A lack of resources condition (such as heap space) which isrecoverable shall result ina Syst enExcepti on
with reason code NO_RESOURCE. The factory methods in JCSyst emused to create trandent arrays throw a
Syst enExcept i on with reason code NO_TRANSI ENT_SPACE to indicate lack of transient space.

All other (non-recoverable) virtual machine errors such as stack overflow shall result in avirtual machine error.

These conditions shall cause the virtual machine to halt. When such a non-recoverable virtua machine error
occurs, an implementation can optionally require the card to be muted or blocked from further use.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 9-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

10. Applet Installer

Applet installation on smart cards using Java Card technology is a complex topic. The design of the Java Card
2.1 API Secification isintended to give JCRE implementers as much freedom as possiblein their
implementations. However, some basic common specifications arerequired in order to allow Java Card applets
to beinstalled without knowing the implementation details of a particular installer.

This specification defines the concept of an Installer and specifies minimal installation requirementsin order to
achieve interoperability across awide range of possible Installer implementations.

The Applet Ingaller isan optional part of the Java Card 2.1 Environment (JCRE) Specification. That is, an
implementation of the JCRE does not necessarily need to include a post-issuance Installer. However, if
implemented, the installer isrequired to support the behavior specified in this chapter.

10.1 Thelnstaller

The mechanisms necessary to install an applet on smart cards using Java Card technology are embodied in an
on-card component called the Installer.

To the CAD the Indaller appearsto be an applet. It hasan AID, and it becomes the currently selected applet
when this AID is successfully processed by a SELECT command. Once sdlected, the Installer behaves in much
the same way as any other applet:

* Itreceivesal APDUsjust like any other selected applet.

* Itsdesign specification prescribes the various kinds and formats of APDUs that it expects to receive along
with the semantics of those commands under various preconditions.

* |t processes and responds to all APDUs that it receives. Incorrect APDUS are responded to with an error
condition of some kind.

* When another applet is selected (or when the card isreset or when power isremoved from the card), the
Ingtaller becomes desel ected and remains suspended until the next timethat it is SELECTed.

10.1.1 Installer Implementation

The Installer need not be implemented as an applet on the card. The requirement isonly that the Installer
functionality be SELECTable. The corallary to thisrequirement isthat Installer component shall not be able to
be invoked when anon-Installer applet is selected nor when no applet is sel ected.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 10-1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Obvioudy, a JCRE implementer could choose to implement the Ingtaller asan applet. If so, then the Installer
might be coded to extend the Appl et class and respond to invocations of the sel ect , pr ocess, and
desel ect methods.

But a JCRE implementer could aso implement the Installer in other ways, aslong asit provides the
SELECTable behavior to the outside world. In this case, the JCRE implementer has the freedom to provide
some other mechanism by which APDUs are delivered to the Ingaller code module.

10.1.2

Installer AID

Because the Ingtaller is SELECTable, it shall have an AID. JCRE implementers are free to choose their own
AID by which their Installer is selected. Multiple installers may be implemented.

10.1.3

Installer APDUSs

The Java Card 2.1 API does not specify any APDUSs for the Installer. JCRE implementers are entirely free to
choose their own APDU commandsto direct their Installer in its work.

The modd isthat the Installer on the card isinitiated by an installation program running on the CAD. In order
for ingtallation to succeed, this CAD ingallation program shall be able to:

Recognize the card.
SELECT thelnstaller on the card.

Coordinate the installation process by sending the appropriate APDUs to the card Installer. These APDUs
will include:

Authentication information, to ensure that the installation is authorized.

The applet code to be loaded into the card’s memory.

Linkage information to link the applet code with code already on the card.

Instance initialization parameter data to be sent to the appiettsal | method.

YV VY

TheJava Card 2.1 APl Specification does not specify the details of the CAD installation program nor the
APDUs passed between it and the Installer.

10.14

Installer Behavior

JCRE implementers shall also define other behaviors of their Installer, including:

Whether or not installation can be aborted and how this is done.
What happens if an exception, reset, or power fail occurs during installation.
What happens if another applet is selected before the Installer is finished with its work.

The JCRE shall guarantee that an appletnweillbe deemed successfully iaksed if:

the applet package must link with another package already resident on the card , but the version of the
resident package is not binary compatible with the applet package. For more information on binary
compatibility in the Java programming language pleas@lsedava Language Specification. Binary
compatibility in Java Card technology is discussed irdétva Card 2.1 Virtual Machine Specification.

the applet’'s nst al I method throws an exception before successful return frompiiest . r egi st er
method (see section 3.1).

10-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

10.1.5 Instaler Privileges

Although an Installer may be implemented as an applet, an Installer will typically reguire access to features that
arenot available to "other" applets. For example, depending on the JCRE implementer’s implementation, the
Installer will need to:

* Read and write directly to memory, bypassing the object system and/or standard security.
» Access objects owned by other applets or by the JCRE.

* Invoke non-entry point methods of the JCRE.

* Be able to invoke thienst al | method of a newly installed applet.

Again, it is up to each JCRE implementer to determine the Installer implementation and supply such features in
their JCRE implementations as necessary to support their Installer. JCRE implementers are also responsible for
the security of such features, so that they are not available to normal applets.

10.2 The Newly Installed Applet

There is a single interface between the Installer and the applet that is being installed. After the Installer has
correctly prepared the applet for execution (performed steps such as loading and linking), the Installer shall
invoke the applet’'snst al | method. This method is defined in thgpl et class.

The precise mechanism by which an appliet'st al | (byte[], short, byte) method is invoked from the
Installer is a JCRE implementer-defined implementation detail. However, there shall be a context switch so that
any context-related operations performed byithset al | method (such as creating new objects) are done in

the context of the new applet and not in the context of the Installer. The Installer shall also ensure that array
objects created during applet class initialization (<clinit>) methods are also owned by the context of the new
applet.

The installation of an applet is deemed complete if all steps are completed without failure or an exception being
thrown, up to and including successful return from executinggheket . r egi st er method. At that point, the
installed applet will be selectable.

The maximum size of the parameter data is 32 bytes. And for security reasomrs thye parameter is zeroed
after the return (just as the APDU buffer is zeroed on return from an applet'sss method.)

10.2.1 Ingtallation Parameters

Other than the maximum size of 32 bytes, the Java Card 2.1 API does not specify anything about the contents
of the global byte array installation parameter. This is fully defined by the applet designer and can be in any
format desired. In addition, these installation parameters are intended to be opaque to the Installer.

JCRE implementers should design their Installers so that it is possible for an installation program running in a
CAD to specify an arbitrary byte array to be delivered to the Installer. The Installer simply forwards this byte
array to the target applei’sist al | method in théAr r ay parameter. A typical implementation might define a
JCRE implementer-proprietary APDU command that has the semantics “call the appletsl method

passing the contents of the accompanying byte array.”

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 10-3

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

11. API Constants

Some of the API classes don’t have values specified for their constantséavdliéard 2.1 APl Specification.

If constant values are not specified consistently by implementers of this Java Card 2.1 Environment (JCRE)
Specification, industry-wide interoperability is impossible. This chapter provides the required values for
constants that are not specified in Jaea Card 2.1 APl Specification.

Class javacard.framework. APDU

public static final byte PROTOCOL_TO
public static final byte PROTOCOL_T1

Class javacard.framework. APDUException

public static final short I|ILLEGAL_USE = 1;
public static final short BUFFER_BOUNDS =
public static final short BAD LENGTH = 3;
public static final short IO ERROR = 4;
public static final short NO TO_CETRESPONSE = OxAA;
public static final short T1_| FD_ABORT = OXAB;

2;

Interface javacard.framework.ISO7816

public final static short SWNO ERROR = (short)0x9000;

public final static short SWBYTES REMAI Nl NG 00 = 0x6100;
public final static short SWWRONG LENGIH = 0x6700;

public static final short SW SECURI TY_STATUS_NOT_SATI SFI ED = 0x6982;
public final static short SWFILE_ |INVALID = 0x6983;

public final static short SWDATA | NVALID = 0x6984;

public final static short SW CONDI TI ONS_NOT_SATI SFI ED = 0x6985;
public final static short SW COVMVAND NOT_ALLOWED = 0x6986;
public final static short SWAPPLET_SELECT_FAILED = 0x6999;
public final static short SWWRONG DATA = 0x6A80;

public final static short SWFUNC_NOT_SUPPORTED = 0x6A81;
public final static short SWFILE _NOT_FOUND = Ox6A82;

public final static short SWRECORD NOT_FOUND = 0x6A83;

public final static short SWINCORRECT_P1P2 = 0x6A86;

public final static short SWWRONG P1P2 = 0x6B0O0;

OO0OO00OO0OO0O0OO0O0O0O0O0OO0

public final static short SW CORRECT_LENGIH 00 = 0x6Q00;
public final static short SWINS_NOT_SUPPORTED = 0x6D00;
public final static short SWCLA NOT_SUPPORTED = Ox6EQO;

public final static short SWUNKNOW = Ox6F00;

public static final short SWFILE FULL = Ox6A84;
public final static byte OFFSET_CLA
public final static byte OFFSET_I NS
public final static byte OFFSET_Pl1 = 2;

0;
1

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

public final static byte OFFSET_P2 3;

public final static byte OFFSET_LC = 4;

public final static byte OFFSET_CDATA= 5;

public final static byte CLA | SO7816 = 0xO00;

public final static byte INS_SELECT = (byte) OxA4;

public final static byte I NS_EXTERNAL_AUTHENTI CATE = (byte) 0x82;

Class javacard.framework.JCSystem

public static final byte NOT_A TRANSI ENT_OBJECT = 0;
public static final byte CLEAR ON RESET = 1,
public static final byte CLEAR ON_DESELECT = 2;

Class javacard.framework.PINException

public static final short ILLEGAL_VALUE = 1;
Class javacard.framework.SystemException
public static final short ILLEGAL_VALUE = 1;

public static final short NO TRANSI ENT_SPACE = 2;
public static final short |ILLEGAL_TRANSI ENT = 3;
public static final short ILLEGAL_AID = 4;
public static final short NO RESCURCE 5;

Class javacard.framework. TransactionException
public static final short IN PROGRESS = 1;

public static final short NOT_I N PROGRESS = 2;
public static final short BUFFER FULL = 3;

public static final short |INTERNAL _FAI LURE = 4;
Class javacard.security.CryptoException

public static final short ILLEGAL_VALUE = 1;
public static final short UN N TIALI ZED KEY = 2;
public static final short NO SUCH ALGORI THM = 3;

public static final short INVALID INIT = 4;
public static final short |ILLEGAL_USE = 5;

Class javacard.security.KeyBuilder

public static final byte TYPE _DES_TRANSI ENT_RESET = 1;
public static final byte TYPE_DES_TRANSI ENT_DESELECT = 2;
public static final byte TYPE DES = 3;

public static final byte TYPE_RSA PUBLIC = 4;

public stati
public stati
public stati
public stati
public stati
public stati
public stati
public stati
public stati

final byte TYPE_RSA PRI VATE = 5;
final byte TYPE_RSA CRT_PRI VATE = 6;
final byte TYPE_DSA PUBLIC = 7;
final byte TYPE_DSA PRI VATE = 8;
final short LENGTH _DES = 64;

final short LENGTH DES3_2KEY = 128;
final short LENGTH_DES3_3KEY 192;
final short LENGTH RSA 512 = 512;
final short LENGTH RSA 768 = 768;

public static final short LENGIH_RSA 1024 = 1024;
public static final short LENGIH_RSA 2048 = 2048;
public static final short LENGIH_DSA 512 = 51
public static final short LENGIH_DSA 768 = 768

OO0 O0OO0O0O000O00000000O0O0

public static final short LENGIH_DSA 1024 = 1024;

Class javacard.security.MessageDigest

public static final byte ALG SHA = 1;
public static final byte ALG MD5 = 2;
public static final byte ALG RI PEMDL60 = 3;

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Class javacard.security.RandomData

public static final byte ALG PSEUDO RANDOM = 1;
public static final byte ALG SECURE_RANDOM = 2;

Class javacard.security.Signature

public static final byte ALG DES_MAC4A_NOPAD = 1;
public static final byte ALG DES_MAC8_NCOPAD = 2;
public static final byte ALG DES_MAC4_| SOO797_M. = 3;
public static final byte ALG DES_MAC8_I S®O797_ML = 4;
public static final byte ALG DES_MAC4_| SOO797_M = 5;
public static final byte ALG DES_MAC8_I S®O797_M = 6;
public static final byte ALG DES_MAC4_PKCS5 = 7;
public static final byte ALG DES_MAC8_PKCS5 = 8;
public static final byte ALG RSA SHA | SO9796 = 9;
public static final byte ALG RSA_SHA PKCSl1 = 10;
public static final byte ALG RSA_MX5_PKCS1 = 11;
public static final byte ALG RSA_RI PEMD160_| SO9796 = 12;
public static final byte ALG RSA_RI PEMD160_PKCS1 = 13;
public static final byte ALG DSA SHA = 14;

public static final byte ALG RSA_SHA RFC2409 = 15;
public static final byte ALG RSA MD5_RFC2409 = 16;
public static final byte MODE _SICGN = 1;

public static final byte MODE VER FY = 2;

Class javacardx.crypto.Cipher

public static final byte ALG DES_CBC NCPAD = 1;
public static final byte ALG DES_CBC | SO9797_M. = 2;
public static final byte ALG DES_CBC | SO9797_M2 = 3;
public static final byte ALG DES CBC PKCS5 = 4;
public static final byte ALG DES_ECB _NCPAD = 5;
public static final byte ALG DES_ECB | SO9797_ML = 6;
public static final byte ALG DES_ECB | SO9797_M = 7,
public static final byte ALG DES_ECB PKCS5 = 8;
public static final byte ALG RSA | SO14888 = 9;

public static final byte ALG RSA PKCS1 = 10;

public static final byte ALG RSA_| SO9796 = 11;

public static final byte MODE _DECRYPT = 1,

public static final byte MODE_ENCRYPT = 2;

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

3

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Glossary

AID isan acronym for Application IDentifier as defined in 1SO 7816-5.

APDU is an acronym for Application Protocol Data Unit as defined in SO 7816-4.

API isan acronym for Application Programming Interface. The APl defines calling conventions by which an
application program accesses the operating system and other services.

Applet within the context of this document means a Java Card Applet, which isthe basic unit of selection,
context, functionality, and security in Java Card technol ogy.

Applet developer refersto a person creating a Java Card appl et using the Java Card technol ogy specifications.
Applet firewall isthe mechanism in the Java Card technology by which the VM prevents an applet in one
context from making unauthorized accesses to objects owned by an applet in another context or the JCRE
context, and reports or otherwise addresses the viol ation.

Atomic operation isan operation that either completesin its entirety (if the operation succeeds) or no part of
the operation completes at all (if the operation fails).

Atomicity refers to whether a particular operation isatomic or not and is necessary for proper datarecovery in
cases in which power islost or the card is unexpectedly removed from the CAD.

ATR isan acronym for Answer to Reset. An ATRisastring of bytes sent by the Java Card after areset
condition.

CAD isan acronym for Card Acceptance Device. The CAD isthe device in which the card isinserted.
Cadt isthe explicit conversion from one data type to another.

cJCK isthetest suite to verify the compliance of the implementation of the Java Card Technol ogy
specifications. The cJCK uses the JavaTest todl to run the test suite.

Classisthe prototype for an object in an object-oriented language. A class may also be considered a set of
objects that share a common structure and behavior. The structure of a classis determined by the class variables
that represent the state of an object of that class and the behavior is given by a set of methods associated with
the class.

Classes arerdlated in a class hierarchy. One class may be a specialization (a subclass) of another (its
superclass), it may have reference to other classes, and it may use other classesin a client-server relationship.

Context (See Applet execution context.)

Currently active context. The JCRE keeps track of the currently active Java Card context. When a virtua
method isinvoked on an object, and a context switch is required and permitted, the currently active context is

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

2

changed to correspond to the context of the applet that owns the object. When that method returns, the previous
context isrestored. Invocations of static methods have no effect on the currently active context. The currently

active context and sharing status of an object together determineif access to an object is permissible.

Currently selected applet. The JCRE keepstrack of the currently selected Java Card applet. Upon receiving a
SELECT command with this applet’s AID, the JCRE makes this applet the currently selected applet. The JCRE
sends all APDU commands to the currently selected applet.

EEPROM is an acronym for Electrically Erasable, Programmable Read Only Memory.
Firewall (see Applet Firewall).

Framework is the set of classes that implement the API. This includes core and extension packages.
Responsibilities include dispatching of APDUS, applet selection, managing atomicity, and installing applets.

Garbage callection is the process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

Instance variables, also known as fields, represent a portion of an object’s internal state. Each object has its
own set of instance variables. Objects of the same class will have the same instance variables, but each object
can have different values.

Instantiation, in object-oriented programming, means to produce a particular object from its class template.
This involves allocation of a data structure with the types specified by the template, and initialization of
instance variables with either default values or those provided by the class’s constructor function.

JAR is an acronym for Java Archive. JAR is a platform-independent file format that combines many files into
one.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine, the framework, and the
associated native methods.

JC21RI is an acronym for the Java Card 2.1 Reference Implementation.

JCRE implementer refers to a person creating a vendor-specific implementation using the Java Card API

JCVM is an acronym for the Java Card Virtual Machine. The JCVM is the foundation of the OP card
architecture. The JCVM executes byte code and manages classes and objects. It enforces separation between
applications (firewalls) and enables secure data sharing.

JDK is an acronym for Java Development Kit. The JDK is a Sun Microsystems, Inc. product that provides the
environment required for programming in Java. The JDK is available for a varidatfofips, but most
notably Sun Solaris and Microsoft Winddws

M ethod isthe name given to a procedure or routine, associated with one or more classes, in object-oriented
languages.

Namespace isa set of names in which all names are unique.

Object-Oriented isa programming methodol ogy based on the concept of an object, which is a data structure
encapsulated with a set of routines, called methods, which operate on the data.

Objects, in object-oriented programming, are unigue instances of a data structure defined according to the
template provided by its class. Each object hasits own values for the variables belonging to its class and can
respond to the messages (methods) defined by its class.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Package is a namespace within the Java programming language and can have classes and interfaces. A package
isthe smallest unit within the Java programming language.

Per sistent object Persistent objects and their values pergst from one CAD session to the next, indefinitely.
Objects are persistent by default. Persistent object values are updated atomically using transactions. Theterm
persistent does not mean thereis an object-oriented database on the card or that objects are
seridized/deserialized, just that the objects are not lost when the card loses power.

Shar eable inter face Defines a set of shared interface methods. These interface methods can be invoked from
an applet in one context when the object implementing them is owned by an applet in another context.

Shar eable interface object (SIO) An object that implements the shareable interface.

Transaction isan atomic operation in which the devel oper defines the extent of the operation by indicating in
the program code the beginning and end of the transaction.

Transient object. The values of trangent objects do not persist from one CAD session to the next, and are reset

to a default state at specified intervals. Updates to the values of transient objects are not atomic and are not
affected by transactions.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

