
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

Sun Microsystems, Inc.

Java Card 2.1 Virtual
Machine Specification

Final Revision 1.0, March 3, 1999

Please
Recycle

Copyright © 1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the Java Card 2.1 Virtual Machine Specification ("Specification") to use the
Specification for internal evaluation purposes only. Other than this limited license, you acquire no right,
title, or interest in or to the Specification and you shall have no right to use the Specification for productive
or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views,
Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava,
PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun
Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The
Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents iii

Contents

Figures vii

Tables ix

1. Introduction 1

1.1 Motivation 1

1.2 The Java Card Virtual Machine 2

1.3 Java Language Security 4

1.4 Java Card Runtime Environment Security 4

2. A Subset of the Java Virtual Machine 7

2.1 Why a Subset is Needed 7

2.2 Java Card Language Subset 7

2.2.1 Unsupported Items 8

2.2.2 Supported Items 10

2.2.3 Optionally Supported Items 12

2.2.4 Limitations of the Java Card Virtual Machine 12

2.3 Java Card VM Subset 14

2.3.1 class File Subset 15

2.3.2 Bytecode Subset 18

2.3.3 Exceptions 20

iv Java Card 2.1 Virtual Machine Specification • March 3, 1999

3. Structure of the Java Card Virtual Machine 25

3.1 Data Types and Values 25

3.2 Words 26

3.3 Runtime Data Areas 26

3.4 Contexts 26

3.5 Frames 27

3.6 Representation of Objects 27

3.7 Special Initialization Methods 27

3.8 Exceptions 28

3.9 Binary File Formats 28

3.10 Instruction Set Summary 28

3.10.1 Types and the Java Card Virtual Machine 29

4. Binary Representation 33

4.1 Java Card File Formats 33

4.1.1 Export File Format 34

4.1.2 CAP File Format 34

4.1.3 JAR File Container 34

4.2 AID-based Naming 35

4.2.1 The AID Format 35

4.2.2 AID Usage 36

4.3 Token-based Linking 37

4.3.1 Externally Visible Items 37

4.3.2 Private Tokens 37

4.3.3 The Export File and Conversion 38

4.3.4 References – External and Internal 38

4.3.5 Installation and Linking 39

4.3.6 Token Assignment 39

4.3.7 Token Details 39

4.4 Binary Compatibility 42

Contents v

4.5 Package Versions 44

4.5.1 Assigning 44

4.5.2 Linking 45

5. The Export File Format 47

5.1 Export File Name 48

5.2 Containment in a Jar File 48

5.3 Export File 48

5.4 Constant Pool 50

5.4.1 CONSTANT_Package 51

5.4.2 CONSTANT_Interfaceref 52

5.4.3 CONSTANT_Integer 53

5.4.4 CONSTANT_Utf8 53

5.5 Classes and Interfaces 54

5.6 Fields 57

5.7 Methods 59

5.8 Attributes 61

5.8.1 ConstantValue Attribute 61

6. The CAP File Format 63

6.1 Component Model 64

6.1.1 Containment in a JAR File 65

6.1.2 Defining New Components 65

6.2 Installation 66

6.3 Header Component 67

6.4 Directory Component 69

6.5 Applet Component 72

6.6 Import Component 74

6.7 Constant Pool Component 75

6.7.1 CONSTANT_Classref 77

vi Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.7.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref 78

6.7.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref 80

6.8 Class Component 82

6.8.1 interface_info and class_info 84

6.9 Method Component 90

6.9.1 exception_handler_info 91

6.9.2 method_info 92

6.10 Static Field Component 95

6.11 Reference Location Component 98

6.12 Export Component 100

6.13 Descriptor Component 103

6.13.1 class_descriptor_info 104

6.13.2 field_descriptor_info 106

6.13.3 method_descriptor_info 108

6.13.4 type_descriptor_info 110

7. Java Card Virtual Machine Instruction Set 113

7.1 Assumptions: The Meaning of “Must” 113

7.2 Reserved Opcodes 114

7.3 Virtual Machine Errors 114

7.4 Security Exceptions 115

7.5 The Java Card Virtual Machine Instruction Set 115

8. Tables of Instructions 245

Glossary 249

Figures vii

Figures

FIGURE 1-1 Java Card Applet Conversion 2

FIGURE 1-2 Java Card Applet Installation 3

FIGURE 4-1 AID Format 36

FIGURE 4-2 Mapping package identifiers to AIDs 36

FIGURE 4-3 Tokens for Instance Fields 41

FIGURE 4-4 Binary compatibility example 43

FIGURE 7-1 An example instruction page 116

viii Java Card 2.1 Virtual Machine Specification • March 3, 1999

Tables ix

Tables

TABLE 2-1 Unsupported Java constant pool tags 15

TABLE 2-2 Supported Java constant pool tags. 16

TABLE 2-3 Support of Java checked exceptions 21

TABLE 2-4 Support of Java runtime exceptions 22

TABLE 2-5 Support of Java errors 23

TABLE 3-1 Type support in the Java Card Virtual Machine Instruction Set 30

TABLE 3-2 Storage types and computational types 31

TABLE 4-1 Token Range, Type and Scope 39

TABLE 5-1 Export file constant pool tags 50

TABLE 5-2 Export file package flags 51

TABLE 5-3 Export file class access and modifier flags 55

TABLE 5-4 Export file field access and modifier flags 58

TABLE 5-5 Export file method access and modifier flags 60

TABLE 6-1 CAP file component tags 64

TABLE 6-2 CAP file component file names 65

TABLE 6-3 Reference component install order 66

TABLE 6-4 CAP file package flags 68

TABLE 6-5 CAP file constant pool tags 76

x Java Card 2.1 Virtual Machine Specification • March 3, 1999

TABLE 6-6 CAP file interface and class flags 84

TABLE 6-7 CAP file method flags 93

TABLE 6-8 Segments of a static field image 95

TABLE 6-9 Static field sizes 95

TABLE 6-10 Array types 97

TABLE 6-11 One-byte reference location example 99

TABLE 6-12 CAP file class descriptor flags 104

TABLE 6-13 CAP file field descriptor flagss 106

TABLE 6-14 Primitive type descriptor values 107

TABLE 6-15 CAP file method descriptor flags 108

TABLE 6-16 Type descriptor values 111

TABLE 6-17 Encoded reference type p1.c1 111

TABLE 6-18 Encoded byte array type 111

TABLE 6-19 Encoded reference array type p1.c1 112

TABLE 6-20 Encoded method signature ()V 112

TABLE 6-21 Encoded method signature (Lp1.ci;)S 112

TABLE 8-1 Instructions by Opcode Value 245

TABLE 8-2 Instructions by Opcode Mnemonic 247

Preface xi

Preface

Java Card technology combines a subset of the Java programming language with a
runtime environment optimized for smart cards and similar small-memory
embedded devices. The goal of Java Card technology is to bring many of the benefits
of Java software programming to the resource-constrained world of devices such as
smart cards.

The Java Card platform is defined by three specifications: this Java Card 2.1 Virtual
Machine Specification, the Java Card 2.1 Application Programming Interface, and the
Java Card 2.1 Runtime Environment (JCRE) Specification.

This specification describes the required behavior of the Java Card 2.1 Virtual
Machine (VM) that developers should adhere to when creating an implementation. An
implementation within the context of this document refers to a licensee’s
implementation of the Java Card Virtual Machine (VM), Application Programming
Interface (API), Converter, or other component, based on the Java Card technology
specifications. A Reference Implementation is an implementation produced by Sun
Microsystems, Inc. Application software written for the Java Card platform is
referred to as a Java Card applet.

Who Should Use This Specification?
This document is for licensees of the Java Card technology to assist them in creating
an implementation, developing a specification to extend the Java Card technology
specifications, or in creating an extension to the Java Card Runtime Environment
(JCRE). This document is also intended for Java Card applet developers who want a
more detailed understanding of the Java Card technology specifications.

xii Java Card 2.1 Virtual Machine Specification • March 3, 1999

Before You Read This Specification
Before reading this document, you should be familiar with the Java programming
language, the Java Card technology specifications, and smart card technology. A
good resource for becoming familiar with Java technology and Java Card technology
is the Sun Microsystems, Inc. website, located at: http://java.sun.com.

How This Book Is Organized
Chapter 1, “Introduction,” provides an overview of the Java Card Virtual Machine
architecture.

Chapter 2, “A Subset of the Java Virtual Machine,” describes the subset of the Java
programming language and Virtual Machine that is supported by the Java Card
specification.

Chapter 3, “Structure of the Java Card Virtual Machine,” describes the differences
between the Java Virtual Machine and the Java Card Virtual Machine.

Chapter 4, “Binary Representation,” provides information about how Java Card
programs are represented in binary form.

Chapter 5, “The Export File,” describes the Converter export file used to link code
against another package.

Chapter 6, “The CAP File Format,” describes the format of the CAP file.

Chapter 7, “Instruction Set,” describes the byte codes (opcodes) that comprise the
Java Card Virtual Machine instruction set.

Chapter 8, “Tables of Instructions,” summarizes the Java Card Virtual Machine
instructions in two different tables: one sorted by Opcode Value and the other sorted
by Mnemonic.

Glossary is a list of words and their definitions to assist you in using this book.

Prerequisites
This specification is not intended to stand on its own; rather it relies heavily on
existing documentation of the Java platform. In particular, two books are required
for the reader to understand the material presented here.

[1] Gosling, James, Bill Joy, and Guy Steele. The Java™ Language Specification.
Addison-Wesley, 1996, ISBN 0-201-63451-1 – contains the definitive definition of the
Java programming language. The Java Card 2.1 language subset defined here is
based on the language specified in this book.

xiii

[2] Lindholm, Tim, and Frank Yellin. The Java™ Virtual Machine Specification.
Addison-Wesley, 1996, ISBN 0-201-63452-X – defines the standard operation of the
Java Virtual Machine. The Java Card virtual machine presented here is based on the
definition specified in this book.

Related Documents
References to various documents or products are made in this manual. You should
have the following documents available:

• Java Card 2.1 Application Programming Interface, Sun Microsystems, Inc.

• Java Card 2.1 Runtime Environment (JCRE) 2.1 Specification, Sun Microsys-
tems, Inc.

• Java Card 2.1 Applet Developer’s Guide, Sun Microsystems, Inc.

• The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1.

• The Java Virtual Machine Specification (Java Series) by Tim Lindholm and
Frank Yellin. Addison-Wesley, 1996, ISBN 0-201-63452-X.

• The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan
and Rosanna Lee. Addison-Wesley, ISBN: 0201634589.

• ISO 7816 International Standard, First Edition 1987-07-01.

• EMV ’96 Integrated Circuit Card Specification for Payment Systems, Version 3.0,
June 30, 1996.

Ordering Sun Documents
The SunDocs™ program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress.

xiv Java Card 2.1 Virtual Machine Specification • March 3, 1999

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Acknowledgements
Java Card technology is based on Java technology. This specification could not exist
without all the hard work that went into the development of the Java platform
specifications. In particular, this specification is based significantly on the Java™
Virtual Machine Specification. In order to maintain consistency with that specification,
as well as to make differences easier to notice, we have, where possible, used the
words, the style, and even the visual design of that book. Many thanks to Tim
Lindholm and Frank Yellin for providing a solid foundation for our work.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Java code, Java keywords or
variables, or class files.

The token item of a
CONSTANT_StaticFieldref_info
structure ...

bytecode Java language bytecodes invokespecial

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.
You must be root to do this.

1

CHAPTER 1

Introduction

1.1 Motivation
Java Card technology enables programs written in the Java programming language
to be run on smart cards and other small, resource-constrained devices. Developers
can build and test programs using standard software development tools and
environments, then convert them into a form that can be installed onto a Java Card
technology enabled device. Application software for the Java Card platform is called
an applet, or more specifically, a Java Card applet or card applet (to distinguish it
from browser applets).

While Java Card technology enables programs written in the Java programming
language to run on smart cards, such small devices are far too under-powered to
support the full functionality of the Java platform. Therefore, the Java Card platform
supports only a carefully chosen, customized subset of the features of the Java
platform. This subset provides features that are well-suited for writing programs for
small devices and preserves the object-oriented capabilities of the Java programming
language.

A simple approach to specifying a Java Card virtual machine would be to describe
the subset of the features of the Java virtual machine that must be supported to
allow for portability of source code across all Java Card technology enabled devices.
Combining that subset specification and the information in the Java Virtual Machine
Specification, smart card manufacturers could construct their own Java Card
implementations. While that approach is feasible, it has a serious drawback. The
resultant platform would be missing the important feature of binary portability of
Java Card applets.

The standards that define the Java platform allow for binary portability of Java
programs across all Java platform implementations. This “write once, run anywhere”
quality of Java programs is perhaps the most significant feature of the platform. Part

2 Java Card 2.1 Virtual Machine Specification • March 3, 1999

of the motivation for the creation of the Java Card platform was to bring just this
kind of binary portability to the smart card industry. In a world with hundreds of
millions or perhaps even billions of smart cards with varying processors and
configurations, the costs of supporting multiple binary formats for software
distribution could be overwhelming.

This Java Card 2.1 Virtual Machine Specification is the key to providing binary
portability. One way of understanding what this specification does is to compare it
to its counterpart in the Java platform. The Java Virtual Machine Specification defines a
Java virtual machine as an engine that loads Java class files and executes them with
a particular set of semantics. The class file is a central piece of the Java architecture,
and it is the standard for the binary compatibility of the Java platform. The Java Card
2.1 Virtual Machine Specification also defines a file format that is the standard for
binary compatibility for the Java Card platform: the CAP file format is the form in
which software is loaded onto devices which implement a Java Card virtual
machine.

1.2 The Java Card Virtual Machine
The role of the Java Card virtual machine is best understood in the context of the
process for production and deployment of Java Card software. There are several
components that make up a Java Card system, including the Java Card virtual
machine, the Java Card Converter, a terminal installation tool, and an installation
program that runs on the device, as shown in Figures 1-1 and 1-2.

FIGURE 1-1 Java Card Applet Conversion

Development System

Converter

export
files

class
files

CAP file

Chapter 1 Introduction 3

FIGURE 1-2 Java Card Applet Installation

Development of a Java Card applet begins as with any other Java program: a
developer writes one or more Java classes, and compiles the source code with a Java
compiler, producing one or more class files. The applet is run, tested and debugged
on a workstation using simulation tools to emulate the device environment. Then,
when an applet is ready to be downloaded to a device, the class files comprising
the applet are converted to a CAP (converted applet) file using a Java Card Converter.

The Java Card Converter takes as input not only the class files to be converted, but
also one or more export files. An export file contains name and link information
for the contents of other packages that are imported by the classes being converted.
When an applet or library package is converted, the converter can also produce an
export file for that package.

After conversion, the CAP file is copied to a card terminal, such as a desktop
computer with a card reader peripheral. Then an installation tool on the terminal
loads the CAP file and transmits it to the Java Card technology enabled device. An
installation program on the device receives the contents of the CAP file and prepares
the applet to be run by the Java Card virtual machine. The virtual machine itself
need not load or manipulate CAP files; it need only execute the applet code found in
the CAP file that was loaded onto the device by the installation program.

The division of functionality between the Java Card virtual machine and the
installation program keeps both the virtual machine and the installation program
small. The installation program may be implemented as a Java program and
executed on top of the Java Card virtual machine. Since Java Card instructions are
denser than typical machine code, this may reduce the size of the installer. The
modularity may enable different installers to be used with a single Java Card virtual
machine implementation.

Device

Installer
Virtual

Machine

Program Memory

Terminal

Installation
Tool

CAP file

4 Java Card 2.1 Virtual Machine Specification • March 3, 1999

1.3 Java Language Security
One of the fundamental features of the Java virtual machine is the strong security
provided in part by the class file verifier. Many devices that implement the Java
Card platform may be too small to support verification of CAP files on the device
itself. This consideration led to a design that enables verification on a device but
does not rely on it. The data in a CAP file that is needed only for verification is
packaged separately from the data needed for the actual execution of its applet. This
allows for flexibility in how security is managed in an implementation.

There are several options for providing language-level security on a Java Card
technology enabled device. The conceptually simplest is to verify the contents of a
CAP file on the device as it is downloaded or after it is downloaded. This option
might only be feasible in the largest of devices. However, some subset of verification
might be possible even on smaller devices. Other options rely on some combination
of one or more of: physical security of the installation terminal, a cryptographically
enforced chain of trust from the source of the CAP file, and pre-download verification
of the contents of a CAP file.

The Java Card platform standards say as little as possible about CAP file installation
and security policies. Since smart cards must serve as secure processors in many
different systems with different security requirements, it is necessary to allow a great
deal of flexibility to meet the needs of smart card issuers and users.

1.4 Java Card Runtime Environment
Security
The standard runtime environment for the Java Card platform is the Java Card
Runtime Environment (JCRE). The JCRE consists of an implementation of the Java
Card virtual machine along with the Java Card API classes. While the Java Card
virtual machine has responsibility for ensuring Java language-level security, the
JCRE imposes additional runtime security requirements on devices that implement
the JCRE, which results in a need for additional features on the Java Card virtual
machine. Throughout this document, these additional features are designated as
JCRE-specific.

Chapter 1 Introduction 5

The basic runtime security feature imposed by the JCRE enforces isolation of applets
using what is called an applet firewall. The applet firewall prevents the objects that
were created by one applet from being used by another applet. This prevents
unauthorized access to both the fields and methods of class instances, as well as the
length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism to
allow applets to share objects in situations where there is a need to interoperate. The
JCRE allows such sharing using the concept of shareable interface objects. These
objects provide the only way an applet can make its objects available for use by
other applets. For more information about using sharable interface objects, see the
description of the interface javacard.framework.Shareable in the Java Card 2.1
Application Programming Interface specification. Some descriptions of firewall-related
features will make reference to the Shareable interface.

The applet firewall also protects from unauthorized use the objects owned by the
JCRE itself. The JCRE can use mechanisms not reflected in the Java Card API to
make its objects available for use by applets. A full description of the JCRE-related
isolation and sharing features can be found in the Java Card 2.1 Runtime Environment
Specification.

6 Java Card 2.1 Virtual Machine Specification • March 3, 1999

7

CHAPTER 2

A Subset of the Java Virtual Machine

This chapter describes the subset of the Java virtual machine and language that is
supported in the Java Card 2.1 platform.

2.1 Why a Subset is Needed
It would be ideal if programs for smart cards could be written using all of the Java
programming language, but a full implementation of the Java virtual machine is far
too large to fit on even the most advanced resource-constrained devices available
today.

A typical resource-constrained device has on the order of 1K of RAM, 16K of non-
volatile memory (EEPROM or flash) and 24K of ROM. The code for implementing
string manipulation, single and double-precision floating point arithmetic, and
thread management would be larger than the ROM space on such a device. Even if it
could be made to fit, there would be no space left over for class libraries or
application code. RAM resources are also very limited. The only workable option is
to implement Java Card technology as a subset of the Java platform.

2.2 Java Card Language Subset
Applets written for the Java Card platform are written in the Java programming
language. They are compiled using Java compilers. Java Card technology uses a
subset of the Java language, and familiarity with the Java platform is required to
understand the Java Card platform.

8 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The items discussed in this section are not described to the level of a language
specification. For complete documentation on the Java programming language, see
The Java Language Specification (§1.1).

2.2.1 Unsupported Items
The items listed in this section are elements of the Java programming language and
platform that are not supported by the Java Card platform.

2.2.1.1 Unsupported Features

Dynamic Class Loading

Dynamic class loading is not supported in the Java Card platform. An
implementation of the Java Card platform is not able to load classes dynamically.
Classes are either masked into the card during manufacturing or downloaded
through an installation process after the card has been issued. Programs executing
on the card may only refer to classes that already exist on the card, since there is no
way to download classes during the normal execution of application code.

Security Manager

Security management in the Java Card platform differs significantly from that of the
Java platform. In the Java platform, there is a Security Manager class
(java.lang.SecurityManager) responsible for implementing security features. In
the Java Card platform, language security policies are implemented by the virtual
machine. There is no Security Manager class that makes policy decisions on whether
to allow operations.

Garbage Collection & Finalization

Java Card technology does not require a garbage collector. Nor does Java Card
technology allow explicit deallocation of objects, since this would break the Java
programming language’s required pointer-safety. Therefore, application
programmers cannot assume that objects that are allocated are ever deallocated.
Storage for unreachable objects will not necessarily be reclaimed.

Finalization is also not required. finalize() will not necessarily be called
automatically by the Java Card virtual machine, and programmers should not rely
on this behavior.

Chapter 2 A Subset of the Java Virtual Machine 9

Threads

The Java Card virtual machine does not support multiple threads of control. Java
Card programs cannot use class Thread or any of the thread-related keywords in the
Java programming language.

Cloning

The Java Card platform does not support cloning of objects. Java Card API class
Object does not implement a clone method, and there is no Cloneable interface
provided.

Access Control in Java Packages

The Java Card language subset supports the package access control defined in the
Java language. However, there are two cases that are not supported.

■ If a class implements a method with package access visibility, a subclass cannot
override the method and change the access visibility of the method to protected
or public.

■ An interface that is defined with package access visibility cannot be extended by
an interface with public access visibility.

2.2.1.2 Keywords

The following keywords indicate unsupported options related to native methods,
threads and memory management.

2.2.1.3 Unsupported Types

The Java Card platform does not support types char, double, float or long, or
operations on those types. It also does not support arrays of more than one
dimension.

native synchronized transient volatile

10 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.2.1.4 Classes

In general, none of the Java core API classes are supported in the Java Card
platform. Some classes from the java.lang package are supported (see §2.2.2.4), but
none of the rest are. For example, classes that are not supported are String, Thread
(and all thread-related classes), wrapper classes such as Boolean and Integer, and
class Class.

System

Class java.lang.System is not supported. Java Card technology supplies a class
javacard.framework.JCSystem, which provides an interface to system behavior.

2.2.2 Supported Items
If a language feature is not explicitly described as unsupported, it is part of the
supported subset. Notable supported features are described in this section.

2.2.2.1 Features

Packages

Software written for the Java Card platform follows the standard rules for the Java
platform packages. Java Card API classes are written as Java source files, which
include package designations. Package mechanisms are used to identify and control
access to classes, static fields and static methods. Except as noted in “Access Control
in Java Packages” (§2.2.1.1), packages in the Java Card platform are used exactly the
way they are in the Java platform.

Dynamic Object Creation

The Java Card platform programs supports dynamically created objects, both class
instances and arrays. This is done, as usual, by using the new operator. Objects are
allocated out of the heap.

As noted in “Garbage Collection & Finalization” (§2.2.1.1), a Java Card virtual
machine will not necessarily garbage collect objects. Any object allocated by a virtual
machine may continue to exist and consume resources even after it becomes
unreachable.

Chapter 2 A Subset of the Java Virtual Machine 11

Virtual Methods

Since Java Card objects are Java programming language objects, invoking virtual
methods on objects in a program written for the Java Card platform is exactly the
same as in a program written for the Java platform. Inheritance is supported,
including the use of the super keyword.

Interfaces

Java Card classes may define or implement interfaces as in the Java programming
language. Invoking methods on interface types works as expected. Type checking
and the instanceof operator also work correctly with interfaces.

Exceptions

Java Card programs may define, throw and catch exceptions, as in Java programs.
Class Throwable and its relevant subclasses are supported. (Some Exception and
Error subclasses are omitted, since those exceptions cannot occur in the Java Card
platform. See §2.3.3 for specification of errors and exceptions.)

2.2.2.2 Keywords

The following keywords are supported. Their use is the same as in the Java
programming language.

2.2.2.3 Types

Java programming language types boolean, byte, short, and int are supported.
Objects (class instances and single-dimensional arrays) are also supported. Arrays
can contain the supported primitive data types, objects, and other arrays.

abstract default if private this

boolean do implements protected throw

break else import public throws

byte extends instanceof return try

case final int short void

catch finally interface static while

class for new super

continue goto package switch

12 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Some Java Card implementations might not support use of the int data type. (Refer
to §2.2.3.1.)

2.2.2.4 Classes

Most of the classes in the java.lang package are not supported in Java Card. The
following classes from java.lang are supported on the card in a limited form.

Object

Java Card classes descend from java.lang.Object, just as in the Java programming
language. Most of the methods of Object are not available in the Java Card API, but
the class itself exists to provide a root for the class hierarchy.

Throwable

Class Throwable and its subclasses are supported. Most of the methods of
Throwable are not available in the Java Card API, but the class itself exists to
provide a common ancestor for all exceptions.

2.2.3 Optionally Supported Items
This section describes the optional features of the Java Card platform. An optional
feature is not required to be supported in a Java Card compatible implementation.
However, if an implementation does include support for an optional feature, it must
be supported fully, and exactly as specified in this document.

2.2.3.1 int

The int keyword and 32-bit integer data types need not be supported in a Java Card
implementation. A Java Card virtual machine that does not support the int data
type will reject programs which use the int data type or 32-bit intermediate values.

2.2.4 Limitations of the Java Card Virtual Machine
The limitations of resource-constrained hardware prevent Java Card programs from
supporting the full range of functionality of certain Java platform features. The
features in question are supported, but a particular virtual machine may limit the
range of operation to less than that of the Java platform.

Chapter 2 A Subset of the Java Virtual Machine 13

To ensure a level of portability for application code, this section establishes a
minimum required level for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s
perspective. Applets that do not violate these maximum values can be converted
into Java Card CAP files, and will be portable across all Java Card implementations.
From the Java Card virtual machine implementer’s perspective, each maximum
listed indicates a minimum level of support that will allow portability of applets.

2.2.4.1 Classes

Classes in a Package

A package can contain at most 255 public classes and interfaces.

Interfaces

A class can implement at most 15 interfaces, including interfaces implemented by
superclasses.

An interface can inherit from at most 15 superinterfaces.

Static Fields

A class can have at most 256 public or protected static fields.

Static Methods

A class can have at most 256 public or protected static methods.

2.2.4.2 Objects

Methods

A class can implement a maximum of 128 public or protected instance methods, and
a maximum of 128 instance methods with package visibility. These limits include
inherited methods.

14 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Class Instances

Class instances can contain a maximum of 255 fields, where an int data type is
counted as occupying two fields.

Arrays

Arrays can hold a maximum of 32767 fields.

2.2.4.3 Methods

The maximum number of local variables that can be used in a method is 255, where
an int data type is counted as occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number
of Java Card bytecodes may differ from the number of Java bytecodes in the Java
virtual machine implementation of that method.

2.2.4.4 Switch Statements

The format of the Java Card virtual machine switch instructions limits switch
statements to a maximum of 65536 cases. This limit is far greater than the limit
imposed by the maximum size of methods (§2.2.4.3).

2.2.4.5 Class Initialization

There is limited support for initialization of static field values in <clinit> methods.
Static fields of applets may only be initialized to primitive compile-time constant
values, or arrays of primitive compile-time constants. Static fields of user libraries
may only be initialized to primitive compile-time constant values. Primitive constant
data types include boolean, byte, short, and int.

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machine, and familiarity with
the Java platform is required to understand the Java Card virtual machine.

Chapter 2 A Subset of the Java Virtual Machine 15

The items discussed in this section are not described to the level of a virtual machine
specification. For complete documentation on the Java virtual machine, refer to §1.1
of The Java™ Virtual Machine Specification.

2.3.1 class File Subset
The operation of the Java Card virtual machine can be defined in terms of standard
Java platform class files. Since the Java Card virtual machine supports only a
subset of the behavior of the Java virtual machine, it also supports only a subset of
the standard class file format.

2.3.1.1 Not Supported in Class Files

Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or L. ArrayType
descriptors for arrays of more than one dimension may not be used.

Constant Pool

Constant pool table entry tags that indicate unsupported types are not supported.

TABLE 2-1 Unsupported Java constant pool tags

Constant pool structures for types CONSTANT_String_info, CONSTANT_Float_info,
CONSTANT_Long_info and CONSTANT_Double_info are not supported.

Fields

In field_info structures, the access flags ACC_VOLATILE and ACC_TRANSIENT are
not supported.

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

16 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Methods

In method_info structures, the access flags ACC_SYNCHRONIZED and ACC_NATIVE are
not supported.

2.3.1.2 Supported in Class Files

ClassFile

All items in the ClassFile structure are supported.

Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be used.

Method Descriptors

All forms of method descriptors are supported.

Constant pool

Constant pool table entry tags for supported data types are supported.

TABLE 2-2 Supported Java constant pool tags.

Constant pool structures for types CONSTANT_Class_info,
CONSTANT_Fieldref_info, CONSTANT_Methodref_info,
CONSTANT_InterfaceMethodref_info, CONSTANT_Integer_info,
CONSTANT_NameAndType_info and CONSTANT_Utf8_info are supported.

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

Chapter 2 A Subset of the Java Virtual Machine 17

Fields

In field_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

Methods

In method_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT.

The remaining components of method_info structures are fully supported.

Attributes

The attribute_info structure is supported. The Code, ConstantValue,
Exceptions and LocalVariableTable attributes are supported.

18 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.3.2 Bytecode Subset
The following sections detail the bytecodes that are either supported or unsupported
in the Java Card platform. For more details, refer to Chapter 6, “Instruction Set.”

2.3.2.1 Unsupported Bytecodes

lconst_<l> fconst_<f> dconst_<d> ldc2_w2
lload fload dload lload_<n>

fload_<n> dload_<n> laload faload
daload caload lstore fstore
dstore lstore_<n> fstore_<n> dstore_<n>
lastore fastore dastore castore
ladd fadd dadd lsub
fsub dsub lmul fmul
dmul ldiv fdiv ddiv
lrem frem drem lneg

fneg dneg lshl lshr
lushr land lor lxor
i2l i2f i2d l2i
l2f l2d f2i f2d
d2i d2l d2f i2c
lcmp fcmpl fcmpg dcmpl
dcmpg lreturn freturn dreturn
monitorenter monitorexit multianewarray goto_w

jsr_w

Chapter 2 A Subset of the Java Virtual Machine 19

2.3.2.2 Supported Bytecodes

2.3.2.3 Static Restrictions on Bytecodes

For it to be acceptable to a Java Card virtual machine, a class file must conform to
the following restrictions on the static form of bytecodes.

ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The constant
pool entry at index must be a CONSTANT_Integer entry. If a program contains an ldc
or ldc_w instruction that is used to load an integer value less than -32768 or greater
than 32767, that program will require the optional int instructions (§2.2.3.1).

lookupswitch

The value of the npairs operand must be less than 65536. The bytecode can contain at
most 65535 cases. This limit is far greater than the limit imposed by the maximum
size of methods (§2.2.4.3). If a program contains a lookupswitch instruction that uses
keys of type int, that program will require the optional int instructions (§2.2.3.1).
Otherwise, key values must be in the range -32768 to 32767.

nop aconst_null iconst_<i> bipush

sipush ldc ldc_w iload

aload iload_<n> aload_<n> iaload

aaload baload saload istore

astore istore_<n> astore_<n> iastore

aastore bastore sastore pop

pop2 dup dup_x1 dup_x2

dup2 dup2_x1 dup2_x2 swap

iadd isub imul idiv

irem ineg ior ishl

ishr iushr iand ixor

iinc i2b i2s if<cond>

ificmp_<cond> ifacmp_<cond> goto jsr

ret tableswitch lookupswitch ireturn

areturn return getstatic putstatic

getfield putfield invokevirtual invokespecial

invokestatic invokeinterface new newarray

anewarray arraylength athrow checkcast

instanceof wide ifnull ifnonnull

20 Java Card 2.1 Virtual Machine Specification • March 3, 1999

tableswitch

The values of the high and low operands must both be at least -32768 and at most
32767 (so they can fit in a short). The bytecode can contain at most 65536 cases. This
limit is far greater than the limit imposed by the maximum size of methods
(§2.2.4.3).If a program contains a tableswitch instruction that uses indexes of type int,
that program will require the optional int instructions (§2.2.3.1). Otherwise, index
values must be in the range -32768 to 32767.

wide

The wide bytecode cannot be used to generate local indices greater than 127, and it
cannot be used with any instructions other than iinc. It can only be used with an iinc
bytecode to extend the range of the increment constant.

2.3.3 Exceptions
Java Card provides full support for the Java platform’s exception mechanism. Users
can define, throw and catch exceptions just as in the Java platform. Java Card also
makes use of the exceptions and errors defined in The Java Language Specification [1].
An updated list of the Java platform’s exceptions is provided in the JDK
documentation.

Not all of the Java platform’s exceptions are supported in Java Card. Exceptions
related to unsupported features are naturally not supported. Class loader exceptions
(the bulk of the checked exceptions) are not supported. And no exceptions or errors
defined in packages other than java.lang are supported.

Note that some exceptions may be supported to the extent that their error conditions
are detected correctly, but classes for those exceptions will not necessarily be present
in the API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

In the Java platform, uncaught exceptions and errors will cause the virtual machine’s
current thread to exit. As the Java Card virtual machine is single-threaded, uncaught
exceptions or errors will cause the virtual machine to halt. Further response to
uncaught exceptions or errors after halting the virtual machine is an
implementation-specific policy, and is not mandated in this document.

Chapter 2 A Subset of the Java Virtual Machine 21

Some error conditions are known to be unrecoverable at the time they are thrown.
Throwing a runtime exception or error that cannot be caught will also cause the
virtual machine to halt. As with uncaught exceptions, implementations may take
further responses after halting the virtual machine. Uncatchable exceptions and
errors which are supported by the Java Card platform may not be reflected in the
Java Card API, though the Java Card platform will correctly detect the error
condition.

2.3.3.2 Checked Exceptions

TABLE 2-3 Support of Java checked exceptions

Exception Supported Not Supported

ClassNotFoundException •
CloneNotSupportedException •
IllegalAccessException •
InstantiationException •
InterruptedException •
NoSuchFieldException •
NoSuchMethodException •

22 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.3.3.3 Runtime Exceptions

TABLE 2-4 Support of Java runtime exceptions

Runtime Exception Supported Not Supported

ArithmeticException •
ArrayStoreException •
ClassCastException •
IllegalArgumentException •
IllegalThreadStateException •
NumberFormatException •
IllegalMonitorStateException •
IllegalStateException •
IndexOutOfBoundsException •
ArrayIndexOutOfBoundsException •
StringIndexOutOfBoundsException •
NegativeArraySizeException •
NullPointerException •
SecurityException •

Chapter 2 A Subset of the Java Virtual Machine 23

2.3.3.4 Errors

TABLE 2-5 Support of Java errors

Error Supported Not Supported

LinkageError •
ClassCircularityError •
ClassFormatError •
ExceptionInInitializerError •
IncompatibleClassChangeError •
AbstractMethodError •
IllegalAccessError •
InstantiationError •
NoSuchFieldError •
NoSuchMethodError •
NoClassDefFoundError •
UnsatisfiedLinkError •
VerifyError •
ThreadDeath •
VirtualMachineError •
InternalError •
OutOfMemoryError •
StackOverflowError •
UnknownError •

24 Java Card 2.1 Virtual Machine Specification • March 3, 1999

25

CHAPTER 3

Structure of the Java Card Virtual
Machine

The specification of the Java Card virtual machine is in many ways quite similar to
that of the Java Virtual Machine. This similarity is of course intentional, as the design
of the Java Card virtual machine was based on that of the Java Virtual Machine.
Rather than reiterate all the details of this specification which are shared with that of
the Java Virtual Machine, this chapter will mainly refer to its counterpart in the Java
Virtual Machine Specification, 1st Edition, providing new information only where the
Java Card virtual machine differs.

3.1 Data Types and Values
The Java Card virtual machine supports the same two kinds of data types as the Java
Virtual Machine: primitive types and reference types. Likewise, the same two kinds of
values are used: primitive values and reference values.

The primitive data types supported by the Java Card virtual machine are the numeric
types and the returnAddress type. The numeric types consist only of the integral
types:

■ byte, whose values are 8-bit signed two’s complement integers
■ short, whose values are 16-bit signed two’s complement integers

Some Java Card virtual machine implementations may also support an additional
integral type:

■ int, whose values are 32-bit signed two’s complement integers

Support for reference types is identical to that in the Java Virtual Machine.

26 Java Card 2.1 Virtual Machine Specification • March 3, 1999

3.2 Words
The Java Card virtual machine is defined in terms of an abstract storage unit called a
word. This specification does not mandate the actual size in bits of a word on a
specific platform. A word is large enough to hold a value of type byte, short,
reference or returnAddress. Two words are large enough to hold a value of type
int.

The actual storage used for values in an implementation is platform-specific. There
is enough information present in the descriptor component of a CAP file to allow an
implementation to optimize the storage used for values in variables and on the
stack.

3.3 Runtime Data Areas
The Java Card virtual machine can support only a single thread of execution. Any
runtime data area in the Java Virtual Machine which is duplicated on a per-thread
basis will have only one global copy in the Java Card virtual machine.

The Java Card virtual machine’s heap is not required to be garbage collected. Objects
allocated from the heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no
native method stacks.

Otherwise, the runtime data areas are as documented for the Java Virtual Machine.

3.4 Contexts
Each applet running on a Java Card virtual machine is associated with an execution
context. The Java Card virtual machine uses the context of the current frame to
enforce security policies for inter-applet operations.

There is a one-to-one mapping between contexts and packages in which applets are
defined. An easy way to think of a context is as the runtime equivalent of a package,
since Java packages are compile-time constructs and have no direct representation at
runtime. As a consequence, all applets managed by applet instances of applet classes
from the same package will share the same context.

Chapter 3 Structure of the Java Card Virtual Machine 27

The Java Card Runtime Environment also has its own context. Framework objects
execute in this JCRE context.

The context of the currently executing method is known as the current context. Every
object in a Java Card virtual machine is owned by a particular context. The owning
context is the context that was current when the object was created.

When a method in one context successfully invokes a method on an object in another
context, the Java Card virtual machine performs a context switch. Afterwards the
invoked method’s context becomes the current context. When the invoked method
returns, the current context is switched back to the previous context.

3.5 Frames
Java Card virtual machine frames are very similar to those defined for the Java
Virtual Machine. Each frame has a set of local variables and an operand stack.
Frames also contain a reference to a constant pool, but since all constant pools for all
classes in a package are merged, the reference is to the constant pool for the current
class’ package.

Each frame also includes a reference to the context in which the current method is
executing.

3.6 Representation of Objects
The Java Card virtual machine does not mandate a particular internal structure for
objects or a particular layout of their contents. However, the core components in a
CAP file are defined assuming a default structure for certain runtime structures
(such as descriptions of classes), and a default layout for the contents of dynamically
allocated objects. Information from the descriptor component of the CAP file can be
used to format objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtual machine supports instance initialization methods exactly as does
the Java Virtual Machine.

28 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The Java Card virtual machine includes only limited support for class or interface
initialization methods. There is no general mechanism for executing <clinit>
methods on a Java Card virtual machine. Instead, a CAP file includes information
for initializing class data as defined in Chapter 2, “A Subset of the Java Virtual
Machine.”

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for
exceptions in the Java Virtual Machine.

3.9 Binary File Formats
This specification defines two binary file formats which enable platform-
independent development, distribution and execution of Java Card software.

The CAP file format describes files that contain executable code and can be
downloaded and installed onto a Java Card enabled device. A CAP file is produced
by a Java Card Converter tool, and contains a converted form of an entire package of
Java classes. This file format's relationship to the Java Card virtual machine is
analogous to the relationship of the class file format to the Java Virtual Machine.

The export file format describes files that contain the public linking information of
Java Card packages. A package's export file is used when converting client
packages of that package.

3.10 Instruction Set Summary
The Java Card virtual machine instruction set is quite similar to the Java Virtual
Machine instruction set. Individual instructions consist of a one-byte opcode and zero
or more operands. The pseudo-code for the Java Card virtual machine's instruction
fetch-decode-execute loop is the same. Multi-byte operand data is also encoded in
big-endian order.

There are a number of ways in which the Java Card virtual machine instruction set
diverges from that of the Java Virtual Machine. Most of the differences are due to the
Java Card virtual machine's more limited support for data types. Another source of

Chapter 3 Structure of the Java Card Virtual Machine 29

divergence is that the Java Card virtual machine is intended to run on 8-bit and 16-
bit architectures, whereas the Java Virtual Machine was designed for a 32-bit
architecture. The rest of the differences are all oriented in one way or another toward
optimizing the size or performance of either the Java Card virtual machine or Java
Card programs. These changes include inlining constant pool data directly in
instruction opcodes or operands, adding multiple versions of a particular instruction
to deal with different datatypes, and creating composite instructions for operations
on the current object.

3.10.1 Types and the Java Card Virtual Machine
The Java Card virtual machine supports only a subset of the types supported by the
Java Virtual Machine. This subset is described in Chapter 2, “A Subset of the Java
Virtual Machine.” Type support is reflected in the instruction set, as instructions
encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java Virtual
Machine, there is an opportunity for better support for smaller data types. Lack of
support for large numeric data types frees up space in the instruction set. This extra
instruction space has been used to directly support arithmetic operations on the
short data type.

Some of the extra instruction space has also been used to optimize common
operations. Type information is directly encoded in field access instructions, rather
than being obtained from an entry in the constant pool.

TABLE 3-1 summarizes the type support in the instruction set of the Java Card virtual
machine. Only instructions that exist for multiple types are listed. Wide and
composite forms of instructions are not listed either. A specific instruction, with type
information, is built by replacing the T in the instruction template in the opcode
column by the letter representing the type in the type column. If the type column for
some instruction is blank, then no instruction exists supporting that operation on
that type. For instance, there is a load instruction for type short, sload, but there is
no load instruction for type byte.

30 Java Card 2.1 Virtual Machine Specification • March 3, 1999

opcode byte short int reference

Tspush bspush sspush

Tipush bipush sipush iipush
Tconst sconst iconst aconst
Tload sload iload aload
Tstore sstore istore astore
Tinc sinc iinc
Taload baload saload iaload aaload
Tastore bastore sastore iastore aastore
Tadd sadd iadd
Tsub ssub isub
Tmul smul imul
Tdiv sdiv idiv

Trem srem irem
Tneg sneg ineg
Tshl sshl ishl
Tshr sshr ishr
Tushr sushr iushr
Tand sand iand
Tor sor ior
Txor sxor ixor
s2T s2b s2i
i2T i2b i2s
Tcmp icmp
if_TcmpOP if_scmpOP if_acmpOP

Tlookupswitch slookupswitch ilookupswitch
Ttableswitch stableswitch itableswitch
Treturn sreturn ireturn areturn
getstatic_T getstatic_b getstatic_s getstatic_i getstatic_a
putstatic_T putstatic_b putstatic_s putstatic_i putstatic_a
getfield_T getfield_b getfield_s getfield_i getfield_a
putfield_T putfield_b putfield_s putfield_i putfield_a

TABLE 3-1 Type support in the Java Card Virtual Machine Instruction Set

Chapter 3 Structure of the Java Card Virtual Machine 31

The mapping between Java storage types and Java Card virtual machine
computational types is summarized in TABLE 3-2.

Chapter 7, “Java Card Virtual Machine Instruction Set,” describes the Java Card
virtual machine instruction set in detail.

Java (Storage) Type
Size in
Bits

Computational
Type

byte 8 short

short 16 short

int 32 int

TABLE 3-2 Storage types and computational types

32 Java Card 2.1 Virtual Machine Specification • March 3, 1999

33

CHAPTER 4

Binary Representation

This chapter presents information about the binary representation of Java Card
programs. Java Card binaries are usually contained in files, therefore this chapter
addresses binary representation in terms of this common case.

Several topics relating to binary representation are covered. The first section
describes the basic organization of program representation in export and CAP files,
as well as the use of the JAR file containers. The second section covers how Java
Card applets and packages are named using unique identifiers. The third section
presents the scheme used for naming and linking items within Java Card packages.
The fourth and fifth sections describe the constraints for upward compatibility
between different versions of a Java Card binary program file, and versions assigned
based upon that compatibility.

4.1 Java Card File Formats
Java programs are represented in compiled, binary form as class files. Java class
files are used not only to execute programs on a Java virtual machine, but also to
provide type and name information to a Java compiler. In the latter role, a class file
is essentially used to document the API of its class to client code. That client code is
compiled into its own class file, including symbolic references used to dynamically
link to the API class at runtime.

Java Card technology uses a different strategy for binary representation of programs.
Executable binaries and interface binaries are represented in two separate files.
These files are respectively called CAP files (for converted applet) and export files.

34 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.1.1 Export File Format
Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of
the virtual machine on a device. An export file can be produced by a Java Card
converter when a package is converted. This package’s export file can be used later
to convert another package that imports classes from the first package. Information
in the export file is included in the CAP file of the second package, then is used on
the device to link the contents of the second package to items imported from the first
package.

A Java Card export file contains the public interface information for an entire
package of classes. This means that an export file only contains information about
the public API of a package, and does not include information used to link classes
within a package.

The name of an export file is the last portion of the package specification followed
by the extension ‘.exp’. For example, the name of the export file of the
javacard.framework package must be framework.exp. Operating systems that
impose limitations on file name lengths may transform an export file’s name
according to their own conventions.

For a complete description of the Java Card export file format, see Chapter 5.

4.1.2 CAP File Format
A Java Card CAP file contains a binary representation of a package of classes that can
be installed on a device and used to execute the package’s classes on a Java Card
virtual machine.

A CAP file is produced by a Java Card converter when a package of classes is
converted. A CAP file can contain a user library, or one or more applet definitions. A
CAP file consists of a set of components, each of which describes a different aspect of
the contents. The set of components in a CAP file can vary, depending on whether the
file contains a library or applet definition(s).

For a complete description of the Java Card CAP File format, see Chapter 6.

4.1.3 JAR File Container
The JAR file format is used as the container format for CAP files. What this
specification calls a “CAP file” is just a JAR file that contains the required set of CAP
components (see Chapter 6).

Chapter 4 Binary Representation 35

CAP component files in a JAR file are located in a subdirectory called javacard that
is in a directory representing the package. For example, the CAP component files of
the package com.sun.framework are located in the directory com/sun/framework/
javacard.

An export file may also be contained in a JAR file, whether that JAR file contains
CAP component files or not. If an export file is included, it must be located in the
same directory as the CAP component files for that package would be.

The name of a JAR file containing CAP component files is not defined as part of this
specification. Other files, including other CAP files, may also reside in a JAR file that
contains CAP component files.

4.2 AID-based Naming
This section describes the mechanism used for naming applets and packages in Java
Card CAP files and export files, and custom components in Java Card CAP files. Java
class files use Unicode strings to name Java packages. As the Java Card platform
does not include support for strings, an alternative mechanism for naming is
provided.

ISO 7816 is a multipart standard that describes a broad range of technology for
building smart card systems. ISO 7816-5 defines the AID (application identifier) data
format to be used for unique identification of card applications (and certain kinds of
files in card file systems). The Java Card platform uses the AID data format to
identify applets and packages. AIDs are administered by the International Standards
Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format
This section presents a minimal description of the AID data format used in Java
Card technology. For complete details, refer to ISO 7816-5, AID Registration
Category ‘D’ format.

36 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The AID format used by the Java Card platform is an array of bytes that can be
interpreted as two distinct pieces, as shown in FIGURE 4-1. The first piece is a 5-byte
value known as a RID (resource identifier). The second piece is a variable length
value known as a PIX (proprietary identifier extension). A PIX can be from 0 to 11
bytes in length. Thus an AID can be from 5 to 16 bytes in total length.

FIGURE 4-1 AID Format

ISO controls the assignment of RIDs to companies, with each company obtaining its
own unique RID from the ISO. Companies manage assignment of PIXs for AIDs
using their own RIDs.

4.2.2 AID Usage
In the Java platform, packages are uniquely identified using Unicode strings and a
naming scheme based on internet domain names. In the Java Card platform,
packages and applets are identified using AIDs.

Any package that is represented in an export file must be assigned a unique AID.
The AID for a package is constructed from the concatenation of the company’s RID
and a PIX for that package. This AID corresponds to the string name for the package,
as shown in FIGURE 4-2.

FIGURE 4-2 Mapping package identifiers to AIDs

Each applet installed on a Java Card technology enabled device must also have a
unique AID. This AID is constructed similarly to a package AID. It is a
concatenation of the applet provider’s RID and PIX for that applet. An applet AID
must not have the same value as the AID of any package or the AID of any other
applet. If a CAP file defines multiple applets, all applet AIDs in that CAP file must
have the same RID.

Custom components defined in a CAP file are also identified using AIDs. Like AIDs
for applets and packages, component AIDs are formed by concatenating a RID and a
PIX. All AIDs of new components must have the same RID as the AID for the
package defined in the CAP file.

RID (5 bytes) PIX (0-11 bytes)

Sun’s RID com.sun.card.test PIX

package com.sun.card.test;

Chapter 4 Binary Representation 37

4.3 Token-based Linking
This section describes a scheme that allows downloaded software to be linked
against APIs on a Java Card technology enabled device. The scheme represents
referenced items as opaque tokens, instead of Unicode strings as are used in Java
class files. The two basic requirements of this linking scheme are that it allows
linking on the device, and that it does not require internal implementation details of
APIs to be revealed to clients of those APIs. Secondary requirements are that the
scheme be efficient in terms of resource use on the device, and have acceptable
performance for linking. And of course, it must preserve the semantics of the Java
language.

4.3.1 Externally Visible Items
Classes (including Interfaces) in Java packages may be declared with public or
package visibility. A class’s methods and fields may be declared with public,
protected, package or private visibility. For purposes of this document, we define
public classes, public or protected fields, and public or protected methods to be
externally visible from the package. All externally visible items are described in a
package’s export file.

Each externally visible item must have a token associated with it to enable references
from other packages to the item to be resolved on a device. There are six kinds of
items in a package that require external identification.

■ Classes (including Interfaces)
■ Static Fields
■ Static Methods
■ Instance Fields
■ Virtual Methods
■ Interface Methods

4.3.2 Private Tokens
Items that are not externally visible are internally visible. Internally visible items are
not described in a package’s export file, but some such items use private tokens to
represent internal references. External references are represented by public tokens.
There are two kinds of items that can be assigned private tokens.

■ Instance Fields
■ Virtual Methods

38 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.3.3 The Export File and Conversion
Each externally visible item in a package has an entry in the package’s export file.
Each entry holds the item’s name and its token. Some entries may include additional
information as well. For detailed information on the export file format, see
Chapter 5, “The Export File Format.”

The export file is used to map names for imported items to tokens during package
conversion. The Java Card converter uses these tokens to represent references to
items in an imported package.

For example, during the conversion of the class files of applet A, the export file of
javacard.framework is used to find tokens for items in the API that are used by the
applet. Applet A creates a new instance of framework class OwnerPIN. The
framework export file contains an entry for javacard.framework.OwnerPIN that
holds the token for this class. The converter places this token in the CAP file’s
constant pool to represent an unresolved reference to the class. The token value is
later used to resolve the reference on a device.

4.3.4 References – External and Internal
In the context of a CAP file, references to items are made indirectly through a
package’s constant pool. References to items in other packages are called external,
and are represented in terms of tokens. References to items in the same CAP file are
called internal, and are represented either in terms of tokens, or in a different internal
format.

An external reference to a class is composed of a package token and a class token.
Together those tokens specify a certain class in a certain package. An internal
reference to a class is a 15-bit value that is a pointer to the class structure’s location
within the CAP file.

An external reference to a static class member, either a field or method, consists of a
package token, a class token, and a token for the static field or static method. An
internal reference to a static class member is a 16-bit value that is a pointer to the
item’s location in the CAP file.

References to instance fields, virtual methods and interface methods consist of a
class reference and a token of the appropriate type. The class reference determines
whether the reference is external or internal.

Chapter 4 Binary Representation 39

4.3.5 Installation and Linking
External references in a CAP file can be resolved on a device from token form into the
internal representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the
export file maps from a package’s externally visible names to tokens, there is a set
of link information for each package on the device that maps from tokens to resolved
references.

4.3.6 Token Assignment
Tokens for an API are assigned by the API’s developer and published in the package
export file(s) for that API. Since the name-to-token mappings are published, an API
developer may choose any order for tokens (subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal
representation is most useful for that implementation of a Java Card virtual machine.
Some tokens may be resolved to indices. For example, an instance field token may be
resolved to an index into a class instance’s fields. In such cases, the token value is
distinct from and unrelated to the value of the resolved index.

4.3.7 Token Details
Each kind of item in a package has its own independent scope for tokens of that
kind. The token range and assignment rules for each kind are listed in TABLE 4-1.

TABLE 4-1 Token Range, Type and Scope

Token Type Range Type Scope

Package 0 - 127 Private CAP File
Class 0 - 255 Public Package
Static Field 0 - 255 Public Class

Static Method 0 - 255 Public Class
Instance Field 0 - 255 Public or Private Class
Virtual Method 0 - 127 Public or Private Class

Hierarchy
Interface Method 0 - 127 Public Class

40 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens;
package tokens will never appear in an export file. Package token values must be in
the range from 0 to 127, inclusive. The tokens for all the packages referenced from
classes in a CAP file are numbered consecutively starting at zero. The ordering of
package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes in a package are assigned public class tokens. Package-
visible classes are not assigned tokens. Class token values must be in the range from
0 to 255, inclusive. The tokens for all the public classes in a package are numbered
consecutively starting at zero. The ordering of class tokens is not specified.

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens.
Package-visible and private static fields are not assigned tokens. No tokens are
assigned for final static fields that are initialized to primitive, compile-time
constants, as these fields are never linked on a device. The tokens for all other
externally visible static fields in a class are numbered consecutively starting at zero.
Static fields token values must be in the range from 0 to 255, inclusive. The ordering
of static field tokens is not specified.

4.3.7.4 Static Methods

All externally visible static methods in a package are assigned public static method
tokens, including statically bound instance methods. Static method token values must
be in the range from 0 to 255, inclusive. Package-visible and private static methods
are not assigned tokens. The tokens for all the externally visible static methods in a
class are numbered consecutively starting at zero. The ordering of static method
tokens is not specified.

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance
field tokens. Instance field token values must be in the range from 0 to 255, inclusive.
Public and private tokens for instance fields are assigned from the same namespace.
The tokens for all the instance fields in a class are numbered consecutively starting
at zero, except that the token after an int field is skipped and the token for the
following field is numbered two greater than the token of the int field. Tokens for

Chapter 4 Binary Representation 41

externally visible fields must be numbered less than the tokens for package and
private fields. For public tokens, the tokens for reference type fields must be
numbered greater than the tokens for primitive type fields. For private tokens, the
tokens for reference type fields must be numbered less than the tokens for primitive
type fields. Beyond that the ordering of instance field tokens in a class is not
specified.

FIGURE 4-3 Tokens for Instance Fields

4.3.7.6 Virtual Methods

All virtual methods defined in a package are assigned either public or private virtual
method tokens. Virtual method token values must be in the range from 0 to 127,
inclusive. Public and private tokens for virtual methods are assigned from different
namespaces. The high bit of the byte containing a virtual method token is set to one
if the token is a private token.

Public tokens for the externally visible introduced virtual methods in a class are
numbered consecutively starting at one greater than the highest numbered public
virtual method token of the class’s superclass. If a method overrides a method
implemented in the class’s superclass, that method uses the same token number as
the method in the superclass. The high bit of the byte containing a public virtual
method token is always set to zero, to indicate it is a public token. The ordering of
public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned differently from public virtual method
tokens. If a class and its superclass are defined in the same package, the tokens for
the package-visible introduced virtual methods in that class are numbered
consecutively starting at one greater than the highest numbered private virtual
method token of the class’s superclass. If the class and its superclass are defined in
different packages, the tokens for the package-visible introduced virtual methods in
that class are numbered consecutively starting at zero. If a method overrides a
method implemented in the class’s superclass, that method uses the same token

Visibility Category Type Token Value

public and
protected fields
(public tokens)

primitive boolean 0

byte 1

short 2

references byte[] 3

Applet 4

package and
private fields
(private tokens)

references short[] 5

Object 6

primitive int 7

short 9

42 Java Card 2.1 Virtual Machine Specification • March 3, 1999

number as the method in the superclass. The definition of the Java programming
language specifies that overriding a package-visible virtual method is only possible
if both the class and its superclass are defined in the same package. The high bit of
the byte containing a virtual method token is always set to one, to indicate it is a
private token. The ordering of private virtual method tokens in a class is not
specified.

4.3.7.7 Interface Methods

All interface methods defined in a package are assigned public interface method
tokens, as interface methods are always public. Interface methods tokens values must
be in the range from 0 to 127, inclusive. The tokens for all the interface methods
defined in or inherited by an interface are numbered consecutively starting at zero.
The token value for an interface method in a given interface is unrelated to the token
values of that same method in any of the interface’s superinterfaces. The high bit of
the byte containing an interface method token is always set to zero, to indicate it is a
public token. The ordering of interface method tokens is not specified.

4.4 Binary Compatibility
In the Java programming language the granularity of binary compatibility can be
between classes since binaries are stored in individual class files. In Java Card
systems Java packages are processed as a single unit, and therefore the granularity of
binary compatibility is between packages. In Java Card systems the binary of a
package is represented in a CAP file, and the API of a package is represented in an
export file.

In a Java Card system, a change to a type in a Java package results in a new CAP file.
A new CAP file is binary compatible with (equivalently, does not break compatibility
with) a preexisting CAP file if another CAP file converted using the export file of the
preexisting CAP file can link with the new CAP file without errors.

FIGURE 4-4 shows an example of binary compatible CAP files, p1 and p1’. The
preconditions for the example are: the package p1 is converted to create the p1 CAP
file and p1 export file, and package p1 is modified and converted to create the p1’
CAP file. Package p2 imports package p1, and therefore when the p2 CAP file is

Chapter 4 Binary Representation 43

created the export file of p1 is used. In the example, p2 is converted using the
original p1 export file. Because p1’ is binary compatible with p1, p2 may be linked
with either the p1 CAP file or the p1’ CAP file.

FIGURE 4-4 Binary compatibility example

Any modification that causes binary incompatibility in the Java programming
language also causes binary incompatibility in Java Card systems. These
modifications are described as causing a potential error in The Java Language
Specification. Any modification that does not cause binary incompatibility in the Java
programming language does not cause binary incompatibility in a Java Card system,
except under the following conditions:

■ the value of a token assigned to an element in the API of a package is changed;
■ the value of an externally visible final static field (compile-time constant) is

changed;
■ an externally visible virtual method that does not override a preexisting

method is added to a non-final public class.

Tokens are used to resolve references to imported elements of a package. If a token
value is modified, a linker on a device is unable to associate the new token value
with the previous token value of the element, and therefore is unable to resolve the
reference correctly.

Compile-time constants are not stored as fields in CAP files. Instead their values are
recorded in export files and placed inline in the bytecodes in CAP files. These values
are said to be pre-linked in a CAP file of a package that imports those constants.

p2
CAP file

p1’
CAP File

p1
Export File

convert
with

link with
(either)

p1
CAP File

binary
compatible

with

44 Java Card 2.1 Virtual Machine Specification • March 3, 1999

During execution, information is not available to determine whether the value of an
inlined constant is the same as the value defined by the binary of the imported
package.

As described above, tokens assigned to public and protected virtual methods are
scoped to the hierarchy of a class. Tokens assigned to public and protected virtual
methods introduced in a subclass have values starting at one greater than the
maximum token value assigned in a superclass. If a new, non-override, public or
protected virtual method is introduced in a superclass it is assigned a token value
that would otherwise have been assigned in a subclass. Therefore, two unique
virtual methods could be assigned the same token value within the same class
hierarchy, making resolution of a reference to one of the methods ambiguous.

4.5 Package Versions
Each implementation of a package in a Java Card system is assigned a pair of major
and minor version numbers. These version numbers are used to indicate binary
compatibility or incompatibility between successive implementations of a package.

4.5.1 Assigning
The major and minor versions of a package are assigned by the package provider. It
is recommended that the initial implementation of a package be assigned a major
version of 1 and a minor version of 0. However, any values may be chosen. It is also
recommended that when either a major or a minor version is incremented, it is
incremented exactly by 1.

A major version must be changed when a new implementation of a package is not
binary compatible with the previous implementation. The value of the new major
version must be greater than the major version of the previous implementation.
When a major version is changed, the associated minor version must be assigned the
value of 0.

When a new implementation of a package is binary compatible with the previous
implementation, it must be assigned a major version equal to the major version of
the previous implementation. The minor version assigned to the new
implementation must be greater than the minor version of the previous
implementation.

Chapter 4 Binary Representation 45

4.5.2 Linking
Both an export file and a CAP file contain the major and minor version numbers of
the package described. When a CAP file is installed on a Java Card enabled device a
resident image of the package is created, and the major and minor version numbers
are recorded as part of that image. When an export file is used during preparation
of a CAP file, the version numbers indicated in the export file are recorded in the
CAP file.

During installation, references from the package of the CAP file being installed to an
imported package can be resolved only when the version numbers indicated in the
export file used during preparation of the CAP file are compatible with the version
numbers of the resident image. They are compatible when the major version
numbers are equal and the minor version of the export file is less than or equal to
the minor version of the resident image.

46 Java Card 2.1 Virtual Machine Specification • March 3, 1999

47

CHAPTER 5

The Export File Format

This chapter describes the Java Card virtual machine export file format. Compliant
Java Card Converters must be capable of producing and consuming all export files
that conform to the specification provided in this chapter. (Refer to Chapter 4,
“Binary Representation.”)

An export file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first.

This chapter defines its own set of data types representing Java Card export file
data: The types u1, u2, and u4 represent an unsigned one-, two-, and four-byte
quantities, respectively.

The Java Card export file format is presented using pseudo structures written in a
C-like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card export file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card file sequentially, without padding or
alignment.

Variable-sized tables, consisting of variable-sized items, are used in several export
file structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of varying-sized structures means that it is not possible to
directly translate a table index into a byte offset into the table.

In a data structure that is referred to as an array, the elements are equal in size.

48 Java Card 2.1 Virtual Machine Specification • March 3, 1999

5.1 Export File Name
As described in §4.1.1, the name of a export file must be the last portion of the
package specification followed by the extension ‘.exp’. For example, the name of the
export file of the javacard.framework package must be framework.exp.
Operating systems that impose limitations on file name lengths may transform an
export file’s name according to its conventions.

5.2 Containment in a Jar File
As described in §4.1.3, Java Card CAP files are contained in a JAR file. If an export
file is also stored in a JAR file, it must also be located in a directory called javacard
that is a subdirectory package’s directory. For example, the framework.exp file
would be located in the subdirectory javacard/framework/javacard.

5.3 Export File
An export file is defined by the following structure:

ExportFile {
u4 magic
u1 minor_version
u1 major_version
u2 constant_pool_count
cp_info constant_pool[constant_pool_count]
u2 this_package
u1 export_class_count
class_info classes[export_class_count]

}

The items in the ExportFile structure are as follows:

magic

The magic item contains the magic number identifying the ExportFile for-
mat; it has the value 0x00FACADE.

Chapter 5 The Export File Format 49

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this export file. An implementation of a Java Card virtual
machine supports export files having a given major version number and
minor version numbers in the range 0 through some particular
minor_version.

If a Java Card virtual machine encounters an export file with the supported
major version but an unsupported minor version, the Java Card virtual
machine must not attempt to interpret the content of the export file. However,
it will be feasible to upgrade a Java Card virtual machine to support the newer
minor version.

A Java Card virtual machine must not attempt to interpret a export file with a
different major version. A change of the major version number indicates a
major incompatibility change, one that requires a fundamentally different Java
Card virtual machine.

In this specification, the major version of the export file has the value 2 and
the minor version has the value 1. Only Sun Microsystems, Inc. may define the
meaning and values of new export file versions.

constant_pool_count

The constant_pool_count item is a non-zero, positive value that indicates
the number of constants in the constant pool.

constant_pool[]

The constant_pool is a table of variable-length structures representing vari-
ous string constants, class names, field names and other constants referred to
within the ExportFile structure.

Each of the constant_pool table entries, including entry zero, is a variable-
length structure whose format is indicated by its first “tag” byte.

There are no ordering constrains on entries in the constant_pool table.

this_package

The value of this_package must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a
CONSTANT_Package_info (§5.4.1) structure representing the package
defined by this ExportFile.

export_class_count

The value of the export_class_count item gives the number of elements in
the classes table.

50 Java Card 2.1 Virtual Machine Specification • March 3, 1999

classes[]

Each value of the classes table is a variable-length class_info structure
(§5.5) giving the description of a publicly accessible class or interface declared
in this package. If the ACC_LIBRARY flag item in the CONSTANT_Package_info
(§5.4.1) structure indicated by the this_package item is set, the classes
table has an entry for each public class and interface declared in this package.
If the ACC_LIBRARY flag item is not set, the classes table has an entry for each

shareable interface declared in this package.1

5.4 Constant Pool
All constant_pool table entries have the following general format:

cp_info {
u1 tag
u1 info[]

}

Each item in the constant_pool must begin with a 1-byte tag indicating the kind of
cp_info entry. The content of the info array varies with the value of tag. The valid
tags and their values are listed in TABLE 5-1. Each tag byte must be followed by two
or more bytes giving information about the specific constant. The format of the
additional information varies with the tag value.

TABLE 5-1 Export file constant pool tags

1. This restriction of exporting only shareable interfaces in non-library packages is imposed by the firewall
defined in the Java Card Runtime Environment (JCRE) 2.1 Specification.

Constant Type Value

CONSTANT_Package 13

CONSTANT_Interfaceref 7

CONSTANT_Integer 3

CONSTANT_Utf8 1

Chapter 5 The Export File Format 51

5.4.1 CONSTANT_Package
The CONSTANT_Package_info structure is used to represent a package:

CONSTANT_Package_info {
u1 tag
u1 flags
u2 name_index
u1 minor_version
u1 major_version
u1 aid_length
u1 aid[aid_length]

}

The items of the CONSTANT_Package_info structure are the following:

tag

The tag item has the value of CONSTANT_Package (13).

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

TABLE 5-2 Export file package flags

The ACC_LIBRARY flag has the value of one if this package does not define and
declare any applets. In this case it is called a library package. Otherwise
ACC_LIBRARY has the value of zero.

If the package is not a library package this export file can only contain share-
able interfaces.1 A shareable interface is either the javacard.frame-
work.Shareable interface or an interface that extends the
javacard.framework.Shareable interface.

All other flag values are reserved by the Java Card virtual machine. Their val-
ues must be zero.

Flags Value

ACC_LIBRARY 0x01

1. This restriction is imposed by the firewall defined in the Java Card Runtime Environment (JCRE) 2.1
Specification.

52 Java Card 2.1 Virtual Machine Specification • March 3, 1999

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java package
name.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers
in a package name are replaced by ASCII forward slashes (‘/’). For example,
the package name javacard.framework is represented in a
CONSTANT_Utf8_info structure as javacard/framework.

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this package. These values uniquely identify the particular
implementation of this package and indicate the binary compatibility between
packages. See §4.5 for a description of assigining and using package version
numbers.

aid_length

The value of the aid_length item gives the number of bytes in the aid array.
Valid values are between 5 and 16, inclusive.

aid[]

The aid array contains the ISO AID of this package (§4.2).

5.4.2 CONSTANT_Interfaceref
The CONSTANT_Interfaceref_info structure is used to represent an interface:

CONSTANT_Interfaceref_info {
u1 tag
u2 name_index

}

The items of the CONSTANT_Interfaceref_info structure are the following:

tag

The tag item has the value of CONSTANT_Interface (7).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid fully qualified
Java interface name. These names are fully qualified because they may be
defined in a package other than the one described in the export file.

Chapter 5 The Export File Format 53

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers
in a class or interface name are replaced by ASCII forward slashes (‘/’). For
example, the interface name javacard.framework.Shareable is represented
in a CONSTANT_Utf8_info structure as javacard/framework/Shareable.

5.4.3 CONSTANT_Integer
The CONSTANT_Integer_info structure is used to represent four-byte numeric (int)
constants:

CONSTANT_Integer_info {
u1 tag
u4 bytes

}

The items of the CONSTANT_Integer_info structure are the following:

tag

The tag item has the value of CONSTANT_Integer (3).

bytes

The bytes item of the CONSTANT_Integer_info structure contains the value
of the int constant. The bytes of the value are stored in big-endian (high byte
first) order.

5.4.4 CONSTANT_Utf8
The CONSTANT_Utf8_info structure is used to represent constant string values.
UTF-8 strings are encoded in the same way as described in The Java Virtual Machine
Specification (§ 4.4.7).

The CONSTANT_Utf8_info structure is:

CONSTANT_Utf8_info {
u1 tag
u2 length
u1 bytes[length]

}

The items of the CONSTANT_Utf8_info structure are the following:

tag

The tag item has the value of CONSTANT_Utf8 (1).

54 Java Card 2.1 Virtual Machine Specification • March 3, 1999

length

The value of the length item gives the number of bytes in the bytes array (not
the length of the resulting string). The strings in the CONSTANT_Utf8_info
structure are not null-terminated.

bytes[]

The bytes array contains the bytes of the string. No byte may have the value
(byte)0 or (byte)0xF0-(byte)0xFF.

5.5 Classes and Interfaces
Each class and interface is described by a variable-length class_info structure. The
format of this structure is:

class_info {
u1 token
u2 access_flags
u2 name_index
u2 export_interfaces_count
u2 interfaces[export_interfaces_count]
u2 export_fields_count
field_info fields[export_fields_count]
u2 export_methods_count
method_info methods[export_methods_count]

}

The items of the class_info structure are as follows:

token

The value of the token item is the class token (§4.3.7.2) assigned to this class or
interface.

access_flags

The value of the access_flags item is a mask of modifiers used with class
and interface declarations. The access_flags modifiers are shown in the fol-

Chapter 5 The Export File Format 55

lowing table.

TABLE 5-3 Export file class access and modifier flags

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.1
A class is shareable if it implements (directly or indirectly) the javac-
ard.framework.shareable interface. An interface is shareable if it is or
implements (directly or indirectly) the javacard.framework.Shareable
interface.

All other class access and modifier flags are defined in the same way and with
the same restrictions as described in The Java Virtual Machine Specification.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java class

name stored as a simple (not fully qualified) name, that is, as a Java identifier.2

export_interfaces_count

The value of the export_interface_count item indicates the number of
entries in the interfaces array.

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from
outside its package

Class,
interface

ACC_FINAL 0x0010 Is final; no
subclasses allowed.

Class

ACC_INTERFACE 0x0200 Is an interface Interface
ACC_ABSTRACT 0x0400 Is abstract; may not

be instantiated
Class,
interface

ACC_SHAREABLE 0x0800 Is shareable, may be
shared between Java
Card applets.

Class,
interface

1. The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Java Card 2.1 Runtime Environment (JCRE) Specification.

2. In Java class files class names are fully qualified. In Java Card export files all classes and interfaces
enumerated are defined in the package of the export file making it unnecessary for class names to be fully
qualified.

56 Java Card 2.1 Virtual Machine Specification • March 3, 1999

interfaces[]

The interfaces array contains an entry for each public interface imple-
mented by this class or interface. It does not include package visible interfaces.
It does include all public superinterfaces in the hierarchy of public interfaces
implemented by this class or interface.

Each value in the interfaces array must be a valid index into the
constant_pool table. The constant_pool entry at each value of inter-
faces[i], where 0 <= i < export_interfaces_count, must be a
CONSTANT_Interfaceref_info structure representing an interface which is
an public superinterface of this class or interface type, in the left-to-right order
given in the source for the type and its superclasses or superinterfaces.

export_fields_count

The value of the export_fields_count item gives the number of entries in
the fields table.

fields[]

Each value in the fields table is a variable-length field_info (§5.6) struc-
ture. The field_info contains an entry for each publicly accessible field, both
class variables and instance variables, declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

export_methods_count

The value of the export_methods_count item gives the number of entries in
the methods table.

methods[]

Each value in the methods table is a method_info (§5.7) structure. The
method_info structure contains an entry for each publicly accessible class
(static or constructor) method defined by this class, and each publicly accessi-
ble instance method defined by this class or its superclasses, or defined by this
interface or its super-interfaces.

Chapter 5 The Export File Format 57

5.6 Fields
Each field is described by a variable-length field_info structure. The format of this
structure is:

field_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index
u2 attributes_count
attribute_info attributes[attributes_count]

}

The items of the field_info structure are as follows:

token

The token item is the token assigned to this field. There are three scopes for
field tokens: final static fields of primitive types (compile-time constants),
all other static fields, and instance fields.

If this field is a compile-time constant, the value of the token item is 0xFFFF.
Compile-time constants are represented in export files, but are not assigned
token values suitable for late binding. Instead Java Card Converters must
replace bytecodes that reference final static fields with bytecodes that load

the constant value of the field.1

If this field is static, but is not a compile-time constant, the token item repre-
sents a static field token (§4.3.7.3).

If this field is an instance field, the token item represents an instance field token
(§4.3.7.5).

1. Although Java compilers ordinarily replace references to final static fields of primitive types with primitive
constants, this functionality is not required.

58 Java Card 2.1 Virtual Machine Specification • March 3, 1999

access_flags

The value of the access_flags item is a mask of modifiers used with fields.
The access_flags modifiers are shown in the following table.

TABLE 5-4 Export file field access and modifier flags

Field access and modifier flags are defined in the same way and with the same
restrictions as described in The Java Virtual Machine Specification.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java field name
stored as a simple (not fully qualified) name, that is, as a Java identifier.

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java field
descriptor.

Representation of a field descriptor in an export file is the same as in a Java
class file. See the specification described in The Java Virtual Machine Specifica-
tion (§ 4.3.2).

attributes_count

The value of the attributes_count item indicates the number of additional
attributes of this field. The only field_info attribute currently defined is the
ConstantValue attribute (§5.8.1). For static final fields of primitive types,
the value must be 1; that is, when both the ACC_STATIC and ACC_FINAL bits in
the flags item are set an attribute must be present. For all other fields the value

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside
its package.

Any field

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class field

ACC_STATIC 0x0008 Is static. Class field
ACC_FINAL 0x0010 Is final; no further

overriding or
assignment after
initialization.

Any field

Chapter 5 The Export File Format 59

of the attributes_count item must be 0.

attributes[]

The only attribute defined for the attributes table of a field_info structure
by this specification is the ConstantValue attribute (§5.8.1). This must be
defined for static final fields of primitives (boolean, byte, short, and
int).

5.7 Methods
Each method is described by a variable-length method_info structure. The format of
this structure is:

method_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index

}

The items of the method_info structure are as follows:

token

The token item is the token assigned to this method. If this method is a static
method or constructor, the token item represents a static method token
(§4.3.7.4). If this method is a virtual method, the token item represents a vir-
tual method token (§4.3.7.6).

60 Java Card 2.1 Virtual Machine Specification • March 3, 1999

access_flags

The value of the access_flags item is a mask of modifiers used with meth-
ods. The access_flags modifiers are shown in the following table.

TABLE 5-5 Export file method access and modifier flags

Method access and modifier flags are defined in the same way and with the
same restrictions as described in The Java Virtual Machine Specification.

Unlike in Java class files, the ACC_NATIVE flag is not supported in export files.
Whether a method is native is an implementation detail that is not relevant to
importing packages. The Java Card virtual machine reserves all other flag val-
ues. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing either the special inter-
nal method name for constructors, <init>, or a valid Java method name
stored as a simple (not fully qualified) name.

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java method
descriptor.

Representation of a method descriptor in an export file is the same as in a Java
class file. See the specification described in The Java Virtual Machine Specifica-
tion (§ 4.3.3).

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside its
package.

Any method

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class/
instance
method

ACC_STATIC 0x0008 Is static. Class/
instance
method

ACC_FINAL 0x0010 Is final; no further
overriding or assignment
after initialization.

Class/
instance
method

ACC_ABSTRACT 0x0400 Is abstract; no
implementation is
provided

Any method

Chapter 5 The Export File Format 61

5.8 Attributes
Attributes are used in the field_info (§5.6) structure of the export file format. All
attributes have the following general format:

attribute_info {
u2 attribute_name_index
u4 attribute_length
u1 info[attribute_length]

}

5.8.1 ConstantValue Attribute
The ConstantValue attribute is a fixed-length attribute used in the attributes
table of the field_info structures. A ConstantValue attribute represents the value
of a final static field (compile-time constant); that is, both the ACC_STATIC and
ACC_FINAL bits in the flags item of the field_info structure must be set. There
can be no more than one ConstantValue attribute in the attributes table of a
given field_info structure.

The ConstantValue attribute has the format:

ConstantValue_attribute {
u2 attribute_name_index
u4 attribute_length
u2 constantvalue_index

}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing the string “Con-
stantValue.”

attribute_length

The value of the attribute_length item of a ConstantValue_attribute
structure must be 2.

constantvalue_index

The value of the constantvalue_index item must be a valid index into the

62 Java Card 2.1 Virtual Machine Specification • March 3, 1999

constant_pool table. The constant_pool entry at that index must give the
constant value represented by this attribute.

The constant_pool entry must be of a type CONSTANT_Integer (§5.4.3).

63

CHAPTER 6

The CAP File Format

This chapter describes the Java Card CAP (converted applet) file format. Each CAP file
contains all of the classes and interfaces defined in one Java package. Java Card
Converters must be capable of producing CAP files that conform to the specification
provided in this chapter.

A CAP file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first. The first bit read of an 8-bit quantity is considered the high bit.

This chapter defines its own set of data types representing Java Card CAP file data:
The types u1, and u2 represent an unsigned one-, and two-byte quantities,
respectively. Some u1 types are represented as bitfield structures, consisting of arrays
of bits. The zeroeth bit in each bit array represents the most significant bit, or high
bit.

The Java Card CAP file format is presented using pseudo structures written in a C-
like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card CAP file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card file sequentially, without padding or
alignment.

Variable-sized tables, consisting of variable-sized items, are used in several CAP file
data structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of variable-sized structures means that it is not possible
to directly translate a table index into a byte offset into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are describe using a C-like union
notation. The bytes contained in a union structure have one of the two formats.
Selection of the two formats is based on the value of the high bit of the structure.

64 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.1 Component Model
A Java Card CAP file consists of a set of components. Each component describes a set
of elements in the Java package defined, or an aspect of the CAP file. A complete CAP
file must contain all of the required components specified in this chapter. Two
components are optional: the Applet Component (§6.5) and Export Component
(§6.12). The Applet Component is included only if one or more Applets are defined
in the package. The Export Component is included only if classes in other packages
may import elements in the package defined.

The content of each component defined in a CAP file must conform to the
corresponding format specified in this chapter. All components have the following
general format:

component {
u1 tag
u2 size
u1 info[]

}

Each component begins with a 1-byte tag indicating the kind of component. Valid
tags and their values are listed in TABLE 6-1. The size item indicates the number of
bytes in the info array of the component, not including the tag and size items.

The content and format of the info array varies with the type of component.

TABLE 6-1 CAP file component tags

Sun may define additional components in future versions of this Java Card vitural
machine specification. It is guaranteed that additional components will have tag
values between 12 and 127, inclusive.

Component Type Value

COMPONENT_Header 1

COMPONENT_Directory 2

COMPONENT_Applet 3

COMPONENT_Import 4

COMPONENT_ConstantPool 5

COMPONENT_Class 6

COMPONENT_Method 7

COMPONENT_StaticField 8

COMPONENT_ReferenceLocation 9

COMPONENT_Export 10

COMPONENT_Descriptor 11

Chapter 6 The CAP File Format 65

6.1.1 Containment in a JAR File
All CAP file components are stored in individual files contained in a JAR File. The
component file names are enumerated in TABLE 6-2. These names are not case
sensitive.

TABLE 6-2 CAP file component file names

As described in §4.1.3, the path to the CAP file component files in a JAR file consists
of a directory called javacard that is in a subdirectory representing the package’s
directory. For example, the CAP file component files of the package
javacard.framework are located in the subdirectory javacard/framework/
javacard.

The name of a JAR file containing CAP file component files is not defined as part of
this specification. Other files, including other CAP files, may also reside in a JAR file
that contains CAP file component files.

6.1.2 Defining New Components
Java Card CAP files are permitted to contain new, or custom, components. All new
components not defined as part of this specification must not affect the semantics of
the specified components, and Java Card virtual machines must be able to accept
CAP files that do not contain new components. Java Card virtual machine
implementations are required to silently ignore components they do not recognize.

New components are identified in two ways: they are assigned both an ISO 7816-5
AID (§4.2) and a tag value. Valid tag values are between 128 and 255, inclusive. Both
of these identifiers are recorded in the custom_component item of the Directory
Component (§6.4).

Component Type File Name

COMPONENT_Header Header.cap

COMPONENT_Directory Directory.cap

COMPONENT_Applet Applet.cap

COMPONENT_Import Import.cap

COMPONENT_ConstantPool ConstantPool.cap

COMPONENT_Class Class.cap

COMPONENT_Method Method.cap

COMPONENT_StaticField StaticField.cap

COMPONENT_ReferenceLocation RefLocation.cap

COMPONENT_Export Export.cap

COMPONENT_Descriptor Descriptor.cap

66 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The new component must conform to the general component format defined in this
chapter, with a tag value, a size value indicating the number of bytes in the
component (excluding the tag and size items), and an info item containing the
content of the new component.

A new component file is stored in a JAR file, following the same restrictions as those
specified in §4.1.3. That is, the file containing the new component must be located in
the <package_directory>/javacard subdirectory of the JAR file and must have
the extension ‘.cap’.

6.2 Installation
Installing a CAP file onto a Java Card enabled device entails communication between
a Java Card enabled terminal and that device. While it is beyond the scope of this
specification to define an installation protocol between a terminal and a device, the
CAP file component order shown in TABLE 6-3 is a reference load order suitable for an
implementation with a simple memory management model on a limited memory
device.

TABLE 6-3 Reference component install order

Component Type

COMPONENT_Header

COMPONENT_Directory

COMPONENT_Import

COMPONENT_Applet

COMPONENT_Class

COMPONENT_Method

COMPONENT_StaticField

COMPONENT_Export

COMPONENT_ConstantPool

COMPONENT_ReferenceLocation

COMPONENT_Descriptor (optional)

Chapter 6 The CAP File Format 67

6.3 Header Component
The Header Component contains general information about this CAP file and the
package it defines. It is described by the following variable-length structure:

header_component {
u1 tag
u2 size
u4 magic
u1 minor_version
u1 major_version
u1 flags
package_info this_package

}

The items in the header_component structure are as follows:

tag

The tag item has the value COMPONENT_Header (1).

size

The size item indicates the number of bytes in the header_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

magic

The magic item supplies the magic number identifying the Java Card CAP file
format; it has the value 0xDECAFFED.

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this CAP file. An implementation of a Java Card virtual
machine must support CAP files having a specific major version number and
minor version numbers in the range of 0 through some particular
minor_version.

If a Java Card virtual machine encounters a CAP file with the supported major
version but an unsupported minor version, the Java Card virtual machine
must not attempt to interpret the content of the CAP file. However, it will be
feasible to upgrade a Java Card virtual machine to support the newer minor
version.

A Java Card virtual machine must not attempt to interpret a CAP file with a dif-
ferent major version. A change of the major version number indicates a major
incompatibility change, one that requires a fundamentally different Java Card

68 Java Card 2.1 Virtual Machine Specification • March 3, 1999

virtual machine.

In this specification, the major version of the CAP file has the value 2 and the
minor version has the value 1. Only Sun Microsystems, Inc. may define the
meaning and values of new CAP file versions.

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

TABLE 6-4 CAP file package flags

The ACC_INT flag has the value of one if the Java int type is used in this pack-
age. The int type is used if one or more of the following is present:

■ a parameter to a method of type int,
■ a local variable of type int,
■ a field of type int,
■ a field of type int array, or
■ an instruction of type int.

Otherwise the ACC_INT flag has the value of 0.

The ACC_EXPORT flag has the value of one if an Export Component (§6.12) is
included in this CAP file. Otherwise it has the value of 0.

The ACC_APPLET flag has the value of one if an Applet Component (§6.5) is
included in this CAP file. Otherwise it has the value of 0.

All other bits in the flags item not defined in TABLE 6-4 are reserved for future
use. Their values must be zero and they must be ignored by Java Card virtual
machines.

this_package

The this_package item describes the package defined in this CAP file. It is
represented as a package_info structure:

package_info {
u1 minor_version
u1 major_version
u1 AID_length
u1 AID[AID_length]

}

Flags Value

ACC_INT 0x01

ACC_EXPORT 0x02

ACC_APPLET 0x04

Chapter 6 The CAP File Format 69

The items in the package_info structure are as follows:

minor_version, major_version
The minor_version and major_version items are the minor and
major version numbers of this package. These values uniquely iden-
tify the particular implementation of this package and indicate the
binary compatibility between packages. See §4.5 for a description of
assigining and using package version numbers.

AID_length
The AID_length item represents the number of bytes in the AID item.
Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the package. See ISO
7816-5 for the definition of an AID (§4.2).

6.4 Directory Component
The Directory Component lists the size of each of the components defined in this
CAP file. When an optional component is not included, such as the Applet
Component (§6.5) or Export Component (§6.12), it is represented in the Directory
Component with size equal to zero. The Directory Component also includes entries
for new (or custom) components.

The Directory Component is described by the following variable-length structure:

directory_component {
u1 tag
u2 size
u2 component_sizes[11]
static_field_size_info static_field_size
u1 import_count
u1 applet_count
u1 custom_count
custom_component_info custom_components[custom_count]

}

The items in the directory_component structure are as follows:

tag

The tag item has the value COMPONENT_Directory (2).

70 Java Card 2.1 Virtual Machine Specification • March 3, 1999

size

The size item indicates the number of bytes in the directory_component
structure, excluding the tag and size items. The value of the size item must
be greater than zero.

component_sizes[]

The component_sizes item is an array representing the number of bytes in
each of the components in this CAP file. All of the 11 components defined in this
chapter are represented in the component_sizes array. The value of an index
into the array is equal to the value of the tag of the component represented at
that entry, minus 1.

The value in each entry in the component_sizes array is that same as the
size item in the corresponding component. It represents the number of bytes
in the component, excluding the tag and size items.

The value of an entry in the component_sizes array is zero for components
not included in this CAP file. Components that may not be included are the
Applet Component (§6.5) and the Export Component (§6.12). For all other
components the value is greater than zero.

static_field_size

The static_field_size item is a static_field_size_info structure. The
structure is defined as:

static_field_size_info {
u2 image_size
u2 array_init_count
u2 array_init_size

}

The items in the static_field_size_info structure are the following:

image_size
The image_size item has the same value as the image_size item in
the Static Field Component (§6.10). It represents the total number of
bytes in the static fields defined in this package, excluding final
static fields of primitive types.

array_init_count
The array_init_count item has the same value as the
array_init_count item in the Static Field Component (§6.10). It rep-
resents the number of arrays initialized in all of the <clinit> meth-
ods in this package.

array_init_size
The array_init_size item represents the sum of the count items in

Chapter 6 The CAP File Format 71

the array_init table item of the Static Field Component (§6.10). It is
the total number of bytes in all of the arrays initialized in all of the
<clinit> methods in this package.

import_count

The import_count item indicates the number of packages imported by classes
and interfaces in this package. This item has the same value as the count item
in the Import Component (§6.6).

applet_count

The applet_count item indicates the number of applets defined in this pack-
age. If an Applet Component (§6.5) is not included in this CAP file, the value of
the applet_count item is zero. Otherwise the value of the applet_count
item is the same as the value of the count item in the Applet Component
(§6.5).

custom_count

The custom_count item indicates the number of entries in the
custom_components table. Valid values are between 0 and 127, inclusive.

custom_components[]

The custom_components item is a table of variable-length
custom_component_info structures. Each new component defined in this
CAP file must be represented in the table. These components are not defined in
this standard.

The custom_component_info structure is defined as:

custom_component_info {
u1 component_tag
u1 size
u1 AID_length
u1 AID[AID_length]

}

The items in entries of the custom_component_info structure are:

component_tag
The component_tag item represents the tag of the component. Valid
values are between 128 and 255, inclusive.

size
The size item represents the number of bytes in the component,
excluding the tag and size items.

AID_length
The AID_length item represents the number of bytes in the AID item.

72 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the component. See
ISO 7816-5 for the definition of an AID (§4.2).

Each component is assigned an AID conforming to the ISO 7816-5
standard. The RID (first 5 bytes) of all of the custom component AIDs
must have the same value. In addition, the RID of the custom compo-
nent AIDs must have the same value as the RID of the package
defined in this CAP file.

6.5 Applet Component
The Applet Component contains an entry for each of the applets defined in this
package. Applets are defined by implementing a non-abstract subclass, direct or
indirect, of the javacard.framework.Applet class.1 If no applets are defined, this
component must not be present in this CAP file.

The Applet Component is described by the following variable-length structure:

applet_component {
u1 tag
u2 size
u1 count
{ u1 AID_length
 u1 AID[AID_length]
 u2 install_method_offset
} applets[count]

}

The items in the applet_component structure are as follows:

tag

The tag item has the value COMPONENT_Applet (3).

size

The size item indicates the number of bytes in the applet_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

1. Restrictions placed on an applet definition are imposed by the Java Card Runtime Environment (JCRE) 2.1
specification.

Chapter 6 The CAP File Format 73

count

The count item indicates the number of applets defined in this package.

applets[]

The applets item represents a table of variable-length structures each describ-
ing an applet defined in this package.

The items in each entry of the applets table are defined as follows:

AID_length
The AID_length item represents the number of bytes in the AID item.
Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the applet.

Each applet is assigned an AID conforming to the ISO 7816-5 standard
(§4.2). The RID (first 5 bytes) of all of the applet AIDs must have the
same value. In addition, the RID of each applet AIDs must have the
same value as the RID of the package defined in this CAP file.

install_method_offset
The value of the install_method_offset item must be a 16-bit off-
set into the info item of the Method Component (§6.9). The item at
that offset must be a method_info structure that represents the static

install(byte[],short,byte) method of the applet.1 The
install(byte[],short,byte) method must be defined in a class
that extends the javacard.framework.applet class, directly or indi-
rectly. The install(byte[],short,byte) method is called to ini-
tialize the applet.

1. Restrictions placed on the install(byte[],short,byte) method of an applet are imposed by the Java Card
Runtime Environment (JCRE) 2.1 specification.

74 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.6 Import Component
The Import Component lists the set of packages imported by the classes in this
package. It does not include an entry for the package defined in this CAP file. The
Import Component is represented by the following structure:

import_component {
u1 tag
u2 size
u1 count
package_info packages[count]

}

The items in the import_component structure are as follows:

tag

The tag item has the value COMPONENT_Import (4).

size

The size item indicates the number of bytes in the import_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

count

The count item indicates the number of items in the packages table. The
value of the count item must be between 0 and 127, inclusive.

packages[]

The packages item represents a table of variable-length package_info struc-
tures as defined for this_package under §6.3. The table contains an entry for
each of the packages referenced in the CAP file, not including the package
defined.

The major and minor version numbers specified in the package_info struc-
ture are equal to the major and minor versions specified in the imported pack-
age’s export file. See §4.5 for a description of assigining and using package
version numbers.

Components of this CAP file refer to an imported package by using a index in
this packages table. The index is called a package token (§4.3.7.1).

Chapter 6 The CAP File Format 75

6.7 Constant Pool Component
The Constant Pool Component contains an entry for each of the classes, methods,
and fields referenced by elements in the Method Component (§6.9) of this CAP file.
The referencing elements in the Method Component may be instructions in the
methods or exception handler catch types in the exception handler table.

Entries in the Constant Pool Component reference elements in the Class Component
(§6.8), Method Component (§6.9), and Static Field Component (§6.10). The Import
Component (§6.6) is also accessed using a package token (§4.3.7.1) to describe
references to classes, methods and fields defined in imported packages. Entries in
the Constant Pool Component do not reference other entries internal to itself.

The Constant Pool Component is described by the following structure:

constant_pool_component {
u1 tag
u2 size
u2 count
cp_info constant_pool[count]

}

The items in the constant_pool_component structure are as follows:

tag

The tag item has the value COMPONENT_ConstantPool (5).

size

The size item indicates the number of bytes in the
constant_pool_component structure, excluding the tag and size items. The
value of the size item must be greater than zero.

count

The count item represents the number entries in the constant_pool array.
Valid values are between 0 and 65535, inclusive.

constant_pool

The constant_pool item represents an array of cp_info structures:

cp_info {
u1 tag
u1 info[3]

}

Each item in the constant_pool array is a 4-byte structure. Each structure

76 Java Card 2.1 Virtual Machine Specification • March 3, 1999

must begin with a 1-byte tag indicating the kind of cp_info entry. The content
and format of the 3-byte info array varies with the value of the tag. The valid
tags and their values are listed in the following table.

TABLE 6-5 CAP file constant pool tags

Java Card constant types are more specific than those in Java class files. The
categories indicate not only the type of the item referenced, but also the man-
ner in which it is referenced.

For example, in the Java constant pool there is one constant type for method
references, while in the Java Card constant pool there are three constant types
for method references: one for virtual method invocations using the invokevir-
tual bytecode, one for super method invocations using the invokespecial byte-
code, and one for static method invocations using either the invokestatic or
invokespecial bytecode.1 The additional information provided by a constant
type in Java Card technologies simplifies resolution of references.

There are no ordering constraints on constant pool entries. It is recommended,
however, that CONSTANT_InstanceFieldref (§6.7.2) constants occur early in
the array to permit using getfield_T and putfield_T bytecodes instead of
getfield_T_w and putfield_T_w bytecodes. The former have 1-byte constant pool
index parameters while the latter have 2-byte constant pool index parameters.

Constant Type Tag

CONSTANT_Classref 1

CONSTANT_InstanceFieldref 2

CONSTANT_VirtualMethodref 3

CONSTANT_SuperMethodref 4

CONSTANT_StaticFieldref 5

CONSTANT_StaticMethodref 6

1. The constant pool index parameter of an invokespecial bytecode is to a CONSTANT_StaticMethodref when the
method referenced is a constructor or a private virtual method. In these cases the method invoked is fully
known when the CAP file is created. In the cases of virtual method and super method references, the method
invoked is dependent upon an instance of a class and its hierarchy, both of which may be partially unknown
when the CAP file is created.

Chapter 6 The CAP File Format 77

6.7.1 CONSTANT_Classref
The CONSTANT_Classref_info structure is used to represent a reference to a class
or an interface. The class or interface may be defined in this package or in an
imported package.

CONSTANT_Classref_info {
u1 tag
union {

u2 internal_class_ref
{ u1 package_token
 u1 class_token
} external_class_ref

} class_ref
u1 padding

}

The items in the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value CONSTANT_Classref (1).

class_ref

The class_ref item represents a reference to a class or interface. If the class or
interface is defined in this package the structure represents an
internal_class_ref and the high bit of the structure is zero. If the class or
interface is defined in another package the structure represents an
external_class_ref and the high bit of the structure is one.

internal_class_ref
The internal_class_ref structure represents a 16-bit offset into the
info item of the Class Component (§6.8) to an interface_info or
class_info structure. The interface_info or class_info struc-
ture must represent the referenced class or interface.

The value of the internal_class_ref item must between 0 and
32767, inclusive, making the high bit equal to zero.

external_class_ref
The external_class_ref structure represents a reference to a class
or interface defined in an imported package. The high bit of this struc-
ture is one.

package_token
The package_token item represents a package token
(§4.3.7.1) defined in the Import Component (§6.6) of this CAP
file. The value of this token must be a valid index into the

78 Java Card 2.1 Virtual Machine Specification • March 3, 1999

packages table item of the import_component structure.
The package represented at that index must be the imported
package.

The value of the package token must be between 0 and 127,
inclusive.

The high bit of the package_token item is equal to one.

class_token
The class_token item represents the token of the class or
interface (§4.3.7.2) of the referenced class or interface. It has
the value of the class token of the class as defined in the
Export file of the imported package.

padding

The padding item has the value zero. It is present to make the size of a
CONSTANT_Classref_info structure the same as all other constants in the
constant_pool array.

6.7.2 CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref
References to instance fields, and virtual methods are represented by similar
structures:

CONSTANT_InstanceFieldref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_VirtualMethodref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_SuperMethodref_info {
u1 tag
class_ref class
u1 token

}

Chapter 6 The CAP File Format 79

The items in these structures are as follows:

tag

The tag item of a CONSTANT_InstanceFieldref_info structure has the value
CONSTANT_InstanceFieldref (2).

The tag item of a CONSTANT_VirtualMethodref_info structure has the value
CONSTANT_VirtualMethodref (3).

The tag item of a CONSTANT_SuperMethodref_info structure has the value
CONSTANT_SuperMethodref (4).

class

The class item represents the class associated with the referenced instance
field, virtual method, or super method invocation. It is a class_ref structure
(§6.7.1). If the referenced class is defined in this package the high bit is equal to
zero. If the reference class is defined in an imported package the high bit of this
structure is equal to one.

The class referenced in the CONSTANT_InstanceField_info structure must
be the class that contains the declaration of the instance field.

The class referenced in the CONSTANT_VirtualMethodref_info structure
must be a class that contains a declaration or definition of the virtual method.

The class referenced in the CONSTANT_SuperMethodref_info structure must
always be internal to the class that defines the method that contains the Java
language-level super invocation. The class must be defined in this package.

token

The token item in the CONSTANT_InstanceFieldref_info structure repre-
sents an instance field token (§4.3.7.5) of the referenced field. The value of the
instance field token is defined within the scope of the class indicated by the
class item.

The token item of the CONSTANT_VirtualMethodref_info structure repre-
sents the virtual method token (§4.3.7.6) of the referenced method. The virtual
method token is defined within the scope of the hierarchy of the class indicated
by the class item. If the referenced method is public or protected the high
bit of the token item is zero. If the referenced method is package-visible the
high bit of the token item is one. In this case the class item must represent a
reference to a class defined in this package.

The token item of the CONSTANT_SuperMethodref_info structure represents
the virtual method token (§4.3.7.6) of the referenced method. Unlike in the
CONSTANT_VirtualMethodref_info structure, the virtual method token is
defined within the scope of the hierarchy of the superclass of the class indi-
cated by the class item. If the referenced method is public or protected the

80 Java Card 2.1 Virtual Machine Specification • March 3, 1999

high bit of the token item is zero. If the referenced method is package-visible
the high bit of the token item is one. In the latter case the class item must
represent a reference to a class defined in this package and at least one super-
class of the class that contains a defintion of the virtual method must also be
defined in this package.

6.7.3 CONSTANT_StaticFieldref and
CONSTANT_StaticMethodref
References to static fields and methods are represented by similar structures:

CONSTANT_StaticFieldref_info {
u1 tag
union {

{ u1 padding
 u2 offset
} internal_ref
{ u1 package_token
 u1 class_token
 u1 token
} external_ref

} static_field_ref
}

CONSTANT_StaticMethodref_info {
u1 tag
union {

{ u1 padding
 u2 offset
} internal_ref
{ u1 package_token
 u1 class_token
 u1 token
} external_ref

} static_method_ref
}

The items in these structures are as follows:

tag

The tag item of a CONSTANT_StaticFieldref_info structure has the value
CONSTANT_StaticFieldref (5).

The tag item of a CONSTANT_StaticMethodref_info structure has the value
CONSTANT_StaticMethodref (6).

Chapter 6 The CAP File Format 81

static_field_ref and static_method_ref

The static_field_ref and static_method_ref item represents a reference
to a static field or static method, respectively. Static method references
include references to static methods, constructors, and private virtual
methods.

If the referenced item is defined in this package the structure represents an
internal_ref and the high bit of the structure is zero. If the referenced item
is defined in another package the structure represents an external_ref and
the high bit of the structure is one.

internal_ref
The internal_ref item represents a reference to a static field or
method defined in this package. The items in the structure are:

padding
The padding item is equal to 0.

offset
The offset item of a CONSTANT_StaticFieldref_info
structure represents a 16-bit offset into the Static Field Image
defined by the Static Field component (§6.10) to this static
field.

The offset item of a CONSTANT_StaticMethodref_info
structure represents a 16-bit offset into the info item of the
Method Component (§6.9) to a method_info structure. The
method_info structure must represent the referenced
method.

external_ref
The external_ref item represents a reference to a static field or
method defined in an imported package. The items in the structure
are:

package_token
The package_token item represents a package token
(§4.3.7.1) defined in the Import Component (§6.6) of this CAP
file. The value of this token must be a valid index into the
packages table item of the import_component structure.
The package represented at that index must be the imported
package.

The value of the package token must be between 0 and 127,
inclusive.

The high bit of the package_token item is equal to one.

82 Java Card 2.1 Virtual Machine Specification • March 3, 1999

class_token
The class_token item represents the token (§4.3.7.2) of the
class of the referenced class. It has the value of the class token
of the class as defined in the Export file of the imported
package.

The class indicated by the class_token item must define the
referenced field or method.

token
The token item of a CONSTANT_StaticFieldref_info
structure represents a static field token (§4.3.7.3) as defined in
the Export file of the imported package. It has the value of
the token of the referenced field.

The token item of a CONSTANT_StaticMethodref_info
structure represents a static method token (§4.3.7.4) as
defined in the Export file of the imported package. It has the
value of the token of the referenced method.

6.8 Class Component
The Class Component describes each of the classes and interfaces defined in this
package. It does not contain complete access information and content details for each
class and interface. Instead, the information included is limited to that required to
execute operations associated with a particular class or interface, without
performing verification. Complete details regarding the classes and interfaces
defined in this package are included in the Descriptor Component (§6.13).

The information included in the Class Component for each interface is sufficient to
uniquely identify the interface and to test whether or not a cast to that interface is
valid.

The information included in the Class Component for each class is sufficient to
resolve operations associated with instances of a class. The operations include
creating an instance, testing whether or not a cast of the instance is valid,
dispatching virtual method invocations, and dispatching interface method
invocations. Also included is sufficient information to locate instance fields of type
reference, including arrays.

The classes represented in the Class Component reference other entries in the Class
Component in the form of superclass, superinterface and implemented interface
references. When a superclass, superinterface or implemented interface is defined in
an imported package the Import Component is used in the representation of the
reference.

Chapter 6 The CAP File Format 83

The classes represented in the Class Component also contain references to virtual
methods defined in the Method Component (§6.9) of this CAP file. References to
virtual methods defined in imported packages are not explicitly described. Instead
such methods are located through a superclass within the hierarchy of the class,
where the superclass is defined in the same imported package as the virtual method.

The Constant Pool Component (§6.7), Export Component (§6.12) and Descriptor
Component (§6.13) reference classes and interfaces defined in the Class Component.
No other CAP file components reference the Class Component.

The Class Component is represented by the following structure:

class_component {
u1 tag
u2 size
interface_info interfaces[]
class_info classes[]

}

The items in the class_component structure are as follows:

tag

The tag item has the value COMPONENT_Class (6).

size

The size item indicates the number of bytes in the class_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

interfaces[]

The interfaces item represents an array of interface_info structures.
Each interface defined in this package is represented in the array. The entries
are ordered based on hierarchy such that a superinterface has a lower index
than any of its subinterfaces.

classes[]

The classes item represents a table of variable-length class_info structures.
Each class defined in this package is represented in the array. The entries are
ordered based on hierarchy such that a superclass has a lower index than any
of its subclasses.

84 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.8.1 interface_info and class_info
The interface_info and class_info structures represent interfaces and classes,
respectively. The two are differentiated by the value of the high bit in the structures.
They are defined as follows:

interface_info {
u1 bitfield {

 bit[4] flags
 bit[4] interface_count

}
class_ref superinterfaces[interface_count]

}

class_info {
u1 bitfield {

 bit[4] flags
 bit[4] interface_count

}
class_ref super_class_ref
u1 declared_instance_size
u1 first_reference_index
u1 reference_count
u1 public_method_table_base
u1 public_method_table_count
u1 package_method_table_base
u1 package_method_table_count
u2 public_virtual_method_table[public_method_table_count]
u2 package_virtual_method_table[package_method_table_count]
implemented_interface_info interfaces[interface_count]

}

The items of the interface_info and class_info structure are as follows:

flags

The flags item is a mask of modifiers used to describe this interface or class.
Valid values are shown in the following table:

TABLE 6-6 CAP file interface and class flags

The ACC_INTERFACE flag indicates whether this interface_info or
class_info structure represents an interface or a class. The value must be 1 if
it represents an interface_info structure and 0 if a class_info structure.

The ACC_SHAREABLE flag in an interface_info structure indicates whether

Name Value

ACC_INTERFACE 0x8

ACC_SHAREABLE 0x4

Chapter 6 The CAP File Format 85

this interface is shareable. The value of this flag must be one if and only if the
interface is javacard.framework.Shareable interface or implements that
interface directly or indirectly.

The ACC_SHAREABLE flag in a class_info structure indicates whether this
class is shareable.1 The value of this flag must be one if and only if this class or
any of its superclasses implements an interface that is shareable.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

interface_count

The interface_count item of the interface_info structure indicates the
number of entries in the superinterfaces table item. The value represents
the number of immediate superinterfaces of this interface.It does not include
superinterfaces of the superinterfaces. Valid values are between 0 and 15, inclu-
sive.

The interface_count item of the class_info structure indicates the num-
ber of entries in the interfaces table item. The value represents the number
of interfaces implemented by this class, including superinterfaces of those
interfaces and potentially interfaces implemented by superclasses of this class.
Valid values are between 0 and 15, inclusive.

superinterfaces

The superinterfaces item of the interface_info structure is an array of
class_ref structures representing the superinterfaces of this interface. The
class_ref structure is defined as part of the CONSTANT_Classref_info
structure (§6.7.1). This array is empty if this interface has no superinterfaces.
Only immediate superinterfaces are represented in the array. Superinterfaces
of superinterfaces are not included, and class Object is not included either.

super_class_ref

The super_class_ref item of the class_info structure is a class_ref
structure representing the superclass of this class. The class_ref structure is
defined as part of the CONSTANT_Classref_info structure (§6.7.1).

The super_class_ref item has the value of 0xFFFF only if this class does not
have a superclass. Otherwise the value of the super_class_ref item is lim-
ited only by the constraints of the class_ref structure.

declared_instance_size

The declared_instance_size item of the class_info structure represents
the number of 16-bit cells required to represent the instance fields declared by

1. A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions defined by
the Java Card Runtime Environment (JCRE) 2.1 specification.

86 Java Card 2.1 Virtual Machine Specification • March 3, 1999

this class. It does not include instance fields declared by superclasses of this
class.

Instance fields of type int are represented in two 16-bit cells, while all other
field types are represented in one 16-bit cell.

first_reference_token

The first_reference_token item of the class_info structure represents
the instance field token (§4.3.7.5) value of the first reference type instance
field defined by this class. It does not include instance fields defined by super-
classes of this class.

If this class does not define any reference type instance fields, the value of
the first_reference_token is 0xFF. Otherwise the value of the
first_reference_token item must be within the range of the set of instance
field tokens of this class.

reference_count

The reference_count item of the class_info structure represents the num-
ber of reference type instance field defined by this class. It does not include
reference type instance fields defined by superclasses of this class.

Valid values of the reference_count item are between 0 and the maximum
number of instance fields defined by this class.

public_method_table_base

The public_method_table_base item of the class_info structure is equal
to the virtual method token value (§4.3.7.6) of the first method in the
public_virtual_method_table array. If the
public_virtual_method_table array is empty the value of the
public_method_table_base item is equal to the
public_method_table_base item of the class_info structure of this class’
superclass plus the public_method_table_count item of the class_info
structure of this class’ superclass. If this class has no superclass and the
public_virtual_method_table array is empty, the value of the
public_method_table_base item is zero.

public_method_table_count

The public_method_table_count item of the class_info structure indi-
cates the number of entries in the public_virtual_method_table array.

If this class does not define any public or protected override methods, the
minimum valid value of public_method_table_count item is the number of
public and protected virtual methods declared by this class. If this class
defines one or more public or protected override methods, the minimum
valid value of public_method_table_count item is the value of the largest
public or protected virtual method token, minus the value of the smallest

Chapter 6 The CAP File Format 87

public or protected virtual override method token, plus one.

The maximum valid value of the public_method_table_count item is the
value of the largest public or protected virtual method token, plus one.

Any value for the public_method_table_count item between the minimum and
maximum specified here is valid. However, the value must correspond to the
number of entries in the public_virtual_method_table array.

package_method_table_base

The package_method_table_base item of the class_info structure is equal
to the virtual method token value (§4.3.7.6) of the first entry in the
package_virtual_method_table array. If the
package_virtual_method_table array is empty the value of the
package_method_table_base item is equal to the
package_method_table_base item of the class_info structure of this class’
superclass plus the package_method_table_count item of the class_info
structure of this class’ superclass. If this class has no superclass or inherits from a
class defined in another package and the package_virtual_method_table
array is empty, the value of the package_method_table_base item is zero.

package_method_table_count

The package_method_table_count item of the class_info structure indi-
cates the number of entries in the package_virtual_method_table array.

If this class does not define any override methods, the minimum valid value of
package_method_table_count item is the number of package visible virtual
methods declared by this class. If this class defines one or more package visible
override methods, the minimum valid value of
package_method_table_count item is the value of the largest package visi-
ble virtual method token, minus the value of the smallest package visible vir-
tual override method token, plus one.

The maximum valid value of the package_method_table_count item is the
value of the largest package visible method token, plus one.

Any value for the package_method_table_count item between the mini-
mum and maximum specified here are valid. However, the value must corre-
spond to the number of entries in the package_virtual_method_table.

public_virtual_method_table

The public_virtual_method_table item of the class_info structure rep-
resents an array of public and protected virtual methods. These methods can
be invoked on an instance of this class. The public_virtual_method_table
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses. The value of an
index into this table must be equal to the value of the virtual method token of

88 Java Card 2.1 Virtual Machine Specification • March 3, 1999

the indicated method, minus the value of the public_method_table_base
item.

Entries in the public_virtual_method_table array that represent methods
defined or declared in this package contain offsets into the info item of the
Method Component (§6.9) to the method_info structure representing the
method. Entries that represent methods defined or declared in an imported
package contain the value 0xFFFF.

Entries for methods that are declared abstract, not including those defined by
interfaces, are represented in the public_virtual_method_table array in
the same way as non-abstract methods.

package_virtual_method_table

The package_virtual_method_table item of the class_info structure rep-
resents an array of package-visible virtual methods. These methods can be
invoked on an instance of this class. The package_virtual_method_table
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses that are defined in
this package. The value of an index into this table must be equal to the value of
the virtual method token of the indicated method & 0x7F, minus the value of
the package_method_table_base item.

All entries in the package_virtual_method_table array represent methods
defined or declared in this package. They contain offsets into the info item of
the Method Component (§6.9) to the method_info structure representing the
method.

Entries for methods that are declared abstract, not including those defined by
interfaces, are represented in the package_virtual_method_table array in
the same way as non-abstract methods.

interfaces[]

The interfaces item of the class_info structure represents a table of vari-
able-length implemented_interface_info structures. The table must con-
tain an entry for each of the implemented interfaces indicated in the
declaration of this class and each of the interfaces in the hierarchies of those
interfaces. Interfaces that occur more than once are represented by a single
entry. Interfaces implemented by superclasses of this class may optionally be
represented.

Given the declarations below, the number of entries for class c0 is 1 and the
entry in the interfaces array is i0. The minimum number of entries for class
c1 is 3 and the entries in the interfaces array are i1, i2, and i3. The entries for
class c1 may also include interface i0, which is implemented by the superclass
of c1.

Chapter 6 The CAP File Format 89

interface i0 {}
interface i1 {}
interface i2 extends i1 {}
interface i3 {}
class c0 implements i0 {}
class c1 extends c0 implements i2, i3 {}

The implemented_interface_info structure is defined as follows:

implemented_interface_info {
class_ref interface
u1 count
u1 index[count]

}

The items in the implemented_interface_info structure are defined as fol-
lows:

interface
The interface item has the form of a class_ref structure. The
class_ref structure is defined as part of the
CONSTANT_Classref_info structure (§6.7.1). The interface_info
structure referenced by the interface item represents an interface
implemented by this class.

count
The count item indicates the number of entries in the index array.

index
The index item is an array that maps declarations of interface meth-
ods to implementations of those methods in this class. It is a represen-
tation of a the set of methods declared by the interface and its
superinterfaces.

Entries in the index array must be ordered such that the interface
method token value (§4.3.7.7) of the interface method is equal to the
index into the array. The interface method token value is assigned to
the method within the scope of the interface definition and its super-
interfaces, not within the scope of this class.

The values in the index array represent the virtual method tokens
(§4.3.7.6) of the implementations of the interface methods. The virtual
method token values are defined within the scope of the hierarchy of
this class.

90 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.9 Method Component
The Method Component describes each of the methods declared in this package,
excluding <clinit> methods and interface method declarations. The exception
handlers associated with each method are also described.

The Method Component does not contain complete access information and
descriptive details for each method. Instead, the information is limited to that
required to execute each method, without performing verification. Complete details
regarding the methods defined in this package are included in the Descriptor
Component (§6.13).

Instructions and exception handler catch types in the Method Component reference
entries in the Constant Pool Component (§6.7). No other CAP file components,
including the Method Component, are referenced by the elements in the Method
Component.

The Applet Component (§6.5), Constant Pool Component (§6.7), Export Component
(§6.12), and Descriptor Component (§6.13) reference methods defined in the Method
Component. The Reference Location Component (§6.11) references all constant pool
indices contained in the Method Component. No other CAP file components
reference the Method Component.

The Method Component is represented by the following structure:

method_component {
u1 tag
u2 size
u1 handler_count
exception_handler_info
exception_handlers[handler_count]
method_info methods[]

}

The items in the method_component structure are as follows:

tag

The tag item has the value COMPONENT_Method (7).

size

The size item indicates the number of bytes in the method_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

Chapter 6 The CAP File Format 91

handler_count

The handler_count item represents the number of entries in the
exception_handlers array. Valid values are between 0 and 255, inclusive.

exception_handlers[]

The exception_handlers item represents an array of 8-byte
exception_handler_info structures. Each exception_handler_info
structure represents a catch or finally block defined in a method of this
package.

Entries in the exception_handlers array are sorted in ascending order by the
distance between the beginning of the Method Component to the endpoint of
each exception handler range in the methods item.

methods[]

The methods item represents a table of variable-length method_info struc-
tures. Each entry represents a method declared in a class of this package.
<clinit> methods and interface method declaration are not included; all
other methods, including non-interface abstract methods, are.

6.9.1 exception_handler_info
The exception_handler_info structure is defined as follows:

exception_handler_info {
u2 start_offset
u2 active_length
u2 handler_offset
u2 catch_type_index

}

The items in the exception_handler_info structure are as follows:

start_offset, active_length

The active_length item is encoded to indicate whether the active range of
this exception handler is nested within another exception handler. The high bit
of the active_length item is equal to 1 if the active range is not contained
within another exception handler, and this exception handler is the last han-
dler applicable to the active range. The high bit is equal to 0 if the active range
is contained within the active range of another exception handler, or there are
successive handlers applicable to the same active range.

end_offset is defined as start_offset plus active_length & 0x7FFF.

The start_offset item and end_offset are byte offsets into the info item of

92 Java Card 2.1 Virtual Machine Specification • March 3, 1999

the Method Component. They indicate the ranges in a bytecode array at which
the exception handler is active. The value of the start_offset must be a valid
offset into a bytecodes array of a method_info structure to an opcode of an
instruction. The value of the end_offset either must be a valid offset into a byte-
codes array of a method_info structure to an opcode of an instruction or must
be equal to a method’s bytecode count, the length of the bytecodes array of a
method_info structure. The value of the start_offset must be less than the
value of the end_offset.

The start_offset is inclusive and the end_offset is exclusive; that is, the
exception handler must be active while the execution address is within the
interval [start_offset, end_offset).

handler_offset

The handler_offset item represents a byte offset into the info item of the
Method Component. It indicates the start of the exception handler. The value
of the item must be a valid offset into a bytecodes array of a method_info
structure to an opcode of an instruction, and must be less than the value of the
method’s bytecode count.

catch_type_index

If the value of the catch_type_index item is non-zero, it must be a valid
index into the constant_pool array of the Constant Pool Component (§6.7).
The constant_pool entry at that index must be a CONSTANT_Classref_info
structure, representing the class of the exception caught by this
exception_handlers array entry.

If the exception_handlers table entry represents a finally block, the value of
the catch_type_index item is zero. In this case the exception handler is
called for all exceptions that are thrown within the start_offset and
end_offset range.

6.9.2 method_info
The method_info structure is defined as follows:

method_info {
method_header_info method_header
u1 bytecodes[]

}

The items in the method_info structure are as follows:

method_header

The method_header item represents either a method_header_info or an

Chapter 6 The CAP File Format 93

extended_method_header_info structure:

method_header_info {
u1 bitfield {

 bit[4] flags
 bit[4] max_stack
}
u1 bitfield {
 bit[4] nargs
 bit[4] max_locals
}

}

extended_method_header_info {
u1 bitfield {
 bit[4] flags
 bit[4] padding
}
u1 max_stack
u1 nargs

u1 max_locals
}

The items of the method_header_info and extended_method_header_info structures
are as follows:

flags

The flags item is a mask of modifiers defined for this method. Valid flag values
are shown in the following table.

TABLE 6-7 CAP file method flags

The value of the ACC_EXTENDED flag must be one if the method_header is rep-
resented by an extended_method_header_info structure. Otherwise the
value must be zero.

The value of the ACC_ABSTRACT flag must be one if this method is defined as
abstract. In this case the bytecodes array must be empty. If this method is not
abstract the value of the ACC_ABSTRACT flag must be zero.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Flags Values

ACC_EXTENDED 0x8

ACC_ABSTRACT 0x4

94 Java Card 2.1 Virtual Machine Specification • March 3, 1999

padding

The padding item has the value of zero. This item is only defined for the
extended_method_header_info structure.

max_stack

The max_stack item indicates the maximum number of 16-bit cells required
on the operand stack during execution of this method.

Stack entries of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

nargs

The nargs item indicates the number of 16-bit cells required to represent the
parameters passed to this method, including the this pointer if this method is
a virtual method.

Parameters of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

max_locals

The max_locals item indicates the number of 16-bit cells required to represent
the local variables declared by this method, not including the parameters
passed to this method on invocation.1

Local variables of type int are represented in two 16-bit cells, while all others
are represented in one 16-bit cell. The number of cells required for overloaded
local variables is two if one or more of the overloaded variables is of type int.

bytecodes[]

The bytecodes item represents an array of Java Card bytecodes that imple-
ment this method. Valid instructions are defined in Chapter 7, “Java Card Vir-
tual Machine Instruction Set”. The impdep1 and impdep2 bytecodes can not be
present in the bytecodes array item.

If this method is abstract the bytecodes item must contain zero elements.

1. Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables
declared by the method and the parameters passed to the method.

Chapter 6 The CAP File Format 95

6.10 Static Field Component
The Static Field Component contains all of the information required to create and
initialize an image of all of the static fields defined in this package, referred to as the
static field image. Final static fields of primitive types are not represented in the
static field image. Instead these compile-time constants are placed in line in Java
Card instructions.

The Static Field Component does not reference any other component in this CAP file.
The Constant Pool Component (§6.7), Export Component (§6.12) and Descriptor
Component (§6.13) reference fields defined in the Static Field Component.

The ordering constraints, or segments, associated with a static field image are shown
in TABLE 6-8. Reference types occur first in the image. Arrays initialized through
Java <clinit> methods occur first within the set of reference types. Primitive
types occur last in the image, and primitive types initialized to non-default values
occur last within the set of primitive types.

TABLE 6-8 Segments of a static field image

The number of bytes used to represent each field type in the static field image is
shown in the following table.

TABLE 6-9 Static field sizes

category segment content

reference
types

1 arrays of primitive types initialized by <clinit>
methods

2 reference types initialized to null

primitive
types

3 primitive types initialized to default values

4 primitive types initialized to non-default values

Type Bytes

boolean 1

byte 1

short 2

int 4

reference, including arrays 2

96 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The static_field_component structure is defined as:

static_field_component {
u1 tag
u2 size
u2 image_size
u2 reference_count
u2 array_init_count
array_init_info array_init[array_init_count]
u2 default_value_count
u2 non_default_value_count
u1 non_default_values[non_default_values_count]

}

The items in the static_field_component structure are as follows:

tag

The tag item has the value COMPONENT_StaticField (8).

size

The size item indicates the number of bytes in the
static_field_component structure, excluding the tag and size items. The
value of the size item must be greater than zero.

image_size

The image_size item indicates the number of bytes required to represent the
static fields defined in this package, excluding final static fields of primitive
types. This value is the number of bytes in the static field image. The number of
bytes required to represent each field type is shown in TABLE 6-9.

The value of the image_size item does not include the number of bytes
require to represent the initial values of array instances enumerated in the
Static Field Component.

reference_count

The reference_count item indicates the number of reference type static
fields defined in this package. This is the number of fields represented in seg-
ments 1 and 2 of the static field image as described in TABLE 6-8.

The value of the reference_count item may be 0 if no reference type fields
are defined in this package. Otherwise it must be equal to the number of ref-
erence type fields defined.

array_init_count

The array_init_count item indicates the number of elements in the
array_init array. This is the number of fields represented in segment 1 of the
static field image as described in TABLE 6-8. It represents the number of arrays

Chapter 6 The CAP File Format 97

initialized in all of the <clinit> methods in this package.

If this CAP file defines a library package the value of array_init_count must
be zero.

array_init[]

The array_init item represents an array of array_init_info structures that
specify the initial array values of static fields of arrays of primitive types.
These initial values are indicated in Java <clinit> methods. The
array_init_info structure is defined as:

array_init_info {
u1 type
u2 count
u1 values[count]

}

The items in the array_init_info structure are defined as follows:

type
The type item indicates the type of the primitive array. Valid values
are shown in the following table.

TABLE 6-10 Array types

count
The count item indicates the number of bytes in the values array. It
does not represent the number of elements in the static field array
(referred to as length in Java), since the values array is an array of
bytes and the static field array may be a non-byte type. The Java
length of the static field array is equal to the count item divided by
the number of bytes required to represent the static field type
(TABLE 6-9) indicated by the type item.

values
The values item represents a byte array containing the initial values
of the static field array. The number of entries in the values array is
equal to the size in bytes of the type indicated by the type item. The
size in bytes of each type is shown in TABLE 6-9.

Type Value

boolean 2

byte 3

short 4

int 5

98 Java Card 2.1 Virtual Machine Specification • March 3, 1999

default_value_count

The default_value_count item indicates the number of bytes required to
initialize the set of static fields represented in segment 3 of the static field
image as described in TABLE 6-8. These static fields are primitive types initial-
ized to default values. The number of bytes required to initialize each static
field type is equal to the size in bytes of the type as shown in TABLE 6-9.

non_default_value_count

The non_default_value_count item represents the number bytes in the
non_default_values array. This value is equal to the number of bytes in seg-
ment 4 of the static field image as described in TABLE 6-8. These static fields are
primitive types initialized to non-default values.

non_default_values[]

The non_default_values item represents an array of bytes of non-default
initial values. This is the exact image of segment 4 of the static field image as
described in TABLE 6-8. The number of entries in the non_default_values
array for each static field type is equal to the size in bytes of the type as shown
in TABLE 6-9.

6.11 Reference Location Component
The Reference Location Component represents lists of offsets into the info item of
the Method Component (§6.9) to operands that contain indices into the
constant_pool array of the Constant Pool Component (§6.7). Some of the constant
pool indices are represented in one-byte values while others are represented in two-
byte values.

The Reference Location Component is not referenced by any other component in this
CAP file.

The Reference Location Component structure is defined as:

reference_location_component {
u1 tag
u2 size
u2 byte_index_count
u1 offsets_to_byte_indices[byte_index_count]
u2 byte2_index_count
u1 offsets_to_byte2_indices[byte2_index_count]

}

The items of the reference_location_component structure are as follows:

Chapter 6 The CAP File Format 99

tag

The tag item has the value COMPONENT_ReferenceLocation (9).

size

The size item indicates the number of bytes in the
reference_location_component structure, excluding the tag and size
items. The value of the size item must be greater than zero.

byte_index_count

The byte_index_count item represents the number of elements in the
offsets_to_byte_indices array.

offsets_to_byte_indices[]

The offsets_to_byte_indices item represents an array of 1-byte jump off-
sets into the info item of the Method Component to each 1-byte
constant_pool array index. Each entry represents the number of bytes (or
distance) between the current index to the next. If the distance is greater than or
equal to 255 then there are n entries equal to 255 in the array, where n is equal
to the distance divided by 255. The nth entry of 255 is followed by an entry
containing the value of the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is
shown in the following table.

TABLE 6-11 One-byte reference location example

All 1-byte constant_pool array indices in the Method Component must be
represented in offsets_to_byte_indices array.

byte2_index_count

The byte2_index_count item represents the number of elements in the
offsets_to_byte2_indices array.

offsets_to_byte2_indices[]

The offsets_to_byte2_indices item represents an array of 1-byte jump off-

Instruction
Offset to
Operand Jump Offset

getfield_a 0 10 10

putfield_b 2 65 55

255

255

getfield_s 1 580 5

255

putfield_a 0 835 0

getfield_i 3 843 8

100 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sets into the info item of the Method Component to each 2-byte
constant_pool array index. Each entry represents the number of bytes (or
distance) between the current index to the next. If the distance is greater than or
equal to 255 then there are n entries equal to 255 in the array, where n is equal
to the distance divided by 255. The nth entry of 255 is followed by an entry
containing the value of the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is shown in
TABLE 6-11. The same example applies to the offsets_to_byte2_indices array if
the instructions are changed to those with 2-byte constant_pool array indi-
ces.

All 2-byte constant_pool array indices in the Method Component must be
represented in offsets_to_byte2_indices array, including those repre-
sented in catch_type_index items of the exception_handler_info array.

6.12 Export Component
The Export Component lists all static elements in this package that may be imported
by classes in other packages. Instance fields and virtual methods are not represented
in the Export Component.

If this CAP file does not include an Applet Component (§6.5) (called a library
package) , the Export Component contains an entry for each public class and
public interface defined in this package. Furthermore, for each public class there is
an entry for each public or protected static field defined in that class, for each
public or protected static method defined in that class, and for each public or
protected constructor defined in that class. Final static fields of primitive types
(compile-time constants) are not included.

If this CAP file includes an Applet Component (§6.5) (called an applet package) the
Export Component includes entries only for all public interfaces that are shareable.1
An interface is sharable if and only if it is the javacard.framework.Shareable
interface or implements (directly or indirectly) that interface.

Elements in the Export Component reference elements in the Class Component
(§6.8), Method Component (§6.9), and Static Field Component (§6.10). No other
component in this CAP file references the Export Component.

1. The restriction on shareable functionality is imposed by the firewall as defined in the Java Card Runtime
Environment (JCRE) 2.1 specification.

Chapter 6 The CAP File Format 101

The Export Component is represented by the following structure:

export_component {
u1 tag
u2 size
u1 class_count
class_export_info {

u2 class_offset
u1 static_field_count
u1 static_method_count
u2 static_field_offsets[static_field_count]
u2 static_method_offsets[static_method_count]

} class_exports[class_count]
}

The items of the export_component structure are as follows:

tag

The tag item has the value COMPONENT_Export (10).

size

The size item indicates the number of bytes in the export_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

class_count

The class_count item represents the number of entries in the
class_exports table.

class_exports[]

The class_exports item represents a variable-length table of
class_export_info structures. If this package is a library package, the table
contains an entry for each of the public classes and public interfaces defined
in this package. If this package is an applet package, the table contains an entry
for each of the public shareable interfaces defined in this package.

An index into the table to a particular class or interface is equal to the token
value of that class or interface (§4.3.7.2). The token value is published in the
Export file (§5.5) of this package.

The items in the class_export_info structure are:

class_offset
The class_offset item represents a byte offset into the info item of
the Class Component (§6.8). If this package defines a library package,
the item at that offset must be either an interface_info or a
class_info structure. The interface_info or class_info struc-

102 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ture at that offset must represent the exported class or interface.

If this package defines an applet package, the item at the
class_offset in the info item of the Class Component must be an
interface_info structure. The interface_info structure at that
offset must represent the exported, shareable interface. In particular,
the ACC_SHAREABLE flag of the interface_info structure must be
equal to 1.

static_field_count
The static_field_count item represents the number of elements in
the static_field_offsets array. This value indicates the number
of public and protected static fields defined in this class, exclud-
ing final static fields of primitive types.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_field_count item must be zero.

static_method_count
The static_method_count item represents the number of elements
in the static_method_offsets array. This value indicates the num-
ber of public and protected static methods and constructors
defined in this class.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_method_count item must be zero.

static_field_offsets[]
The static_field_offsets item represents an array of 2-byte off-
sets into the static field image defined by the Static Field Component
(§6.10). Each offset must be to the beginning of the representation of
the exported static field.

An index into the static_field_offsets array must be equal to the
token value of the field represented by that entry. The token value is
published in the Export file (§5.7) of this package.

static_method_offsets[]
The static_method_offsets item represents a table of 2-byte offsets
into the info item of the Method Component (§6.9). Each offset must
be to the beginning of a method_info structure. The method_info
structure must represent the exported static method or constructor.

An index into the static_method_offsets array must be equal to
the token value of the method represented by that entry.

Chapter 6 The CAP File Format 103

6.13 Descriptor Component
The Descriptor Component provides sufficient information to parse and verify all
elements of the CAP file. It references, and therefore describes, elements in the
Constant Pool Component (§6.7), Class Component (§6.8), Method Component
(§6.9), and Static Field Component (§6.10). No components in the CAP file reference
the Descriptor Component.

The Descriptor Component is represented by the following structure:

descriptor_component {
u1 tag
u2 size
u1 class_count
class_descriptor_info classes[class_count]
type_descriptor_info types

}

The items of the descriptor_component structure are as follows:

tag

The tag item has the value COMPONENT_Descriptor (11).

size

The size item indicates the number of bytes in the descriptor_component
structure, excluding the tag and size items. The value of the size item must
be greater than zero.

class_count

The class_count item represents the number of entries in the classes table.

classes[]

The classes item represents a table of variable-length
class_descriptor_info structures. Each class and interface defined in this
package is represented in the table.

types

The types item represents a type_descriptor_info structure. This structure
lists the set of field types and method signatures of the fields and methods
defined or referenced in this package. Those referenced are enumerated in the
Constant Pool Component.

104 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.1 class_descriptor_info
The class_descriptor_info structure is used to describe a class or interface
defined in this package:

class_descriptor_info {
u1 token
u1 access_flags
class_ref this_class_ref
u1 interface_count
u2 field_count
u2 method_count
class_ref interfaces [interface_count]
field_descriptor_info fields[field_count]
method_descriptor_info methods[method_count]

}

The items of the class_descriptor_info structure are as follows:

token

The token item represents the class token (§4.3.7.2) of this class or interface. If
this class or interface is package-visible it does not have a token assigned. In
this case the value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this class or interface. The access_flags modifi-
ers for classes and interfaces are shown in the following table.

TABLE 6-12 CAP file class descriptor flags

The class access and modifier flags defined in the table above are a subset of
those defined for classes and interfaces in a Java class file. They have the
same meaning, and are set under the same conditions, as the corresponding
flags in a Java class file.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Name Value

ACC_PUBLIC 0x01

ACC_FINAL 0x10

ACC_INTERFACE 0x40

ACC_ABSTRACT 0x80

Chapter 6 The CAP File Format 105

this_class_ref

The this_class_ref item is a class_ref structure indicating the location of
the class_info structure in the Class Component (§6.8). The class_ref
structure is defined as part of the CONSTANT_Classref_info structure
(§6.7.1).

interface_count

The interface_count item represents the number of entries in the inter-
faces array.

field_count

The field_count item represents the number of entries in the fields array.
If this class_descriptor_info structure represents an interface, the value of
the field_count item is equal to zero.

method_count

The method_count item represents the number of entries in the methods
array.

interfaces[]

The interfaces item represents an array of interfaces implemented by this
class or interface. The elements in the array are class_ref structures indicat-
ing the location of the class_info structure in the Class Component (§6.8).
The class_ref structure is defined as part of the CONSTANT_Classref_info
structure (§6.7.1).

fields[]

The fields item represents an array of field_descriptor_info structures.
Each field declared by this class is represented in the array.

methods[]

The methods item represents an array of method_descriptor_info struc-
tures. Each method declared or defined by this class or interface is represented
in the array.

106 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.2 field_descriptor_info
The field_descriptor_info structure is used to describe a field defined in this
package:

field_descriptor_info {
u1 token
u1 access_flags
union {

static_field_ref static_field
instance_field_ref instance_field

} field_ref
union {

u2 primitive_type
u2 reference_type

} type
}

The items of the field_descriptor_info structure is as follows:

token

The token item represents the token of this field. If this field is private or
package-visible static field it does not have a token assigned. In this case the
value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this field. The access_flags modifiers for fields
are shown in the following table.

TABLE 6-13 CAP file field descriptor flagss

The field access and modifier flags defined in the table above are a subset of
those defined for fields in a Java class file. They have the same meaning, and
are set under the same conditions, as the corresponding flags in a Java class
file.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

Chapter 6 The CAP File Format 107

field_ref

The field_ref item represents a reference to this field. If the ACC_STATIC
flag is equal to 1, this item represents a static_field_ref as defined in the
CONSTANT_StaticFieldref structure (§6.7.3).

If the ACC_STATIC flag is equal to 0, this item represents an
instance_field_ref as defined in the CONSTANT_InstanceFieldref struc-
ture (§6.7.2).

type

The type item indicates the type of this field. directly or indirectly. If this field
is a primitive type (boolean, byte, short, or int) the high bit of this item is
equal to 1, otherwise the high bit of this item is equal to 0.

primitive_type
The primitive_type item represents the type of this field using the
values in the table below. As noted above, the high bit of the
primitive_type item is equal to 1.

TABLE 6-14 Primitive type descriptor values

reference_type
The reference_type item represents a 15-bit offset into the
type_descriptor_info structure. The item at the offset must repre-
sent the reference type of this field. As noted above, the high bit of
the reference_type item is equal to 0.

Data Type Value

boolean 0x0002

byte 0x0003

short 0x0004

int 0x0005

108 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.3 method_descriptor_info
The method_descriptor_info structure is used to describe a method defined in
this package:

method_descriptor_info {
u1 token
u1 access_flags
u2 method_offset
u2 type_offset
u2 bytecode_count
u2 exception_handler_count
u2 exception_handler_index

}

The items of the method_descriptor_info structure are as follows:

token

The token item represents the static method token (§4.3.7.4) or virtual method
token (§4.3.7.6) or interface method token (§4.3.7.7) of this method. If this
method is a private or package-visible static method, a private or package-visi-
ble constructor, or a private virtual method it does not have a token assigned.
In this case the value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this method. The access_flags modifiers for
methods are shown in the following table.

TABLE 6-15 CAP file method descriptor flags

The method access and modifier flags defined in the table above, except the
ACC_INIT flag, are a subset of those defined for methods in a Java class file.
They have the same meaning, and are set under the same conditions, as the
corresponding flags in a Java class file.

The ACC_INIT flag is set if the method descriptor identifies a constructor meth-

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

ACC_ABSTRACT 0x40

ACC_INIT 0x80

Chapter 6 The CAP File Format 109

ods. In Java a constructor method is recognized by its name, <init>, but in
Java Card the name is replaced by a token. As in the Java verifier, these meth-
ods require special checks by the Java Card verifier.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

method_offset

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents a class, the method_offset
item represents a byte offset into the info item of the Method Component
(§6.9). The element at that offset must be the beginning of a method_info
structure. The method_info structure must represent this method.

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents an interface, the value of the
method_offset item must be zero.

type_offset

The type_offset item must be a valid offset into the
type_descriptor_info structure. The type described at that offset repre-
sents the signature of this method.

bytecode_count

The bytecode_count item represents the number of bytecodes in this method.
The value is equal to the length of the bytecodes array item in the
method_info structure in the method component (§6.9) of this method.

exception_handler_count

The exception_handler_count item represents the number of exception
handlers implemented by this method.

exception_handler_index

The exception_handler_index item represents the index to the first
exception_handlers table entry in the method component (§6.9) imple-
mented by this method. Succeeding exception_handlers table entries, up to
the value of the exception_handler_count item, are also exception handlers
implemented by this method.

The value of the exception_handler_index item is 0 if the value of the
exception_handler_count item is 0.

110 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.4 type_descriptor_info
The type_descriptor_info structure represents the types of fields and signatures
of methods defined in this package:

type_descriptor_info {
u2 constant_pool_count
u2 constant_pool_types[constant_pool_count]
{ u1 nibble_count;
 u1 type[(nibble_count+1) / 2];
} type_desc[]

}

The type_descriptor_info structure contains the following elements:

constant_pool_count

The constant_pool_count item represents the number of entries in the
constant_pool_types array. This value is equal to the number of entries in
the constant_pool array of the Constant Pool Component (§6.7).

constant_pool_types[]

The constant_pool_types item is an array that describes the types of the
fields and methods referenced in the Constant Pool Component. This item has
the same number of entries as the constant_pool array of the Constant Pool
Component, and each entry describes the type of the corresponding entry in
the constant_pool array.

If the corresponding constant_pool array entry represents a class or interface
reference, it does not have an associated type. In this case the value of the entry
in the constant_pool_types array item is 0xFFFF.

If the corresponding constant_pool array entry represents a field or method,
the value of the entry in the constant_pool_types array is an offset into the
type_descriptor_info structure. The element at that offset must describe
the type of the field or the signature of the method.

type_desc[]

The type_desc item represents a table of variable-length type descriptor struc-
tures. These descriptors represent the types of fields and signatures of meth-
ods. The elements in the structure are:

nibble_count
The nibble_count value represents the number of nibbles required
to describe the type encoded in the type array. This is different from
the length of the type array if the value of the nibble_count item is
odd. In this case the length of the type array is one greater than the
value of nibble_count.

Chapter 6 The CAP File Format 111

type[]
The type array contains an encoded description of the type, com-
posed of individual nibbles. If the nibble_count item is an odd
number, the last nibble in the type array must be 0x0. The values of
the type descriptor nibbles are defined in the following table.

TABLE 6-16 Type descriptor values

Class reference types are described using the reference nibble 0x6, followed by a
2-byte (4-nibble) class_ref structure. The class_ref structure is defined as part of
the CONSTANT_Classref_info structure (§6.7.1). For example, a field of type
reference to p1.c1 in a CAP file defining package p0 is described as:

TABLE 6-17 Encoded reference type p1.c1

The following are examples of the array types:

TABLE 6-18 Encoded byte array type

Type Value

void 0x1

boolean 0x2

byte 0x3

short 0x4

int 0x5

reference 0x6

array of boolean 0xA

array of byte 0xB

array of short 0xC

array of int 0xD

array of reference 0xE

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x0 padding

Nibble Value Description

0 0xB array of byte

1 0x0 padding

112 Java Card 2.1 Virtual Machine Specification • March 3, 1999

TABLE 6-19 Encoded reference array type p1.c1

Method signatures are encoded in the same way, with the last nibble indicating the
return type of the method. For example:

TABLE 6-20 Encoded method signature ()V

TABLE 6-21 Encoded method signature (Lp1.ci;)S

Nibble Value Description

0 0xE array of reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x0 padding

Nibble Value Description

0 0x1 void

1 0x0 padding

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x4 short

115

CHAPTER 7

Java Card Virtual Machine
Instruction Set

A Java Card virtual machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying values to
be operated upon. This chapter gives details about the format of each Java Card
virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card
virtual machine code that satisfies the static and structural constraints of Chapter 6,
“The CAP File Format.”

In the description of individual Java Card virtual machine instructions, we
frequently state that some situation “must” or “must not” be the case: “The value2
must be of type int.” The constraints of Chapter 6, “The CAP File Format”
guarantee that all such expectations will in fact be met. If some constraint (a “must”
or “must not”) in an instruction description is not satisfied at run time, the behavior
of the Java Card virtual machine is undefined.

116 Java Card 2.1 Virtual Machine Specification • March 3, 1999

7.2 Reserved Opcodes
In addition to the opcodes of the instructions specified later this chapter, which are
used in Java Card CAP files (see Chapter 6, “The CAP File Format”), two opcodes are
reserved for internal use by a Java Card virtual machine implementation. If Sun
extends the instruction set of the Java Card virtual machine in the future, these
reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics
impdep1 and impdep2, respectively. These instructions are intended to provide “back
doors” or traps to implementation-specific functionality implemented in software
and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java
Card virtual machine implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors
A Java Card virtual machine may encounter internal errors or resource limitations
that prevent it from executing correctly written Java programs. While the Java
Virtual Machine Specification allows reporting and handling of virtual machine
errors, it also states that they cannot ordinarily be handled by application code. This
Java Card Virtual Machine Specification is more restrictive in that it does not allow
for any reporting or handling of unrecoverable virtual machine errors at the
application code level. A virtual machine error is considered unrecoverable if further
execution could compromise the security or correct operation of the virtual machine
or underlying system software. When an unrecoverable error occurs, the virtual
machine will halt bytecode execution. Responses beyond halting the virtual machine
are implementation-specific policies and are not mandated in this specification.

In the case where the virtual machine encounters a recoverable error, such as
insufficient memory to allocate a new object, it will throw a SystemException with
an error code describing the error condition. The Java Card Virtual Machine
Specification cannot predict where resource limitations or internal errors may be
encountered and does not mandate precisely when they can be reported. Thus, a
SystemException may be thrown at any time during the operation of the Java Card
virtual machine.

Chapter 7 Java Card Virtual Machine Instruction Set 117

7.4 Security Exceptions
Instructions of the Java Card virtual machine throw an instance of the class
SecurityException when a security violation has been detected. The Java Card
virtual machine does not mandate the complete set of security violations that can or
will result in an exception being thrown. However, there is a minimum set that must
be supported.

In the general case, any instruction that de-references an object reference must throw
a SecurityException if the context (§3.4) in which the instruction is executing is
different than the owning context (§3.4) of the referenced object. The list of
instructions includes the instance field get and put instructions, the array load and
store instructions, as well as the arraylength, invokeinterface, invokespecial, invokevirtual,
checkcast, instanceof and athrow instructions.

There are several exceptions to this general rule that allow cross-context use of
objects or arrays. These exceptions are detailed in Chapter 6 of the Java Card 2.1
Runtime Environment (JCRE) Specification. An important detail to note is that any
cross-context method invocation will result in a context switch (§3.4).

The Java Card virtual machine may also throw a SecurityException if an
instruction violates any of the static constraints of Chapter 6, “The CAP File
Format.” The Java Card Virtual Machine Specification does not mandate which
instructions must implement these additional security checks, or to what level.
Therefore, a SecurityException may be thrown at any time during the operation
of the Java Card virtual machine.

7.5 The Java Card Virtual Machine
Instruction Set
Java Virtual Machine instructions are represented in this chapter by entries of the
form shown in the figure below, an example instruction page, in alphabetical order
and each beginning on a new page.

118 Java Card 2.1 Virtual Machine Specification • March 3, 1999

FIGURE 7-1 An example instruction page

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction’s mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Card virtual machine code in a CAP file.

mnemonic mnemonic
Short description of the instruction

Format
mnemonic
operand1
operand2
…

Forms

mnemonic = opcode

Stack

…, value1, value2 ⇒
…, value3

Description

A longer description detailing constraints on operand stack
contents or constant pool entries, the operation performed, the
type of the results, etc.

Runtime Exceptions

If any runtime exceptions can be thrown by the execution of an
instruction they are set off one to a line, in the order in which
they must be thrown.

Other than the runtime exceptions, if any, listed for an
instruction, that instruction must not throw any runtime
exceptions except for instances of SystemException.

Notes

Comments not strictly part of the specification of an instruction
are set aside as notes at the end of the description.

Chapter 7 Java Card Virtual Machine Instruction Set 119

Keep in mind that there are “operands” generated at compile time and embedded
within Java Card virtual machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from
several different areas, all these operands represent the same thing: values to be
operated upon by the Java Card virtual machine instruction being executed. By
implicitly taking many of its operands from its operand stack, rather than
representing them explicitly in its compiled code as additional operand bytes,
register numbers, etc., the Java Card virtual machine’s code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line lists
all member mnemonics and opcodes. For example, the forms line for the sconst_<s>
family of instructions, giving mnemonic and opcode information for the two
instructions in that family (sconst_0 and sconst_1), is

Forms sconst_0 = 3 (0x3),
sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an
instruction’s execution on the operand stack (§3.5) of the current frame (§3.5) is
represented textually, with the stack growing from left to right and each word
represented separately. Thus,

Stack…, value1, value2 ⇒
…, result

shows an operation that begins by having a one-word value2 on top of the operand
stack with a one-word value1 just beneath it. As a result of the execution of the
instruction, value1 and value2 are popped from the operand stack and replaced by a
one-word result, which has been calculated by the instruction. The remainder of the
operand stack, represented by an ellipsis (…), is unaffected by the instruction’s
execution.

The type int takes two words on the operand stack. In the operand stack
representation, each word is represented separately using a dot notation:

Stack…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

The Java Card Virtual Machine Specification does not mandate how the two words
are used to represent the 32-bit int value; it only requires that a particular
implementation be internally consistent.

120 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aaload aaload
Load reference from array

Format

Forms

aaload = 36 (0x24)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type reference. The index must be of type short. Both arrayref
and index are popped from the operand stack. The reference value in the
component of the array at index is retrieved and pushed onto the top of the operand
stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

aaload

Chapter 7 Java Card Virtual Machine Instruction Set 121

aastore aastore
Store into reference array

Format

Forms

aastore = 55 (0x37)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type reference. The index must be of type short and the value
must be of type reference. The arrayref, index and value are popped from the
operand stack. The reference value is stored as the component of the array at index.

The type of value must be assignment compatible with the type of the components
of the array referenced by arrayref. Assignment of a value of reference type S
(source) to a variable of reference type T (target) is allowed only when the type S
supports all of the operations defined on type T. The detailed rules follow:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type1, namely the type SC[], that is, an array of components of
type SC, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

aastore

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither S or T can be an array type, and the rules for array types do not apply.

122 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aastore (cont.) aastore (cont.)
■ If T is an interface type, T must be one of the interfaces implemented by

arrays1.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aastore instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment
compatible with the actual type of the component of the array, aastore throws an
ArrayStoreException.

Notes

In some circumstances, the aastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

1. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

Chapter 7 Java Card Virtual Machine Instruction Set 123

aconst_null aconst_null
Push null

Format

Forms

aconst_null = 1 (0x1)

Stack

… ⇒
…, null

Description

Push the null object reference onto the operand stack.

aconst_null

124 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aload aload
Load reference from local variable

Format

Forms

aload = 21 (0x15)

Stack

… ⇒
…, objectref

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a reference. The
objectref in the local variable at index is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the astore instruction is
intentional.

aload
index

Chapter 7 Java Card Virtual Machine Instruction Set 125

aload_<n> aload_<n>
Load reference from local variable

Format

Forms

aload_0 = 24 (0x18)
aload_1 = 25 (0x19)
aload_2 = 26 (0x1a)
aload_3 = 27 (0x1b)

Stack

… ⇒
…, objectref

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The local variable at <n> must contain a reference. The objectref in the local variable
at <n> is pushed onto the operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress
from a local variable onto the operand stack. This asymmetry with the
corresponding astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

aload_<n>

126 Java Card 2.1 Virtual Machine Specification • March 3, 1999

anewarray anewarray
Create new array of reference

Format

Forms

anewarray = 145 (0x91)

Stack

…, count ⇒
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of components of the array to be created. The unsigned
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the
current package (§3.5), where the value of the index is (indexbyte1 << 8) | indexbyte2.
The item at that index in the constant pool must be of type CONSTANT_Classref
(§6.7.1), a reference to a class or interface type. The reference is resolved. A new
array with components of that type, of length count, is allocated from the heap, and
a reference arrayref to this new array object is pushed onto the operand stack. All
components of the new array are initialized to null, the default value for reference
types.

Runtime Exception

If count is less than zero, the anewarray instruction throws a
NegativeArraySizeException.

anewarray
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 127

areturn areturn
Return reference from method

Format

Forms

areturn = 119 (0x77)

Stack

…, objectref ⇒
[empty]

Description

The objectref must be of type reference. The objectref is popped from the operand
stack of the current frame (§3.5) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current method are
discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

areturn

128 Java Card 2.1 Virtual Machine Specification • March 3, 1999

arraylength arraylength
Get length of array

Format

Forms

arraylength = 146 (0x92)

Stack

…, arrayref ⇒
…, length

Description

The arrayref must be of type reference and must refer to an array. It is popped from
the operand stack. The length of the array it references is determined. That length is
pushed onto the top of the operand stack as a short.

Runtime Exception

If arrayref is null, the arraylength instruction throws a NullPointerException.

Notes

In some circumstances, the arraylength instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the array referenced
by arrayref. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

arraylength

Chapter 7 Java Card Virtual Machine Instruction Set 129

astore astore
Store reference into local variable

Format

Forms

astore = 40 (0x28)

Stack

…, objectref ⇒
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The objectref on the top of the operand stack must be of type
returnAddress or of type reference. The objectref is popped from the operand
stack, and the value of the local variable at index is set to objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. The aload instruction cannot be used to load
a value of type returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction is intentional.

astore
index

130 Java Card 2.1 Virtual Machine Specification • March 3, 1999

astore_<n> astore_<n>
Store reference into local variable

Format

Forms

astore_0 = 43 (0x2b)
astore_1 = 44 (0x2c)
astore_2 = 45 (0x2d)
astore_3 = 46 (0x2e)

Stack

…, objectref ⇒
…

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The objectref on the top of the operand stack must be of type returnAddress or of
type reference. It is popped from the operand stack, and the value of the local
variable at <n> is set to objectref.

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. An aload_<n> instruction cannot be used to
load a value of type returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

astore_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 131

athrow athrow
Throw exception or error

Format

Forms

athrow = 147 (0x93)

Stack

…, objectref ⇒
objectref

Description

The objectref must be of type reference and must refer to an object that is an
instance of class Throwable or of a subclass of Throwable. It is popped from the
operand stack. The objectref is then thrown by searching the current frame (§3.5) for
the most recent catch clause that catches the class of objectref or one of its
superclasses.

If a catch clause is found, it contains the location of the code intended to handle this
exception. The pc register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack, and execution
continues. If no appropriate clause is found in the current frame, that frame is
popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.

Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.

Notes

In some circumstances, the athrow instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

athrow

132 Java Card 2.1 Virtual Machine Specification • March 3, 1999

baload baload
Load byte or boolean from array

Format

Forms

baload = 37 (0x25)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type byte or of type boolean. The index must be of type short.
Both arrayref and index are popped from the operand stack. The byte value in the
component of the array at index is retrieved, sign-extended to a short value, and
pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
baload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

baload

Chapter 7 Java Card Virtual Machine Instruction Set 133

bastore bastore
Store into byte or boolean array

Format

Forms

bastore = 56 (0x38)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type byte or of type boolean. The index and value must both be
of type short. The arrayref, index and value are popped from the operand stack. The
short value is truncated to a byte and stored as the component of the array indexed
by index.

Runtime Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
bastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

bastore

134 Java Card 2.1 Virtual Machine Specification • March 3, 1999

bipush bipush
Push byte

Format

Forms

bipush = 18 (0x12)

Stack

… ⇒
…, value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed
onto the operand stack.

Notes

If a virtual machine does not support the int data type, the bipush instruction will
not be available.

bipush
byte

Chapter 7 Java Card Virtual Machine Instruction Set 135

bspush bspush
Push byte

Format

Forms

bspush = 16 (0x10)

Stack

… ⇒
…, value

Description

The immediate byte is sign-extended to a short, and the resulting value is pushed
onto the operand stack.

bspush
byte

136 Java Card 2.1 Virtual Machine Specification • March 3, 1999

checkcast checkcast
Check whether object is of given type

Format

Forms

checkcast = 148 (0x94)

Stack

…, objectref ⇒
…, objectref

Description

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current package (§3.5), where the value of the
index is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool
must be of type CONSTANT_Classref (§6.7.1), a reference to a class or interface type.
The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the
value of atype is zero, the object is checked against a class or interface type that is the
resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the
specified array type or the resolved class or interface type, the operand stack is
unchanged; otherwise the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be
cast to the resolved type: if S is the class of the object referred to by objectref and T is

checkcast
atype

indexbyte1
indexbyte2

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

Chapter 7 Java Card Virtual Machine Instruction Set 137

checkcast (cont.) checkcast (cont.)
the resolved class, array or interface type, checkcast determines whether objectref can
be cast to type T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC1, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

■ If T is an interface type, T must be one of the interfaces implemented by
arrays2.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast
instruction throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction. It
differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither SC or TC can be an array type.

2. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

138 Java Card 2.1 Virtual Machine Specification • March 3, 1999

checkcast (cont.) checkcast (cont.)
If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

Chapter 7 Java Card Virtual Machine Instruction Set 139

dup dup
Duplicate top operand stack word

Format

Forms

dup = 61 (0x3d)

Stack

…, word ⇒
…, word, word

Description

The top word on the operand stack is duplicated and pushed onto the operand stack.

The dup instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup
instruction operates on an untyped word, ignoring the type of data it contains.

dup

140 Java Card 2.1 Virtual Machine Specification • March 3, 1999

dup_x dup_x
Duplicate top operand stack words and insert below

Format

Forms

dup_x = 63 (0x3f)

Stack

…, wordN, …, wordM, …, word1 ⇒
…, wordM, …, word1, wordN, …, wordM, …, word1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for m are 1 through 4. Permissible values for n are 0 and
m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and
the copied words are inserted n words down in the operand stack. When n equals 0,
the top m words are copied and placed on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m
are 1 or 2, and permissible values for n are 0 and m through m+2.

dup_x
mn

Chapter 7 Java Card Virtual Machine Instruction Set 141

dup2 dup2
Duplicate top two operand stack words

Format

Forms

dup2 = 62 (0x3e)

Stack

…, word2, word1 ⇒
…, word2, word1, word2, word1

Description

The top two words on the operand stack are duplicated and pushed onto the
operand stack, in the original order.

The dup2 instruction must not be used unless each of word1 and word2 is a word that
contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2
instruction operates on untyped words, ignoring the types of data they contain.

dup2

142 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t> getfield_<t>
Fetch field from object

Format

Forms

getfield_a = 131 (0x83)
getfield_b = 132 (0x84)
getfield_s = 133 (0x85)
getfield_i = 134 (0x86)

Stack

…, objectref ⇒
…, value

OR

…, objectref ⇒
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned index is used as an index into the constant pool of the current package
(§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t> instruction throws a NullPointerException.

getfield_<t>
index

Chapter 7 Java Card Virtual Machine Instruction Set 143

getfield_<t> (cont.) getfield_<t> (cont.)
Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the object referenced
by objectref. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the getfield_i instruction will
not be available.

144 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t>_this getfield_<t>_this
Fetch field from current object

Format

Forms

getfield_a_this = 173 (0xad)
getfield_b_this = 174 (0xae)
getfield_s_this = 175 (0xaf)
getfield_i_this = 176 (0xb0)

Stack

… ⇒
…, value

OR

… ⇒
…, value.word1, value.word2

Description

The currently executing method must be an instance method. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

getfield_<t>_this
index

Chapter 7 Java Card Virtual Machine Instruction Set 145

getfield_<t>_this (cont.) getfield_<t>_this (cont.)
Runtime Exception

If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_this instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the getfield_i_this instruction
will not be available.

146 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t>_w getfield_<t>_w
Fetch field from object (wide index)

Format

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w = 170 (0xaa)
getfield_s_w = 171 (0xab)
getfield_i_w = 172 (0xac)

Stack

…, objectref ⇒
…, value

OR

…, objectref ⇒
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. The
item must resolve to a field of type reference. If the field is protected, then it
must be either a member of the current class or a member of a superclass of the
current class, and the class of objectref must be either the current class or a subclass of
the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

getfield_<t>_w
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 147

getfield_<t>_w (cont.) getfield_<t>_w (cont.)
Runtime Exception

If objectref is null, the getfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_w instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the getfield_i_w instruction
will not be available.

148 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getstatic_<t> getstatic_<t>
Get static field from class

Format

Forms

getstatic_a = 123 (0x7b)
getstatic_b = 124 (0x7c)
getstatic_s = 125 (0x7d)
getstatic_i = 126 (0x7e)

Stack

… ⇒
…, value

OR

… ⇒
…, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_StaticFieldref (§6.7.3), a reference to a static field. If the field is
protected, then it must be either a member of the current class or a member of a
superclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the field offset. The item is resolved, determining
the class field. The value of the class field is fetched. If the value is of type byte or
boolean, it is sign-extended to a short. The value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the getstatic_i instruction
will not be available.

getstatic_<t>
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 149

goto goto
Branch always

Format

Forms

goto = 112 (0x70)

Stack

No change

Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset
from the address of the opcode of this goto instruction. The target address must be
that of an opcode of an instruction within the method that contains this goto
instruction.

goto
branch

150 Java Card 2.1 Virtual Machine Specification • March 3, 1999

goto_w goto_w
Branch always (wide index)

Format

Forms

goto_w = 168 (0xa8)

Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit
branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this goto instruction. The target
address must be that of an opcode of an instruction within the method that contains
this goto instruction.

goto_w
branchbyte1
branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 151

i2b i2b
Convert int to byte

Format

Forms

i2b = 93 (0x5d)

Stack

…, value.word1, value.word2 ⇒
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a byte result by taking the low-order 16 bits of the
int value, and discarding the high-order 16 bits. The low-order word is truncated to
a byte, then sign-extended to a short result. The result is pushed onto the operand
stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not
be available.

i2b

152 Java Card 2.1 Virtual Machine Specification • March 3, 1999

i2s i2s
Convert int to short

Format

Forms

i2s = 94 (0x5e)

Stack

…, value.word1, value.word2 ⇒
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a short result by taking the low-order 16 bits of the
int value and discarding the high-order 16 bits. The result is pushed onto the
operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not
be available.

i2s

Chapter 7 Java Card Virtual Machine Instruction Set 153

iadd iadd
Add int

Format

Forms

iadd = 66 (0x42)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 + value2. The result is pushed onto the operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Notes

If a virtual machine does not support the int data type, the iadd instruction will not
be available.

iadd

154 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iaload iaload
Load int from array

Format

Forms

iaload = 39 (0x27)

Stack

…, arrayref, index ⇒
…, value.word1, value.word2

Description

The arrayref must be of type reference and must refer to an array whose
components are of type int. The index must be of type short. Both arrayref and index
are popped from the operand stack. The int value in the component of the array at
index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the
current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the iaload instruction will
not be available.

iaload

Chapter 7 Java Card Virtual Machine Instruction Set 155

iand iand
Boolean AND int

Format

Forms

iand = 84 (0x54)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. They are popped from the operand stack.
An int result is calculated by taking the bitwise AND (conjunction) of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iand instruction will not
be available.

iand

156 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iastore iastore
Store into int array

Format

Forms

iastore = 58 (0x3a)

Stack

…, arrayref, index, value.word1, value.word2 ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type int. The index must be of type short and value must be of
type int. The arrayref, index and value are popped from the operand stack. The int
value is stored as the component of the array indexed by index.

Runtime Exception

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the iastore instruction will
not be available.

iastore

Chapter 7 Java Card Virtual Machine Instruction Set 157

icmp icmp
Compare int

Format

Forms

icmp = 95 (0x5f)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result

Description

Both value1 and value2 must be of type int. They are both popped from the operand
stack, and a signed integer comparison is performed. If value1 is greater than value2,
the short value 1 is pushed onto the operand stack. If value1 is equal to value2, the
short value 0 is pushed onto the operand stack. If value1 is less than value2, the
short value –1 is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the icmp instruction will not
be available.

icmp

158 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iconst_<i> iconst_<i>
Push int constant

Format

Forms

iconst_m1 = 10 (0x09)
iconst_0 = 11 (0xa)
iconst_1 = 12 (0xb)
iconst_2 = 13 (0xc)
iconst_3 = 14 (0xd)
iconst_4 = 15 (0xe)
iconst_5 = 16 (0xf)

Stack

… ⇒
…, <i>.word1, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction
will not be available.

iconst_<i>

Chapter 7 Java Card Virtual Machine Instruction Set 159

idiv idiv
Divide int

Format

Forms

idiv = 72 (0x48)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is the value of the Java expression value1 / value2. The result is
pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/
d is an int value q whose magnitude is as large as possible while satisfying | d · q |
= | n |. Moreover, q is a positive when | n | = | d | and n and d have the same sign,
but q is negative when | n | = | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the int type, and the divisor is –1, then
overflow occurs, and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not
be available.

idiv

160 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if_acmp<cond> if_acmp<cond>
Branch if reference comparison succeeds

Format

Forms

if_acmpeq = 104 (0x68)
if_acmpne = 105 (0x69)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_acmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond> instruction.

if_acmp<cond>
branch

Chapter 7 Java Card Virtual Machine Instruction Set 161

if_acmp<cond>_w if_acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

Forms

if_acmpeq_w = 160 (0xa0)
if_acmpne_w = 161 (0xa1)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if_acmp<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if_acmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond>_w instruction.

if_acmp<cond>_w
branchbyte1
branchbyte2

162 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if_scmp<cond> if_scmp<cond>
Branch if short comparison succeeds

Format

Forms

if_scmpeq = 106 (0x6a)
if_scmpne = 107 (0x6b)
if_scmplt = 108 (0x6c)
if_scmpge = 109 (0x6d)
if_scmpgt = 110 (0x6e)
if_scmple = 111 (0x6f)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

• lt succeeds if and only if value1 < value2

• le succeeds if and only if value1 ≤ value2

• gt succeeds if and only if value1 > value2

• ge succeeds if and only if value1 ≥ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_scmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond> instruction.

if_scmp<cond>
branch

Chapter 7 Java Card Virtual Machine Instruction Set 163

if_scmp<cond>_w if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Forms

if_scmpeq_w = 162 (0xa2)
if_scmpne_w = 163 (0xa3)
if_scmplt_w = 164 (0xa4)
if_scmpge_w = 165 (0xa5)
if_scmpgt_w = 166 (0xa6)
if_scmple_w = 167 (0xa7)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

• lt succeeds if and only if value1 < value2

• le succeeds if and only if value1 ≤ value2

• gt succeeds if and only if value1 > value2

• ge succeeds if and only if value1 ≥ value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if_scmp<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if_scmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond>_w instruction.

if_scmp<cond>_w
branchbyte1
branchbyte2

164 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if<cond> if<cond>
Branch if short comparison with zero succeeds

Format

Forms

ifeq = 96 (0x60)
ifne = 97 (0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (0x65)

Stack

…, value ⇒
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:
• eq succeeds if and only if value = 0

• ne succeeds if and only if value ≠ 0

• lt succeeds if and only if value < 0

• le succeeds if and only if value ≤ 0

• gt succeeds if and only if value > 0

• ge succeeds if and only if value ≥ 0

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if<cond> instruction.
The target address must be that of an opcode of an instruction within the method
that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond> instruction.

if<cond>
branch

Chapter 7 Java Card Virtual Machine Instruction Set 165

if<cond>_w if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0x9a)
ifge_w = 155 (0x9b)
ifgt_w = 156 (0x9c)
ifle_w = 157 (0x9d)

Stack

…, value ⇒
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:
• eq succeeds if and only if value = 0

• ne succeeds if and only if value ≠ 0

• lt succeeds if and only if value < 0

• le succeeds if and only if value ≤ 0

• gt succeeds if and only if value > 0

• ge succeeds if and only if value ≥ 0

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond>_w instruction.

if<cond>_w
branchbyte1
branchbyte2

166 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ifnonnull ifnonnull
Branch if reference not null

Format

Forms

ifnonnull = 103 (0x67)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnonnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull instruction.

ifnonnull
branch

Chapter 7 Java Card Virtual Machine Instruction Set 167

ifnonnull_w ifnonnull_w
Branch if reference not null (wide index)

Format

Forms

ifnonnull_w = 159 (0x9f)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, the unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull_w instruction.

ifnonnull_w
branchbyte1
branchbyte2

168 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ifnull ifnull
Branch if reference is null

Format

Forms

ifnull = 102 (0x66)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull
instruction.

ifnull
branch

Chapter 7 Java Card Virtual Machine Instruction Set 169

ifnull_w ifnull_w
Branch if reference is null (wide index)

Format

Forms

ifnull_w = 158 (0x9e)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, the unsigned bytes branchbyte1 and branchbyte2 are used to construct a
signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2.
Execution proceeds at that offset from the address of the opcode of this ifnull_w
instruction. The target address must be that of an opcode of an instruction within the
method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnull_w instruction.

ifnull_w
branchbyte1
branchbyte2

170 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iinc iinc
Increment local int variable by constant

Format

Forms

iinc = 90 (0x5a)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The const is an immediate signed byte. The value const
is first sign-extended to an int, then the int contained in the local variables at index
and index + 1 is incremented by that amount.

Notes

If a virtual machine does not support the int data type, the iinc instruction will not
be available.

iinc
index
const

Chapter 7 Java Card Virtual Machine Instruction Set 171

iinc_w iinc_w
Increment local int variable by constant

Format

Forms

iinc_w = 151 (0x97)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The immediate unsigned byte1 and byte2 values are
assembled into an intermediate short where the value of the short is (byte1 << 8) |
byte2. The intermediate value is then sign-extended to an int const. The int
contained in the local variables at index and index + 1 is incremented by const.

Notes

If a virtual machine does not support the int data type, the iinc_w instruction will
not be available.

iinc_w
index
byte1
byte2

172 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iipush iipush
Push int

Format

Forms

iipush = 20 (0x14)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The immediate unsigned byte1, byte2, byte3, and byte4 values are assembled into a
signed int where the value of the int is (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4. The resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iipush instruction will
not be available.

iipush
byte1
byte2
byte3
byte4

Chapter 7 Java Card Virtual Machine Instruction Set 173

iload iload
Load int from local variable

Format

Forms

iload = 23 (0x17)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The value of the local variables at index and index + 1 is
pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iload instruction will not
be available.

iload
index

174 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iload_<n> iload_<n>
Load int from local variable

Format

Forms

iload_0 = 32 (0x20)
iload_1 = 33 (0x21)
iload_2 = 34 (0x22)
iload_3 = 35 (0x23)

Stack

… ⇒
…, value1.word1, value1.word2

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (§3.5). The local variables at <n> and <n> + 1 together must contain an int.
The value of the local variables at <n> and <n> + 1 is pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except
that the operand <n> is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction
will not be available.

iload_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 175

ilookupswitch ilookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

ilookupswitch = 118 (0x76)

Stack

…, key.word1, key.word2 ⇒
…

Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the
ilookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of an int match and a signed 16-bit
offset. Each match is constructed from four unsigned bytes as (matchbyte1 << 24) |
(matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is constructed from
two unsigned bytes as (offsetbyte1 << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type int and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
ilookupswitch instruction. If the key does not match any of the match values, the target
address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

ilookupswitch
defaultbyte1
defaultbyte2

npairs1
npairs2

match-offset pairs…

matchbyte1
matchbyte2
matchbyte3
matchbyte4
offsetbyte1
offsetbyte2

176 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ilookupswitch (cont.) ilookupswitch (cont.)
The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this ilookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction
will not be available.

Chapter 7 Java Card Virtual Machine Instruction Set 177

imul imul
Multiply int

Format

Forms

imul = 70 (0x46)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 * value2. The result is pushed onto the operand stack.

If an imul instruction overflows, then the result is the low-order bits of the
mathematical product as an int. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

imul

178 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ineg ineg
Negate int

Format

Forms

ineg = 76 (0x4c)

Stack

…, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description

The value must be of type int. It is popped from the operand stack. The int result is
the arithmetic negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card
virtual machine uses two’s-complement representation for integers and the range of
two’s-complement values is not symmetric, the negation of the maximum negative
int results in that same maximum negative number. Despite the fact that overflow
has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

ineg

Chapter 7 Java Card Virtual Machine Instruction Set 179

instanceof instanceof
Determine if object is of given type

Format

Forms

instanceof = 149 (0x95)

Stack

…, objectref ⇒
…, result

Description

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current package (§3.5), where the value of the
index is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool
must be of type CONSTANT_Classref (§6.7.1), a reference to a class or interface type.
The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the
value of atype is zero, the object is checked against a class or interface type that is the
resolved class.

The objectref must be of type reference. It is popped from the operand stack. If
objectref is not null and is an instance of the resolved class, array or interface, the
instanceof instruction pushes a short result of 1 on the operand stack. Otherwise it
pushes a short result of 0.

instanceof
atype

indexbyte1
indexbyte2

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

180 Java Card 2.1 Virtual Machine Specification • March 3, 1999

instanceof (cont.) instanceof (cont.)
The following rules are used to determine whether an objectref that is not null is an
instance of the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, instanceof determines whether objectref
is an instance of T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC1, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

■ If T is an interface type, T must be one of the interfaces implemented by
arrays2.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction. It
differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither SC or TC can be an array type.

2. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

Chapter 7 Java Card Virtual Machine Instruction Set 181

invokeinterface invokeinterface
Invoke interface method

Format

Forms

invokeinterface = 142 (0x8e)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_Classref (§6.7.1), a reference to an interface class. The specified method
is resolved. The interface method must not be <init>, an instance initialization
method, or <clinit>, a class or interface initialization method.

The nargs operand is an unsigned byte that must not be zero. The method operand is
an unsigned byte that is the interface method token for the method to be invoked.
The objectref must be of type reference and must be followed on the operand stack
by nargs – 1 words of arguments. The number of words of arguments and the type
and order of the values they represent must be consistent with those of the selected
interface method.

The interface table of the class of the type of objectref is determined. If objectref is an
array type, then the interface table of class Object (§2.2.2.4) is used. The interface
table is searched for the resolved interface. The result of the search is a table that is
used to map the method token to a index.

The index is an unsigned byte that is used as an index into the method table of the
class of the type of objectref. If the objectref is an array type, then the method table of
class Object is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with arg1 in
local variable at index 0, arg1 in local variable at offset 2, arg2 immediately following

invokeinterface
nargs

indexbyte1
indexbyte2

method

182 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokeinterface (cont.) invokeinterface (cont.)
that, and so on. The new stack frame is then made current, and the Java Card virtual
machine pc is set to the opcode of the first instruction of the method to be invoked.
Execution continues with the first instruction of the method.

Runtime Exception

If objectref is null, the invokeinterface instruction throws a NullPointerException.

Notes

In some circumstances, the invokeinterface instruction may throw a
SecurityException if the current context (§3.4) is not the context (§3.4) of the
object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification. If the current context is not the object’s context and the JCRE permits
invocation of the method, the invokeinterface instruction will cause a context switch
(§3.4) to the object’s context before invoking the method, and will cause a return
context switch to the previous context when the invoked method returns.

Chapter 7 Java Card Virtual Machine Instruction Set 183

invokespecial invokespecial
Invoke instance method; special handling for superclass, private, and instance
initialization method invocations

Format

Forms

invokespecial = 140 (0x8c)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. If the invoked method is a private instance method or
an instance initialization method, the constant pool item at index must be of type
CONSTANT_StaticMethodref (§6.7.3), a reference to a statically linked instance
method. If the invoked method is a superclass method, the constant pool item at
index must be of type CONSTANT_SuperMethodref (§6.7.2), a reference to an instance
method of a specified class. The reference is resolved. The resolved method must not
be <clinit>, a class or interface initialization method. If the method is <init>, an
instance initialization method, then the method must only be invoked once on an
uninitialized object, and before the first backward branch following the execution of
the new instruction that allocated the object. Finally, if the method is protected,
then it must be either a member of the current class or a member of a superclass of
the current class, and the class of objectref must be either the current class or a
subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
must not be zero, and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack
by nargs – 1 words of arguments, where the number of words of arguments and the
type and order of the values they represent must be consistent with those of the
selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame is

invokespecial
indexbyte1
indexbyte2

184 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokespecial (cont.) invokespecial (cont.)
then made current, and the Java Card virtual machine pc is set to the opcode of the
first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokespecial instruction throws a NullPointerException.

Chapter 7 Java Card Virtual Machine Instruction Set 185

invokestatic invokestatic
Invoke a class (static) method

Format

Forms

invokestatic = 141 (0x8d)

Stack

…, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_StaticMethodref (§6.7.3), a reference to a static method. The method
must not be <init>, an instance initialization method, or <clinit>, a class or
interface initialization method. It must be static, and therefore cannot be
abstract. Finally, if the method is protected, then it must be either a member of
the current class or a member of a superclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
may be zero, and the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of
words of arguments and the type and order of the values they represent must be
consistent with those of the resolved method .

The nargs words of arguments are popped from the operand stack. A new stack
frame is created for the method being invoked, and the words of arguments are
made the values of its first nargs words of local variables, with arg1 in local variable
0, arg2 in local variable 1, and so on. The new stack frame is then made current, and
the Java Card virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

invokestatic
indexbyte1
indexbyte2

186 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokevirtual invokevirtual
Invoke instance method; dispatch based on class

Format

Forms

invokevirtual = 139 (0x8b)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_VirtualMethodref (§6.7.2), a reference to a class and a virtual method
token. The specified method is resolved. The method must not be <init>, an
instance initialization method, or <clinit>, a class or interface initialization
method. If the method is protected, then it must be either a member of the current
class or a member of a superclass of the current class, and the class of objectref must
be either the current class or a subclass of the current class.

The resolved method reference includes an unsigned index into the method table of
the resolved class and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as
an index into the method table of the class of the type of objectref. If the objectref is an
array type, then the method table of class Object (§2.2.2.4) is used. The table entry
at that index includes a direct reference to the method’s code and modifier
information.

The objectref must be followed on the operand stack by nargs – 1 words of arguments,
where the number of words of arguments and the type and order of the values they
represent must be consistent with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame is
then made current, and the Java Card virtual machine pc is set to the opcode of the
first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

invokevirtual
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 187

invokevirtual (cont.) invokevirtual (cont.)
Runtime Exception

If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a
SecurityException if the current context (§3.4) is not the context (§3.4) of the
object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification. If the current context is not the object’s context and the JCRE permits
invocation of the method, the invokevirtual instruction will cause a context switch
(§3.4) to the object’s context before invoking the method, and will cause a return
context switch to the previous context when the invoked method returns.

188 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ior ior
Boolean OR int

Format

Forms

ior = 86 (0x56)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by taking the bitwise inclusive OR of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ior instruction will not
be available.

ior

Chapter 7 Java Card Virtual Machine Instruction Set 189

irem irem
Remainder int

Format

Forms

irem = 74 (0x4a)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is the value of the Java expression value1 – (value1 / value2) *
value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative int of largest
possible magnitude for its type and the divisor is –1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the irem instruction will not
be available.

irem

190 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ireturn ireturn
Return int from method

Format

Forms

ireturn = 121 (0x79)

Stack

…, value.word1, value.word2 ⇒
[empty]

Description

The value must be of type int. It is popped from the operand stack of the current
frame (§3.5) and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

Notes

If a virtual machine does not support the int data type, the ireturn instruction will
not be available.

ireturn

Chapter 7 Java Card Virtual Machine Instruction Set 191

ishl ishl
Shift left int

Format

Forms

ishl = 78 (0x4e)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting value1 left by s bit positions, where s is
the value of the low five bits of value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not
be available.

ishl

192 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ishr ishr
Arithmetic shift right int

Format

Forms

ishr = 80 (0x50)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting value1 right by s bit positions, with sign
extension, where s is the value of the low five bits of value2. The result is pushed onto
the operand stack.

Notes

The resulting value is (value1) / 2s, where s is value2 & 0x1f. For nonnegative value1,
this is equivalent (even if overflow occurs) to truncating int division by 2 to the
power s. The shift distance actually used is always in the range 0 to 31, inclusive, as
if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

Notes

If a virtual machine does not support the int data type, the ishr instruction will not
be available.

ishr

Chapter 7 Java Card Virtual Machine Instruction Set 193

istore istore
Store int into local variable

Format

Forms

istore = 42 (0x2a)

Stack

…, value.word1, value.word2 ⇒
…

Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into the
local variables of the current frame (§3.5). The value on top of the operand stack must
be of type int. It is popped from the operand stack, and the local variables at index
and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore instruction will not
be available.

istore
index

194 Java Card 2.1 Virtual Machine Specification • March 3, 1999

istore_<n> istore_<n>
Store int into local variable

Format

Forms

istore_0 = 51 (0x33)
istore_1 = 52 (0x34)
istore_2 = 53 (0x35)
istore_3 = 54 (0x36)

Stack

…, value.word1, value.word2 ⇒
…

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (§3.5). The value on top of the operand stack must be of type int. It is popped
from the operand stack, and the local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore_<n> instruction
will not be available.

istore_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 195

isub isub
Subtract int

Format

Forms

isub = 68 (0x44)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 - value2. The result is pushed onto the operand stack.

For int subtraction, a – b produces the same result as a + (–b). For int values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of an isub
instruction never throws a runtime exception.

Notes

If a virtual machine does not support the int data type, the isub instruction will not
be available.

isub

196 Java Card 2.1 Virtual Machine Specification • March 3, 1999

itableswitch itableswitch
Access jump table by int index and jump

Format

Offset Format

Forms

itableswitch = 116 (0x74)

Stack

…, index ⇒
…

Description

An itableswitch instruction is a variable-length instruction. Immediately after the
itableswitch opcode follow a signed 16-bit value default, a signed 32-bit value low, a
signed 32-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2. Each of the signed 32-bit values is
constructed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4.

The index must be of type int and is popped from the stack. If index is less than low
or index is greater than high, then a target address is calculated by adding default to
the address of the opcode of this itableswitch instruction. Otherwise, the offset at
position index – low of the jump table is extracted. The target address is calculated by
adding that offset to the address of the opcode of this itableswitch instruction.
Execution then continues at the target address.

itableswitch
defaultbyte1
defaultbyte2

lowbyte1
lowbyte2
lowbyte3
lowbyte4
highbyte1
highbyte2
highbyte3
highbyte4

jump offsets…

offsetbyte1
offsetbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 197

itableswitch (cont.) itableswitch (cont.)
The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this itableswitch instruction.

Notes

If a virtual machine does not support the int data type, the itableswitch instruction
will not be available.

198 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iushr iushr
Logical shift right int

Format

Forms

iushr = 82 (0x52)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting the result right by s bit positions, with
zero extension, where s is the value of the low five bits of value2. The result is pushed
onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s;
if value1 is negative, the result is equal to the value of the expression (value1 >> s) +
(2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the iushr instruction will not
be available.

iushr

Chapter 7 Java Card Virtual Machine Instruction Set 199

ixor ixor
Boolean XOR int

Format

Forms

ixor = 88 (0x58)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by taking the bitwise exclusive OR of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ixor instruction will not
be available.

ixor

200 Java Card 2.1 Virtual Machine Specification • March 3, 1999

jsr jsr
Jump subroutine

Format

Forms

jsr = 113 (0x71)

Stack

… ⇒
…, address

Description

The address of the opcode of the instruction immediately following this jsr instruction
is pushed onto the operand stack as a value of type returnAddress. The unsigned
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset, where the
offset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the
address of this jsr instruction. The target address must be that of an opcode of an
instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the
finally clause of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

jsr
branchbyte1
branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 201

new new
Create new object

Format

Forms

new = 143 (0x8f)

Stack

… ⇒
…, objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool must be of
type CONSTANT_Classref (§6.7.1), a reference to a class or interface type. The
reference is resolved and must result in a class type (it must not result in an interface
type). Memory for a new instance of that class is allocated from the heap, and the
instance variables of the new object are initialized to their default initial values. The
objectref, a reference to the instance, is pushed onto the operand stack.

Notes

The new instruction does not completely create a new instance; instance creation is
not completed until an instance initialization method has been invoked on the
uninitialized instance.

new
indexbyte1
indexbyte2

202 Java Card 2.1 Virtual Machine Specification • March 3, 1999

newarray newarray
Create new array

Format

Forms

newarray = 144 (0x90)

Stack

…, count ⇒
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must
take one of the following values:

A new array whose components are of type atype, of length count, is allocated from
the heap. A reference arrayref to this new array object is pushed onto the operand
stack. All of the elements of the new array are initialized to the default initial value
for its type.

Runtime Exception

If count is less than zero, the newarray instruction throws a
NegativeArraySizeException.

Notes

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

newarray
atype

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

Chapter 7 Java Card Virtual Machine Instruction Set 203

nop nop
Do nothing

Format

Forms

nop = 0 (0x0)

Stack

No change

Description

Do nothing.

nop

204 Java Card 2.1 Virtual Machine Specification • March 3, 1999

pop pop
Pop top operand stack word

Format

Forms

pop = 59 (0x3b)

Stack

…, word ⇒
…

Description

The top word is popped from the operand stack.

Notes

The pop instruction operates on an untyped word, ignoring the type of data it
contains.

pop

Chapter 7 Java Card Virtual Machine Instruction Set 205

pop2 pop2
Pop top two operand stack words

Format

Forms

pop2 = 60 (0x3c)

Stack

…, word2, word1 ⇒
…

Description

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word1 and word2 is a word that
contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the pop2
instruction operates on an untyped word, ignoring the type of data it contains.

pop2

206 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t> putfield_<t>
Set field in object

Format

Forms

putfield_a = 135 (0x87)
putfield_b = 136 (0x88)
putfield_s = 137 (0x89)
putfield_i = 138 (0x8a)

Stack

…, objectref, value ⇒
…

OR

…, objectref, value.word1, value.word2 ⇒
…

Description

The unsigned index is used as an index into the constant pool of the current package
(§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The objectref, which
must be of type reference, and the value are popped from the operand stack. If the
field is of type byte or type boolean, the value is truncated to a byte. The field at
the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t> instruction throws a NullPointerException.

putfield_<t>
index

Chapter 7 Java Card Virtual Machine Instruction Set 207

putfield_<t> (cont.) putfield_<t> (cont.)
Notes

In some circumstances, the putfield_<t> instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i instruction will
not be available.

208 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t>_this putfield_<t>_this
Set field in current object

Format

Forms

putfield_a_this = 181 (0xb5)
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

…, value ⇒
…

OR

…, value.word1, value.word2 ⇒
…

Description

The currently executing method must be an instance method that was invoked using
the invokevirtual, invokeinterface or invokespecial instruction. The local variable at index
0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value is
popped from the operand stack. If the field is of type byte or type boolean, the
value is truncated to a byte. The field at the offset from the start of the object
referenced by objectref is set to the value.

putfield_<t>_this
index

Chapter 7 Java Card Virtual Machine Instruction Set 209

putfield_<t>_this (cont.) putfield_<t>_this (cont.)
Runtime Exception

If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_this instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i_this instruction
will not be available.

210 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t>_w putfield_<t>_w
Set field in object (wide index)

Format

Forms

putfield_a_w = 177 (0xb1)
putfield_b_w = 178 (0xb2)
putfield_s_w = 179 (0xb3)
putfield_i_w = 180 (0xb4)

Stack

…, objectref, value ⇒
…

OR

…, objectref, value.word1, value.word2 ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The objectref, which
must be of type reference, and the value are popped from the operand stack. If the
field is of type byte or type boolean, the value is truncated to a byte. The field at
the offset from the start of the object referenced by objectref is set to the value.

putfield<t>_w
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 211

putfield_<t>_w (cont.) putfield_<t>_w (cont.)
Runtime Exception

If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_w instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i_w instruction
will not be available.

212 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putstatic_<t> putstatic_<t>
Set static field in class

Format

Forms

putstatic_a = 127 (0x7f)
putstatic_b = 128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i = 130 (0x82)

Stack

…, value ⇒
…

OR

…, value.word1, value.word2 ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_StaticFieldref (§6.7.3), a reference to a static field. If the field is
protected, then it must be either a member of the current class or a member of a
superclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the class field. The value is popped from the
operand stack. If the field is of type byte or type boolean, the value is truncated to a
byte. The field is set to the value.

putstatic_<t>
indexbyte1
indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 213

putstatic_<t> (cont.) putstatic_<t> (cont.)
Notes

In some circumstances, the putstatic_a instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the object being stored
in the field. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the putstatic_i instruction
will not be available.

214 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ret ret
Return from subroutine

Format

Forms

ret = 114 (0x72)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a value of type
returnAddress. The contents of the local variable are written into the Java Card
virtual machine’s pc register, and execution continues there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the
finally keyword of the Java language. Note that jsr pushes the address onto the
stack and ret gets it out of a local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return
instruction returns control from a Java method to its invoker, without passing any
value back to the invoker.

ret
index

Chapter 7 Java Card Virtual Machine Instruction Set 215

return return
Return void from method

Format

Forms

return = 122 (0x7a)

Stack

… ⇒
[empty]

Description

Any values on the operand stack of the current method are discarded. The virtual
machine then reinstates the frame of the invoker and returns control to the invoker.

return

216 Java Card 2.1 Virtual Machine Specification • March 3, 1999

s2b s2b
Convert short to byte

Format

Forms

s2b = 91 (0x5b)

Stack

…, value ⇒
…, result

Description

The value on top of the operand stack must be of type short. It is popped from the
top of the operand stack, truncated to a byte result, then sign-extended to a short
result. The result is pushed onto the operand stack.

Notes

The s2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

s2b

Chapter 7 Java Card Virtual Machine Instruction Set 217

s2i s2i
Convert short to int

Format

Forms

s2i = 92 (0x5c)

Stack

…, value ⇒
…, result.word1, result.word2

Description

The value on top of the operand stack must be of type short. It is popped from the
operand stack and sign-extended to an int result. The result is pushed onto the
operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of
type short are exactly representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not
be available.

s2i

218 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sadd sadd
Add short

Format

Forms

sadd = 65 (0x41)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 + value2. The result is pushed onto the
operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

sadd

Chapter 7 Java Card Virtual Machine Instruction Set 219

saload saload
Load short from array

Format

Forms

saload = 38 (0x46)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type short. The index must be of type short. Both arrayref and
index are popped from the operand stack. The short value in the component of the
array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
saload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the saload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

saload

220 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sand sand
Boolean AND short

Format

Forms

sand = 83 (0x53)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 are popped from the operand stack. A short result is
calculated by taking the bitwise AND (conjunction) of value1 and value2. The result is
pushed onto the operand stack.

sand

Chapter 7 Java Card Virtual Machine Instruction Set 221

sastore sastore
Store into short array

Format

Forms

sastore = 57 (0x39)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type short. The index and value must both be of type short. The
arrayref, index and value are popped from the operand stack. The short value is stored
as the component of the array indexed by index.

Runtime Exception

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
sastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

sastore

222 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sconst_<s> sconst_<s>
Push short constant

Format

Forms

sconst_m1 = 2 (0x2)
sconst_0 = 3 (0x3)
sconst_1 = 4 (0x4)
sconst_2 = 5 (0x5)
sconst_3 = 6 (0x6)
sconst_4= 7 (0x7)
sconst_5 = 8 (0x8)

Stack

… ⇒
…, <s>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

sconst_<s>

Chapter 7 Java Card Virtual Machine Instruction Set 223

sdiv sdiv
Divide short

Format

Forms

sdiv = 71 (0x47)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 / value2.
The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values
in n/d is a short value q whose magnitude is as large as possible while satisfying |
d · q | = | n |. Moreover, q is a positive when | n | = | d | and n and d have the
same sign, but q is negative when | n | = | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the short type, and the divisor is –1,
then overflow occurs, and the result is equal to the dividend. Despite the overflow,
no exception is thrown in this case.

Runtime Exception

If the value of the divisor in a short division is 0, sdiv throws an
ArithmeticException.

sdiv

224 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sinc sinc
Increment local short variable by constant

Format

Forms

sinc = 89 (0x59)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of the
current frame (§3.5). The const is an immediate signed byte. The local variable at
index must contain a short. The value const is first sign-extended to a short, then
the local variable at index is incremented by that amount.

sinc
index
const

Chapter 7 Java Card Virtual Machine Instruction Set 225

sinc_w sinc_w
Increment local short variable by constant

Format

Forms

sinc_w = 150 (0x96)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of the
current frame (§3.5). The immediate unsigned byte1 and byte2 values are assembled
into a short const where the value of const is (byte1 << 8) | byte2. The local variable
at index, which must contain a short, is incremented by const.

sinc_w
index
byte1
byte2

226 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sipush sipush
Push short

Format

Forms

sipush = 19 (0x13)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The intermediate value is then
sign-extended to an int, and the resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the sipush instruction will
not be available.

sipush
byte1
byte2

Chapter 7 Java Card Virtual Machine Instruction Set 227

sload sload
Load short from local variable

Format

Forms

sload = 22 (0x16)

Stack

… ⇒
…, value

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a short. The value
in the local variable at index is pushed onto the operand stack.

sload
index

228 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sload_<n> sload_<n>
Load short from local variable

Format

Forms

sload_0 = 28 (0x1c)
sload_1 = 29 (0x1d)
sload_2 = 30 (0x1e)
sload_3 = 31 (0x1f)

Stack

… ⇒
…, value

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The local variable at <n> must contain a short. The value in the local variable at <n>
is pushed onto the operand stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except
that the operand <n> is implicit.

sload_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 229

slookupswitch slookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

slookupswitch = 117 (0x75)

Stack

…, key ⇒
…

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the
slookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of a short match and a signed 16-bit
offset. Each of the signed 16-bit values is constructed from two unsigned bytes as
(byte1 << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type short and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
slookupswitch instruction. If the key does not match any of the match values, the target
address is calculated by adding default to the address of the opcode of this
slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this slookupswitch instruction.

slookupswitch
defaultbyte1
defaultbyte2

npairs1
npairs2

match-offset pairs…

matchbyte1
matchbyte2
offsetbyte1
offsetbyte2

230 Java Card 2.1 Virtual Machine Specification • March 3, 1999

slookupswitch (cont.) slookupswitch (cont.)
Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

Chapter 7 Java Card Virtual Machine Instruction Set 231

smul smul
Multiply short

Format

Forms

smul = 69 (0x45)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 * value2. The result is pushed onto the
operand stack.

If a smul instruction overflows, then the result is the low-order bits of the
mathematical product as a short. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

smul

232 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sneg sneg
Negate short

Format

Forms

sneg = 72 (0x4b)

Stack

…, value ⇒
…, result

Description

The value must be of type short. It is popped from the operand stack. The short
result is the arithmetic negation of value, -value. The result is pushed onto the operand
stack.

For short values, negation is the same as subtraction from zero. Because the Java
Card virtual machine uses two’s-complement representation for integers and the
range of two’s-complement values is not symmetric, the negation of the maximum
negative short results in that same maximum negative number. Despite the fact that
overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

sneg

Chapter 7 Java Card Virtual Machine Instruction Set 233

sor sor
Boolean OR short

Format

Forms

sor = 85 (0x55)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sor

234 Java Card 2.1 Virtual Machine Specification • March 3, 1999

srem srem
Remainder short

Format

Forms

srem = 73 (0x49)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative short of
largest possible magnitude for its type and the divisor is –1 (the remainder is 0). It
follows from this rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is positive.
Moreover, the magnitude of the result is always less than the magnitude of the
divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, srem throws an
ArithmeticException.

srem

Chapter 7 Java Card Virtual Machine Instruction Set 235

sreturn sreturn
Return short from method

Format

Forms

sreturn = 120 (0x78)

Stack

…, value ⇒
[empty]

Description

The value must be of type short. It is popped from the operand stack of the current
frame (§3.5) and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

sreturn

236 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sshl sshl
Shift left short

Format

Forms

sshl = 77 (0x4d)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

sshl

Chapter 7 Java Card Virtual Machine Instruction Set 237

sshr sshr
Arithmetic shift right short

Format

Forms

sshr = 79 (0x4f)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is (value1) / 2s, where s is value2 & 0x1f. For nonnegative value1,
this is equivalent (even if overflow occurs) to truncating short division by 2 to the
power s. The shift distance actually used is always in the range 0 to 31, inclusive, as
if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

sshr

238 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sspush sspush
Push short

Format

Forms

sspush = 17 (0x11)

Stack

… ⇒
…, value

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The resulting value is pushed onto
the operand stack.

sspush
byte1
byte2

Chapter 7 Java Card Virtual Machine Instruction Set 239

sstore sstore
Store short into local variable

Format

Forms

sstore = 41 (0x29)

Stack

…, value ⇒
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The value on top of the operand stack must be of type
short. It is popped from the operand stack, and the value of the local variable at
index is set to value.

sstore
index

240 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sstore_<n> sstore_<n>
Store short into local variable

Format

Forms

sstore_0 = 47 (0x2f)
sstore_1 = 48 (0x30)
sstore_2 = 49 (0x31)
sstore_3 = 50 (0x32)

Stack

…, value ⇒
…

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The value on top of the operand stack must be of type short. It is popped from the
operand stack, and the value of the local variable at <n> is set to value.

sstore_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 241

ssub ssub
Subtract short

Format

Forms

ssub = 67 (0x43)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 - value2. The result is pushed onto the
operand stack.

For short subtraction, a – b produces the same result as a + (–b). For short values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of a ssub
instruction never throws a runtime exception.

ssub

242 Java Card 2.1 Virtual Machine Specification • March 3, 1999

stableswitch stableswitch
Access jump table by short index and jump

Format

Offset Format

Forms

stableswitch = 115 (0x73)

Stack

…, index ⇒
…

Description

A stableswitch instruction is a variable-length instruction. Immediately after the
stableswitch opcode follow a signed 16-bit value default, a signed 16-bit value low, a
signed 16-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than
low or index is greater than high, than a target address is calculated by adding default
to the address of the opcode of this stableswitch instruction. Otherwise, the offset at
position index – low of the jump table is extracted. The target address is calculated by
adding that offset to the address of the opcode of this stableswitch instruction.
Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this stableswitch instruction.

stableswitch
defaultbyte1
defaultbyte2

lowbyte1
lowbyte2
highbyte1
highbyte2

jump offsets…

offsetbyte1
offsetbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 243

sushr sushr
Logical shift right short

Format

Forms

sushr = 81 (0x51)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by sign-extending value1 to 32 bits and
shifting the result right by s bit positions, with zero extension, where s is the value of
the low five bits of value2. The resulting value is then truncated to a 16-bit result. The
result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s;
if value1 is negative, the result is equal to the value of the expression (value1 >> s) +
(2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

sushr

244 Java Card 2.1 Virtual Machine Specification • March 3, 1999

swap_x swap_x
Swap top two operand stack words

Format

Forms

swap_x = 64 (0x40)

Stack

…, wordM+N, …, wordM+1, wordM, …, word1 ⇒
…, wordM, …, word1, wordM+N, …, wordM+1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for both m and n are 1 and 2.

The top m words on the operand stack are swapped with the n words immediately
below.

The swap_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value
for both m and n is 1.

swap_x
mn

Chapter 7 Java Card Virtual Machine Instruction Set 245

sxor sxor
Boolean XOR short

Format

Forms

sxor = 87 (0x57)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sxor

246 Java Card 2.1 Virtual Machine Specification • March 3, 1999

245

CHAPTER 8

Tables of Instructions

TABLE 8-1 Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic
0 00 nop 47 2F sstore_0
1 01 aconst_null 48 30 sstore_1
2 02 sconst_m1 49 31 sstore_2
3 03 sconst_0 50 32 sstore_3
4 04 sconst_1 51 33 istore_0
5 05 sconst_2 52 34 istore_1
6 06 sconst_3 53 35 istore_2
7 07 sconst_4 54 36 istore_3
8 08 sconst_5 55 37 aastore
9 09 iconst_m1 56 38 bastore
10 0A iconst_0 57 39 sastore
11 0B iconst_1 58 3A iastore
12 0C iconst_2 59 3B pop
13 0D iconst_3 60 3C pop2
14 0E iconst_4 61 3D dup
15 0F iconst_5 62 3E dup2
16 10 bspush 63 3F dup_x
17 11 sspush 64 40 swap_x
18 12 bipush 65 41 sadd
19 13 sipush 66 42 iadd
20 14 iipush 67 43 ssub
21 15 aload 68 44 isub
22 16 sload 69 45 smul
23 17 iload 70 46 imul
24 18 aload_0 71 47 sdiv
25 19 aload_1 72 48 idiv
26 1A aload_2 73 49 srem
27 1B aload_3 74 4A irem
28 1C sload_0 75 4B sneg
29 1D sload_1 76 4C ineg
30 1E sload_2 77 4D sshl
31 1F sload_3 78 4E ishl
32 20 iload_0 79 4F sshr
33 21 iload_1 80 50 ishr
34 22 iload_2 81 51 sushr
35 23 iload_3 82 52 iushr
36 24 aaload 83 53 sand
37 25 baload 84 54 iand
38 26 saload 85 55 sor
39 27 iaload 86 56 ior
40 28 astore 87 57 sxor
41 29 sstore 88 58 ixor
42 2A istore 89 59 sinc
43 2B astore_0 90 5A iinc
44 2C astore_1 91 5B s2b
45 2D astore_2 92 5C s2i
46 2E astore_3 93 5D i2b

246 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Table 8-1 (continued) Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic
94 5E i2s 141 8D invokestatic
95 5F icmp 142 8E invokeinterface
96 60 ifeq 143 8F new
97 61 ifne 144 90 newarray
98 62 iflt 145 91 anewarray
99 63 ifge 146 92 arraylength
100 64 ifgt 147 93 athrow
101 65 ifle 148 94 checkcast
102 66 ifnull 149 95 instanceof
103 67 ifnonnull 150 96 sinc_w
104 68 if_acmpeq 151 97 iinc_w
105 69 if_acmpne 152 98 ifeq_w
106 6A if_scmpeq 153 99 ifne_w
107 6B if_scmpne 154 9A iflt_w
108 6C if_scmplt 155 9B ifge_w
109 6D if_scmpge 156 9C ifgt_w
110 6E if_scmpgt 157 9D ifle_w
111 6F if_scmple 158 9E ifnull_w
112 70 goto 159 9F ifnonnull_w
113 71 jsr 160 A0 if_acmpeq_w
114 72 ret 161 A1 if_acmpne_w
115 73 stableswitch 162 A2 if_scmpeq_w
116 74 itableswitch 163 A3 if_scmpne_w
117 75 slookupswitch 164 A4 if_scmplt_w
118 76 ilookupswitch 165 A5 if_scmpge_w
119 77 areturn 166 A6 if_scmpgt_w
120 78 sreturn 167 A7 if_scmple_w
121 79 ireturn 168 A8 goto_w
122 7A return 169 A9 getfield_a_w
123 7B getstatic_a 170 AA getfield_b_w
124 7C getstatic_b 171 AB getfield_s_w
125 7D getstatic_s 172 AC getfield_i_w
126 7E getstatic_i 173 AD getfield_a_this
127 7F putstatic_a 174 AE getfield_b_this
128 80 putstatic_b 175 AF getfield_s_this
129 81 putstatic_s 176 B0 getfield_i_this
130 82 putstatic_i 177 B1 putfield_a_w
131 83 getfield_a 178 B2 putfield_b_w
132 84 getfield_b 179 B3 putfield_s_w
133 85 getfield_s 180 B4 putfield_i_w
134 86 getfield_i 181 B5 putfield_a_this
135 87 putfield_a 182 B6 putfield_b_this
136 88 putfield_b 183 B7 putfield_s_this
137 89 putfield_s 184 B8 putfield_i_this
138 8A putfield_i …
139 8B invokevirtual 254 FE impdep1
140 8C invokespecial 255 FF impdep2

Chapter 8 Tables of Instructions 247

TABLE 8-2 Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex
aaload 36 24 iand 84 54
aastore 55 37 iastore 58 3A
aconst_null 1 01 icmp 95 5F
aload 21 15 iconst_0 10 0A
aload_0 24 18 iconst_1 11 0B
aload_1 25 19 iconst_2 12 0C
aload_2 26 1A iconst_3 13 0D
aload_3 27 1B iconst_4 14 0E
anewarray 145 91 iconst_5 15 0F
areturn 119 77 iconst_m1 9 09
arraylength 146 92 idiv 72 48
astore 40 28 if_acmpeq 104 68
astore_0 43 2B if_acmpeq_w 160 A0
astore_1 44 2C if_acmpne 105 69
astore_2 45 2D if_acmpne_w 161 A1
astore_3 46 2E if_scmpeq 106 6A
athrow 147 93 if_scmpeq_w 162 A2
baload 37 25 if_scmpge 109 6D
bastore 56 38 if_scmpge_w 165 A5
bipush 18 12 if_scmpgt 110 6E
bspush 16 10 if_scmpgt_w 166 A6
checkcast 148 94 if_scmple 111 6F
dup 61 3D if_scmple_w 167 A7
dup_x 63 3F if_scmplt 108 6C
dup2 62 3E if_scmplt_w 164 A4
getfield_a 131 83 if_scmpne 107 6B
getfield_a_this 173 AD if_scmpne_w 163 A3
getfield_a_w 169 A9 ifeq 96 60
getfield_b 132 84 ifeq_w 152 98
getfield_b_this 174 AE ifge 99 63
getfield_b_w 170 AA ifge_w 155 9B
getfield_i 134 86 ifgt 100 64
getfield_i_this 176 B0 ifgt_w 156 9C
getfield_i_w 172 AC ifle 101 65
getfield_s 133 85 ifle_w 157 9D
getfield_s_this 175 AF iflt 98 62
getfield_s_w 171 AB iflt_w 154 9A
getstatic_a 123 7B ifne 97 61
getstatic_b 124 7C ifne_w 153 99
getstatic_i 126 7E ifnonnull 103 67
getstatic_s 125 7D ifnonnull_w 159 9F
goto 112 70 ifnull 102 66
goto_w 168 A8 ifnull_w 158 9E
i2b 93 5D iinc 90 5A
i2s 94 5E iinc_w 151 97
iadd 66 42 iipush 20 14
iaload 39 27 iload 23 17

248 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Table 8-2 (continued) Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex
iload_0 32 20 putstatic_s 129 81
iload_1 33 21 ret 114 72
iload_2 34 22 return 122 7A
iload_3 35 23 s2b 91 5B
ilookupswitch 118 76 s2i 92 5C
imul 70 46 sadd 65 41
ineg 76 4C saload 38 26
instanceof 149 95 sand 83 53
invokeinterface 142 8E sastore 57 39
invokespecial 140 8C sconst_0 3 03
invokestatic 141 8D sconst_1 4 04
invokevirtual 139 8B sconst_2 5 05
ior 86 56 sconst_3 6 06
irem 74 4A sconst_4 7 07
ireturn 121 79 sconst_5 8 08
ishl 78 4E sconst_m1 2 02
ishr 80 50 sdiv 71 47
istore 42 2A sinc 89 59
istore_0 51 33 sinc_w 150 96
istore_1 52 34 sipush 19 13
istore_2 53 35 sload 22 16
istore_3 54 36 sload_0 28 1C
isub 68 44 sload_1 29 1D
itableswitch 116 74 sload_2 30 1E
iushr 82 52 sload_3 31 1F
ixor 88 58 slookupswitch 117 75
jsr 113 71 smul 69 45
new 143 8F sneg 75 4B
newarray 144 90 sor 85 55
nop 0 00 srem 73 49
pop 59 3B sreturn 120 78
pop2 60 3C sshl 77 4D
putfield_a 135 87 sshr 79 4F
putfield_a_this 181 B5 sspush 17 11
putfield_a_w 177 B1 sstore 41 29
putfield_b 136 88 sstore_0 47 2F
putfield_b_this 182 B6 sstore_1 48 30
putfield_b_w 178 B2 sstore_2 49 31
putfield_i 138 8A sstore_3 50 32
putfield_i_this 184 B8 ssub 67 43
putfield_i_w 180 B4 stableswitch 115 73
putfield_s 137 89 sushr 81 51
putfield_s_this 183 B7 swap_x 64 40
putfield_s_w 179 B3 sxor 87 57
putstatic_a 127 7F
putstatic_b 128 80
putstatic_i 130 82

249

Glossary

AID is an acronym for Application IDentifier as defined in ISO 7816-5.

API is an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system and
other services.

Applet is the basic unit of selection, context, functionality, and security in Java Card
technology.

Applet developer refers to a person creating a Java Card applet using the Java Card
technology specifications.

Atomic operation is an operation that either completes in its entirety (if the
operation succeeds) or no part of the operation completes at all (if the operation
fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary
for proper data recovery in cases where power is lost or the card is unexpectedly
removed from the CAD.

Cast is the explicit conversion from one data type to another.

Class is the prototype for an object in an object-oriented language. A class may also
be considered a set of objects which share a common structure and behavior. The
structure of a class is determined by the class variables which represent the state of
an object of that class and the behavior is given by a set of methods associated with
the class.

Classes are related in a class hierarchy. One class may be a specialization (a
“subclass”) of another (one of its “superclasses”), it may be composed of other
classes, or it may use other classes in a client-server relationship.

Context is the object space partition associated with a package. Applets within the
same Java package belong to the same context. The firewall is the boundary between
contexts (see Current context).

250 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Current context. The JCRE keeps track of the current Java Card context. When a
virtual method is invoked on an object, and a context switch is required and
permitted, the current context is changed to correspond to the context of the applet
that owns the object. When that method returns, the previous context is restored.
Invocations of static methods have no effect on the current context. The current
context and sharing status of an object together determine if access to an object is
permissible.

Firewall is the mechanism in the Java Card technology by which the Java Card VM
prevents an applet in one context from making unauthorized accesses to objects
owned by an applet in another context or the JCRE context, and reports or otherwise
addresses the violation.

Framework is the set of classes which implement the API. This includes core and
extension packages. Responsibilities include dispatching of APDUs, applet selection,
managing atomicity, and installing applets.

Garbage collection is the process by which dynamically allocated storage is
automatically reclaimed during the execution of a program.

Instance variables (also known as fields) represent a portion of an object’s internal
state. Each object has its own set of instance variables. Objects of the same class will
have the same instance variables, but each object can have different values.

Instantiation (in object-oriented programming) means to produce a particular object
from its class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

JAR is an acronym for Java Archive. JAR is a platform-independent file format that
combines many files into one.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine,
the framework, and the associated native methods.

JCRE implementer refers to a person creating a vendor-specific framework using the
Java Card 2.1 API.

JCVM is an acronym for the Java Card Virtual Machine. The JCVM executes byte
code and manages classes and objects. It enforces separation between applets
(firewalls) and enables secure data sharing.

Method is the name given to a procedure or routine, associated with one or more
classes, in object-oriented languages.

Namespace is a set of names in which all names are unique.

Object-Oriented is a programming methodology based on the concept of an “object”
which is a data structure encapsulated with a set of routines, called “methods,”
which operate on the data.

Glossary 251

Objects, in object-oriented programming, are unique instances of a data structure
defined according to the template provided by its class. Each object has its own
values for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

Package is a namespace within the Java programming language and can have classes
and interfaces. A package is the smallest unit within the Java programming
language.

252 Java Card 2.1 Virtual Machine Specification • March 3, 1999

