
Ada for Software Engineers

M. Ben-Ari

Weizmann Institute of Science

Originally published by John Wiley & Sons, Chichester, 1998.

Copyright c© 2005 by M. Ben-Ari.

You may download, display and print one copy for your personal use in non-commercial academic
research and teaching. Instructors in non-commerical academic institutions may make one copy
for each student in his/her class. All other rights reserved. In particular, posting this document on
web sites is prohibited without the express permission of the author.

Contents

Preface x

1 The Language for a Complex World 1

1.1 Programming or software engineering? . 1

1.2 Reliable software engineering . 1

1.3 Language in software engineering . 2

1.4 Ada for software engineering . 2

1.5 The development of Ada . 3

1.6 From Ada 83 to Ada 95 . 4

1.7 The Ada Reference Manual . 5

2 A Simple Ada Program 8

2.1 Case study: country of origin . 8

2.2 Structure of a program . 9

2.3 Statements . 10

2.4 Predefined exceptions . 10

2.5 Types . 11

2.6 Subtypes . 16

2.7 Lexical elements . 18

3 Arrays 20

3.1 Case study: fill and justify text . 20

3.2 Array types . 24

3.3 Constrained array subtypes and objects* . 29

3.4 Type conversion* . 30

3.5 Operations on one-dimensional arrays* . 30

3.6 The context of array aggregates** . 31

v

Contents vi

3.7 Parameter modes . 32

4 Elementary Data Structures 34

4.1 Case study: array priority queue . 34

4.2 Records . 36

4.3 Parameter associations and overloading . 37

4.4 Declaring and raising exceptions . 39

4.5 Case study: tree priority queue . 42

4.6 Access types . 45

5 Packages and Abstract Data Types 48

5.1 Modularization . 48

5.2 Case study: priority queue package . 49

5.3 Private types . 58

5.4 Limited types . 61

6 Type Extension and Inheritance 66

6.1 Case study: discrete event simulation . 66

6.2 Tagged types . 67

6.3 Primitive operations . 71

6.4 Overriding an operation . 73

6.5 Class-wide types . 77

6.6 Dynamic dispatching . 81

6.7 Encapsulation and child packages . 84

6.8 Type conversion* . 89

6.9 Objects of class-wide type* . 92

6.10 Abstract types* . 94

6.11 Implementation of dispatching** . 95

6.12 Multiple controlling operands** . 97

6.13 Dispatching on the function result** . 98

7 Generics 100

7.1 Generic declaration and instantiation . 100

7.2 The contract model . 104

7.3 Generic formal subprograms . 106

7.4 Dependence of generic formal parameters . 107

Contents vii

7.5 Generic formal tagged private types* . 109

7.6 Generic formal derived types* . 112

7.7 Generic formal objects* . 116

7.8 Indefinite and abstract parameters** . 117

7.9 Formal package parameters** . 118

7.10 Generic children* . 122

7.11 Limitations of the contract model** . 123

8 Types Revisited 126

8.1 Characters and strings . 126

8.2 Discriminants . 134

8.3 Variant records . 135

8.4 Representation items . 138

8.5 Deeper into discriminants . 139

8.6 Untagged derived types* . 142

9 Access Types 145

9.1 General access types . 145

9.2 Access-to-subprogram types . 146

9.3 Case study: callback . 146

9.4 Accessibility rules . 148

9.5 Access parameters* . 150

9.6 Storage pools* . 152

9.7 Controlled types* . 152

9.8 Access discriminants** . 157

10 Numeric Types 160

10.1 Principles of numeric types . 160

10.2 Integer types . 162

10.3 Types versus subtypes . 163

10.4 Modular types . 163

10.5 Real types . 165

10.6 Floating point types . 166

10.7 Fixed point types . 168

10.8 Advanced concepts* . 174

Contents viii

11 Input–output 179

11.1 Libraries for input–output . 179

11.2 Package Exceptions* . 180

11.3 Streams** . 182

12 Program Structure 186

12.1 Compilation and execution . 186

12.2 Subunits . 187

12.3 Pragmas* . 189

12.4 Elaboration* . 189

12.5 Renamings . 191

12.6 Use type clause . 193

12.7 Visibility rules** . 193

12.8 Overloading** . 195

13 Concurrency 197

13.1 Concepts . 197

13.2 Tasks and protected objects . 199

13.3 Rendezvous . 204

13.4 Case study: the CEO problem . 210

13.5 Entry families . 217

13.6 Protected subprograms . 217

13.7 The requeue statement . 218

13.8 Rules for entries of protected types* . 220

14 Advanced Concurrency 223

14.1 Activation and termination . 223

14.2 Exceptions . 226

14.3 Time . 226

14.4 Periodic tasks . 227

14.5 Timed and conditional entry calls . 230

14.6 Asynchronous transfer of control* . 232

14.7 Alternatives for selective accept . 233

14.8 Case study: concurrent simulation . 234

14.9 Tasks as access discriminants** . 238

Contents ix

15 Systems Programming* 242

15.1 Implementation dependencies . 242

15.2 Annex B Interface to Other Languages . 243

15.3 Annex C Systems Programming . 247

15.4 Hardware interfacing . 248

15.5 Low-level tasking** . 250

16 Real-Time and Distributed Systems* 256

16.1 Annex D Real-Time Systems . 256

16.2 Scheduling . 256

16.3 Monotonic Time . 262

16.4 More on real-time systems** . 263

16.5 Annex E Distributed Systems . 265

16.6 Annex H Safety and Security . 271

A Tips for Transition 274

A.1 Pascal . 274

A.2 C . 276

A.3 C++ . 277

A.4 Java . 278

B Glossary of ARM Terms 280

C Source Code 298

D Quizzes 299

E Hints 323

F Answers 325

G Further Reading 331

G.1 Hard copy . 331

G.2 Electronic . 331

Index of ARM Sections 334

Subject Index 338

Preface

Albert Einstein once said that ‘things should be as simple as possible, but not simpler’. Einstein
could have been talking about programming languages, as the landscape is strewn with ‘simple’
languages that, several versions later, have 500-page reference manuals!

The truth is that we expect a lot of our programming languages. Turing machines just aren’t
sophisticated enough for modern software development; we demand support for encapsulation and
abstraction, type checking and exception handling, polymorphism and more. Ada, unlike other
languages which grew by gradual addition of features, was designed as a coherent programming
language for complex software systems. As if to justify Einstein’s saying, Ada is no more complex
than the final versions of ‘simpler’ languages.

However, the complexity of modern programming languages leaves textbook writers with a painful
dilemma: either gloss over the gory details, or write books that are heavy enough to be classified
as lethal weapons. Is there another way?

Strange as it may seem, you can get an excellent concise description of Ada 95 for free: the
Ada Reference Manual (ARM) (Taft & Duff 1997), which is the document defining the language
standard. The ARM has a reputation for being ponderous reading meant for ‘language lawyers’.
Nevertheless, I believe that, with a bit of guidance, software engineers can learn to read most
of the ARM. Ada for Software Engineers is written to equip you with the knowledge necessary
to use the Ada 95 programming language to develop software systems. I will try to teach you
how the individual language constructs are used in actual programs, and I will try to explain the
terminology and concepts used in the language standard.

The book is intended for software engineers making the transition to Ada, and for upper-level
undergraduate and graduate students (including those who have had the good fortune to study Ada
as their first programming language!). No specific Ada knowledge is assumed; the prerequisites
are a basic knowledge of computer science and computer systems, and significant programming
experience (not necessarily in Ada). As the title implies, this book is for you if you are a software
engineer or training to become one.

The Ada language will be taught using a few—relatively large—case studies, rather than a large
number of small examples each crafted to demonstrate a particular construct or rule. Experienced
programmers know that the key to mastering a programming language is not to memorize the
syntax and semantics of individual constructs, but to learn how to integrate the constructs into
language-specific paradigms. We will need to gloss over details when explaining a case study; rest
assured that everything will eventually be explained, or you will find a pointer to the explanation

x

Preface xi

in the ARM. Certain sections marked with one or two asterisks should be omitted during your
initial study of Ada. This material is not necessarily more difficult, but you can’t learn everything
at once, and these are topics that can be left for your second and third reading of the book.

After an introductory chapter, Chapters 2–4 quickly cover elementary language constructs such as
statements, subprograms, arrays, records and pointers that should be familiar from your previous
programming experience. The core of the book is the progressive development a of case study
demonstrating the Ada constructs for object-oriented programming: packages and private types
(Chapter 5), type extension, inheritance, class-wide types and dynamic polymorphism (Chapter 6)
and generics (Chapter 7). Chapters 8–12 cover specialized topics: the type system in depth, input–
output and program structure.

Chapters 13–16 form a second core of the book, discussing topics broadly covered by the term sys-
tems programming: multitasking, hardware interfaces, systems programming, and real-time and
distributed systems. Most of these chapters are relatively independent of the material following
Chapter 5 on packages.

Appendix A Tips for Transition will help Pascal, C, C++ and Java programmers relate constructs
in those languages to the constructs of Ada. A special feature of the book is the Glossary (Ap-
pendix B), which explains the ARM terminology with examples. In addition, discussions in the
text are cross-referenced to the relevant paragraphs in the ARM.

Appendix D contains a set of quizzes: these are programs designed to demonstrate lesser-known
rules of the language. The best way to approach them is to use the hints in Appendix E, which are
references to the relevant ARM paragraph, and to look up the answers in Appendix F only after you
believe that you have solved a quiz. I have not included programming exercises; my suggestion is
that you modify, extend and improve the case studies.

All the case studies, quizzes and programs in the book were compiled and executed. LATEX-
formatted text was automatically produced from the source code with a small amount of additional
manual formatting. The program that transforms Ada source code to LATEX is itself the subject of
one of the case studies! Source code that is unchanged from one case study to another is usually
omitted; the full source code of each executable program is available on the companion CD-ROM.
Files names are given in the margin at the beginning of each program. The CD-ROM also contains
Ada 95 compilers, plaintext and hypertext versions of the ARM and other material as specified in
Appendix C. Appendix G is a guide to sources of information on Ada, both printed and electronic.

The painting on the cover is The Railway Bridge, Argentueil by Claude Monet. Ada has been
extensively used in the construction of software for rail systems which are known for their high
level of safety and reliability.

Preface xii

Acknowledgements

I would not have been able to learn Ada 95 without the GNAT compiler from the NYU/ACT team
led by Robert Dewar and Edmond Schonberg. In particular, they deserve thanks not so much
for fixing the bugs I uncovered, but for their patience with me when I tried to pass off my own
misunderstandings as bugs in their compiler.

I would like to thank Michael Feldman, Kevlin Henney, Richard Riehle, Reuben Sumner, Tucker
Taft and Peter Wegner for reviewing the manuscript, Tucker Taft for helping me with the fine
points of the Ada language, and my editor Simon Plumtree for his support and assistance.

M. Ben-Ari
Rehovot, 1998

Preface to the online edition

This edition contains the same text as the printed book, except that: a few minor errors have been
corrected; the case study in Section 16.5 has been revised; the documentation of the contents of
the CD-ROM in Appendix C has been removed, as have two of the web sites listed in Appendix G.

The document has been reset in a different font and with dimensions suitable for office printers.

M. Ben-Ari
Rehovot, 2005

1 The Language for a Complex World

1.1 Programming or software engineering?

Successful computer science students often extrapolate from their demonstrated ability to write
programs, and believe that the same methods and techniques will enable them to develop large
software systems. Only later, when they gain experience and mature into competent engineers, do
they realize that the real world does not correspond to the ideal setting of a classroom exercise.

Modern software systems are built by tens, even hundreds, of software engineers, not all of whom
are as talented as you are. Even if your company has been successful in recruiting a team of highly
competent engineers, a large team will suffer from inconsistencies caused by growth and rapid
turnover. Throw in human personality traits such as ambition and envy, and it is a wonder that a
large system can even be built!

The work of a software engineer is often the most complex in the entire project. The reason is that
tasks that are implemented in software rather than hardware are precisely those that concern the
entire system. Other engineers typically work on individual components and subsystems which
are then integrated into a software-controlled project. For example, a mechanical engineer who
designs the landing gear of an airplane is not doing a system-wide task. But the software engineer
who writes the control program of the aircraft must understand the general principles of all the
subsystems. Even in fields not traditionally considered engineering, the same situation holds: the
software engineer working on a stock exchange must be familiar with the basic principles of the in-
struments being traded, together with the communications system and requirements of the traders
using the system. Software engineering is significantly more complex than just programming, and
it should not be surprising that different tools are needed.

1.2 Reliable software engineering

It is socially acceptable for a reporter to miss his deadline because his word-processor refused to
save his article. It is socially acceptable for a saleswoman to falter during a long-sought meeting
with a client’s top executive because the operating system on her laptop crashed. Just blame the
computer.

The structure of the software market for personal computers has caused reliability to be con-
sciously neglected. Software packages are compared by lists of features (201 or just 200), perfor-
mance (46 seconds is better than 47 seconds), and occasionally price. Vendors feel pressured to

1

1.3 Language in software engineering 2

bring new versions to market, regardless of the reliability of the product. They can always promise
to fix the bug in the next version.

But word-processors, presentation graphics and interactive games are not the only type of software
being developed. Computers are now controlling the most complex systems in the world: airplanes
and spacecraft, power plants and steel mills, communications networks, international banks and
stock markets, military systems and medical equipment. The social and economic environment
in which these systems are developed is totally different from that of packaged software. Each
project pushes back the limits of engineering experience, so delays and cost overruns are usually
inevitable. A company’s reputation for engineering expertise and sound management is more im-
portant in winning a contract than a list of features. Consistent, up-to-date, technical competence
is expected, not the one-time genius of a startup.

Above all, system reliability cannot be compromised. The result of a bug is not just a demoted
reporter or the loss of a sales commission. A bug in a medical system can mean loss of life. The
crash of a communications system can disrupt an entire economy. The failure of a spacecraft can
cost hundreds of millions of dollars. In fact, all these have occurred because of software faults.

1.3 Language in software engineering

Software engineering is the term used to denote the ensemble of techniques for developing large
software projects. It includes, for example, managerial techniques such as cost estimation, docu-
mentation standards, configuration management and quality assurance procedures. It also includes
notations and methodologies for analysis, design and testing of the software itself. There are many
of us who believe that programming languages play an essential role in software engineering.

In the end, a software system is successful if it—the ‘code’ of the program—executes reliably and
performs according to the system requirements. The best-managed project with a superb design is
a failure if the delivered ‘code’ is no good. Thus, managerial techniques and design methodologies
must be supplemented by the use of a programming language that supports reliable programming.

The alternative to language support for reliability is ‘bureaucracy’. The project manager must
write conventions for interfaces and specifications of data representations, and each convention
must be manually checked in code inspections. The result is that all the misunderstandings, to say
nothing of cases where conventions were ignored by clever programmers, are discovered at best
when the software components are integrated, and at worst after the software is delivered. Why
can’t these conventions be formalized in the programming language and checked by the compiler?
It is strange that software engineers, who make their living from automating systems in other
disciplines, are often resistant to formalizing and automating the programming process itself.

1.4 Ada for software engineering

The Ada language is complex because it is intended for developing complex systems, and its
advantages are only apparent if you are designing and developing such a system. Then, and only

1.5 The development of Ada 3

then, will you have to face numerous dilemmas, and you will be grateful for the Ada constructs
that help you resolve them:

• How can I decompose the system? Into packages that can be flexibly structured using contain-
ment, hierarchial or client-server architectures.

• How can I specify interfaces? In a package specification that is separate from its implementa-
tion.

• How can I describe data? With Ada’s rich type system.

• How can I ensure independence of components of my system? By using private types to define
abstract data types.

• How can data types relate to one another? Either by composition in records or by inheritance
through type extension.

• How can I reuse software components from other projects? By instantiating generic packages.

• How can I synchronize dozens of concurrent processes? Synchronously through rendezvous or
asynchronously through protected actions.

• How can I get at the raw machine when I need to? By using representation specifications.

• How can I make the most efficient use of my expensive testing facility? By testing as much of
the software as possible on a host machine using a validated compiler that accepts exactly the
same standard language as the target machine.

Programming in Ada is not, of course, a substitute for the classical elements of software engineer-
ing. Ada is simply a better tool. You design your software by drawing diagrams of the package
structure, and then each package becomes a unit of work that you assign to an engineer. The effects
caused by incompetent engineers, or by personnel turnover, can be localized. Many, if not most,
careless mistakes are caught by type checking during compilation, not after the system is deliv-
ered. Code inspections can focus on the logical structure of the program, because the consistency
of the conventions and interfaces is automatically checked by the compiler. Software integration
is effortless, leaving you more time to concentrate on system integration.

Though Ada was originally intended for critical military systems, it is now the language of choice
for any critical system. As off-the-shelf software packages become themselves more complex
and are used in critical applications, I hope that Ada will eventually be used to make them more
reliable.

1.5 The development of Ada

The Ada language was developed at the request of the US Department of Defense which was
concerned by the proliferation of programming languages for mission-critical systems. Military
systems were programmed in languages not commonly used in science, business and education,
and dialects of these languages proliferated. Each project had to acquire and maintain a devel-
opment environment and to train software engineers to support these systems through decades of

1.6 From Ada 83 to Ada 95 4

deployment. Choosing a standard language would significantly simplify and reduce the cost of
these logistical tasks.

A survey of existing languages showed that none would be suitable, so it was decided to develop
a new language based on an existing language such as Pascal. The ensuing competition was won
by a team led by Jean Ichbiah, and the language published as an ANSI/MIL standard in 1983 and
as an ISO standard in 1987.

There were several unique aspects of the development of Ada:

• The language was developed to satisfy a formal set of requirements. This ensured that from the
very beginning the language included the necessary features for its intended applications.

• The language proposal was published for scientific review before it was fully implemented
and used in applications. Many mistakes in the design were corrected before they became
entrenched by widespread use.

• The standard was finalized early in the history of the language, and facilities were established
to validate compilers against the standard. Adherence to the standard is especially important for
training, software reuse and host/target development and testing.

A decade later, a second round of language design was performed by a team led by S. Tucker Taft.
This design followed the same principles as the previous one: proposals by the design team were
published and critiqued, and finally accepted as an international standard in 1995. This language
is called Ada 95 when it is necessary to distinguish it from the previous version called Ada 83.
Ada 95 supersedes Ada 83, and almost all Ada 83 programs will run unchanged in Ada 95. Aside
from the following short section, this book will present the Ada language as defined in 1995.

1.6 From Ada 83 to Ada 95

For the benefit of readers familiar with Ada 83, we summarize the major differences between that
language and Ada 95.

• Derived types were of limited expressive power and use in Ada 83. In Ada 95, tagged derived
types are the basis for type extension and dynamic polymorphism, which are the constructs
required for object-oriented programming.

• Packages in Ada 83 could be nested, but this introduced excessive dependencies among the
packages. Child packages in Ada 95 can be used to construct subsystems as flexible hierarchies
of packages that share abstractions (private types).

• The rendezvous is an extremely successful construct for task-to-task communication, but is
rather inefficient for mutual exclusion. Ada 95 introduces protected objects that are far more
efficient for simple synchronization.

• New numeric types have been introduced: modular types for unsigned arithmetic and decimal
fixed point types for financial calculations.

• Ada 95 extends support for hardware interfacing as well as for programming in a mixed-
language environment. Data types are defined for machine words, as well as for objects shared

1.7 The Ada Reference Manual 5

with libraries and modules written in Fortran, Cobol and C.

• Libraries for character and string handling, and for mathematical function are now standardized,
and international character sets are supported.

• The language is divided into a core that must be supported by all implementations and into
special-needs annexes that are optional. The core language is of a reasonable size; extensions
which are of interest in specialized applications only can be implemented as needed. There
are annexes for systems programming, real-time systems, distributed systems, information sys-
tems, numerics (scientific computation), and for systems with additional safety and security
requirements.

Aside from these major extensions, many local improvements have been made to Ada. These
include relaxing rules that were overly stringent and improving the explanations in the standard.

1.7 The Ada Reference Manual

The Ada 95 programming language is defined by a document called Ada 95 Reference Manual:
Language and Standard Libraries, International Standard ISO/IEC-8652:1995, published in book
form as (Taft & Duff 1997). Henceforth we will refer to this document as the ARM. The ARM is
intended to serve as a contract between software engineers writing applications in Ada and com-
piler implementors. If you write your program according to the rules in the ARM, the executable
file generated by the compiler will execute as described in the ARM on any computer, running any
operating system. In other words, an Ada program is portable. In practice, the ARM does not
specify every aspect of the language so as not to overly constrain the implementors of a compiler,
but even this freedom is carefully documented.

The Ada approach of creating a standard as early as possible should be contrasted with the situa-
tion in other languages such as Fortran or C which were extensively used before standardization.
By then, quirks of the first implementations had become part of the language, and the spread of
dialects made it extremely difficult to port existing programs. The danger of early standardization
is that constructs that are of little use or are difficult to implement may be required by the standard.
The Ada 95 development process dealt with this danger by arranging for compiler developers and
applications software engineers to study and test constructs before the standard was finalized.

Like any contract, the ARM is written in very precise language, and the term ‘language lawyer’ is
often used for people who are experts at interpreting the document. Like any contract, however, the
rules are binding upon you even if you don’t exactly understand the text of the rule! Fortunately,
many of the most difficult parts of the ARM are intended for compiler implementors, and you don’t
need to understand them in order to write applications. For example:

§3.2.28 . . . The type determined by a subtype_mark is the type of the subtype denoted by
the subtype_mark.

is a rule that only a language lawyer could love, but:

1.7 The Ada Reference Manual 6

§2.4.16 . . . The letter E of an exponent can be written either in lower case or in upper case,
with the same meaning.

is a rule which needs neither explanation nor paraphrasing.

The ARM consists of thirteen sections, fourteen annexes and an index. The sections and annexes
are divided into clauses and subclauses, which are in turn divided into numbered paragraphs. We
use the notation §C(P) to refer to paragraph(s) P within clause or subclause C. Framed extracts
from the ARM are identified by the clause number in the margin and the paragraph number(s)
within the text. An ellipsis (. . .) indicates omissions from a paragraph. The extracts from the
ARM are intended to simplify your initial understanding. Always read the full ARM paragraphs
when you start to program in Ada.

Most of the text of the ARM is normative, meaning that an implementation must conform to the
text. The last five annexes and the index are informative, meaning that they are not part of the
contract. For example, Annex §K ‘Language-Defined Attributes’ is a convenient list of all the
attributes defined throughout the text. It is useful if you are searching for an attribute, but the rules
of the language are determined by text where the attribute is defined. In addition, the text contains
Notes and Examples which are informative. The examples are usually too simple to be useful,
but the notes are quite important because they describe rules that are ramifications of other rules,
meaning that they can be deduced from other rules. Sometimes you have to be an experienced
language lawyer to understand the ramification; for all practical purposes you will be not be led
astray if you trust the notes.

The clauses and subclauses have a common structure §1.1.2, starting with the syntax of constructs
in BNF. (The complete syntax is collected in Annex §P.) For an Ada programmer, the most im-
portant clauses are:

Legality rules These rules prescribe what it means for a program to be legal, that is, to compile
successfully. For example, the statement:

case C of
when ’A’ => Proc1(Z);
when ’A’ => Proc2(Y);
when others => null;

end case;

is not legal because:

§5.410 Two distinct discrete_choices of a case_statement shall not cover the same value.

Static semantics These clauses define the compile-time effect of a construct and are also used
extensively for defining terms. A large part of §3 on declarations and types consists of
static-semantics rules that define compile-time properties of types. An example of a static-
semantics rule is that in a for-loop statement:

for N in 1 .. 10 loop
. . .

end loop;

1.7 The Ada Reference Manual 7

the loop parameter N is implicitly declared at compile-time:

§5.56 A loop_parameter_specification declares a loop parameter, . . .

Dynamic semantics Here is where the action is. These clauses tell you what a construct does at
run-time. The following clause should come as no surprise:

§5.35 For the execution of an if_statement, the condition specified after if, and any
conditions specified after elsif, are evaluated in succession (treating a final else
as elsif True then), until one evaluates to True or all conditions are evaluated
and yield False. If a condition evaluates to True, then the corresponding se-

quence_of_statements is executed; otherwise none of them is executed.

The other clauses are mostly of interest to implementors, though you will eventually want to study
them for a full understanding of a construct. Beware of the Name resolution rules. These are a
subset of the legality rules which are used to disambiguate multiple possible interpretations. Since
they come right after the syntax clauses, you may tend to start reading them, but they can be quite
complex and common sense will serve in most cases. For example, the name resolution rule of an
if-statement is:

§5.34 A condition is expected to be of any boolean type.

This means that if the condition in an if-statement is a function call Func(X,Y) and there are two
such functions, one returning Boolean type and one returning Integer type, the compiler will select
the one returning Boolean. But you could have guessed that anyway!

Do not attempt to read the ARM serially from start to finish, as it is arranged in a logical order
regardless of level of difficultly. For example, §3.4 is extremely difficult, while §5 and §6 are
relatively easy. When you develop a familiarity with the ARM style, you will be able to display
selections in hypertext format alongside your source code as you program.

Finally, if you wish to become a language lawyer, you will need to study the Annotated Ada
95 Reference Manual, which justifies the rules, and explains obscure points or implementation
aspects. This document is not normally needed by applications engineers.

2 A Simple Ada Program

The purpose of this chapter is to present the constructs of Ada used for writing simple programs.
Even if you are already familiar with Ada, or if the language seems to be just another version of
Pascal, I suggest that you carefully read the sections on types and subtypes.

2.1 Case study: country of origin

The case study used in this chapter is a program that reads the name of a car manufacturer and
prints the country of origin. The program is admittedly artificial and incomplete,1 but it will serve
its purpose of presenting the basics of Ada.

- - File: COUNTRY11 - -
2 - - Read the manufacturer of a car and write the country
3 - - of origin of the car.
4 - -
5 with Ada.Text_IO; use Ada.Text_IO;
6 procedure Country1 is
7

8 type Cars is
9 (Ford, Chevrolet, Pontiac, Chrysler, Dodge,

10 Rover, Rolls_Royce,
11 Peugeot, Renault, Citroen,
12 BMW, Volkswagen, Opel,
13 Honda, Mitsubishi, Toyota,
14 Daewoo, Hyundai
15);
16

17 type Countries is (US, UK, France, Germany, Japan, Korea);
18

19 function Car_to_Country(C: Cars) return Countries is
20 - - Associate country with car using a case statement
21 begin
22 case C is
23 when Ford | Chevrolet..Pontiac | Chrysler..Dodge

=> return US;
24 when Rover | Rolls_Royce => return UK;

1My car is designed in one country and assembled in a second by a company based in a third country!

8

2.2 Structure of a program 9

25 when Peugeot..Citroen => return France;
26 when BMW..Opel => return Germany;
27 when Honda..Toyota => return Japan;
28 when Daewoo | Hyundai => return Korea;
29 end case;
30 end Car_to_Country;
31

32 S: String(1..80); - - Input string
33 Last: Integer; - - Last character of input string
34 Car: Cars;
35

36 begin
37 loop
38 Put("Enter the make of the car: ");
39 Get_Line(S, Last);
40 exit when Last = 0;
41 Car := Cars’Value(S(1..Last));
42 Put_Line(Cars’Image(Car) & " is made in " &
43 Countries’Image(Car_to_Country(Car)));
44 end loop;
45 exception
46 when Constraint_Error =>
47 Put_Line(S(1..Last) & " is not recognized");
48 end Country1;

2.2 Structure of a program

Ada uses the term subprogram to refer to either a procedure or a function. The main subprogram
§10.2(7), here Country1, is a subprogram that is not nested within any other unit.

A subprogram §6.3(2) consists of a specification, followed by a declarative part and a handled
sequence of statements. The specification ‡62 declares the subprogram Country1. The declarative
part ‡7–35 consists of two type declarations Cars and Countries, the declaration of a function
Car_to_Country and three variable declarations: S, Last and Car. There is no required order for
the declaration of entities, except that a declaration must appear before it is used. The executable
part of the subprogram is a sequence of statements ‡37–44: in this case a single loop statement
with other statements nested within.

Non-nested units such as a main subprogram are called library units §10.1.1. A compilation unit
is a library unit,3 optionally preceded by a context clause §10.1.2. The context clause ‡5 lists
packages that are imported into the unit. Packages—the Ada construct for creating modules—
will be discussed in depth in Chapter 5; until then we will only use a context clause to import
input–output packages, in particular, Ada.Text_IO §A.10 for characters and strings.

2This notation will be used for line numbers within program listings.
3A compilation unit can also be a subunit (Section 12.2.)

2.3 Statements 10

There are no input–output statements in Ada; instead, standard libraries are provided that use gen-
eral language constructs such as subprograms. For example, Get_Line ‡39 is a procedure which
is specified in §A.10.7(18–20). Note here the use of the operator "&" for string concatenation
‡42.

2.3 Statements

Ada has the usual simple and compound executable statements §5.1: assignment, if, case, loop
(both for-loop and while-loop) and even a goto statement §5.8.

Note that a loop need not have a termination condition; this is particularly useful when writing
servers that are not intended to terminate. The exit statement §5.7 may be used to leave a loop at
any point within its execution. There is a special syntax exit when that makes the termination
condition particularly readable ‡40. If you want to leave a nested loop, you can use a loop identifier
§5.5(2), §5.7(2).

For-loops are used when you can compute the number of iterations in advanced. The following
statement will print the country of origin of all the cars declared by the type:

for C in Cars loop
Put_Line(Cars’Image(C) & " is made in " &
Countries’Image(Car_to_Country(C)));

end loop;

The loop parameter C is a constant §3.3(19), which is implicitly declared §5.5(6) and its scope is
restricted to the loop statement §8.1(4).

A return statement ‡23–28 §6.5 may be used to leave a procedure or function, even from within a
loop.

It is often claimed—as a legacy of Pascal programming—that the exit from a loop should be either
at its beginning or at its end. I believe that the position of the exit is not as important as the clarity
of the termination condition; see Ben-Ari (1996a).

There is a rich syntax for case statements §5.4, as (artificially) demonstrated in the case study
‡22–29. The basic rule is that each possible value of the expression must be covered by exactly
one of the alternatives. An others alternative is allowed if you do not want to explicitly list an
action for all alternatives.

2.4 Predefined exceptions

§111 . . . An exception represents a kind of exceptional situation; an occurrence of such
a situation (at run-time) is called an exception occurrence. To raise an exception
is to abandon normal program execution so as to draw attention to the fact that
the corresponding situation has arisen. Performing some actions in response to the
arising of an exception is called handling the exception.

2.5 Types 11

The main subprogram in the case study has an exception handler ‡45–47. The predefined exception
Constraint_Error §11.1 will be raised if you enter a string that is not the name of a car declared
in the type declaration. If this occurs, the normal execution will be abandoned and the sequence
of statements ‡47 in the exception handler will be executed instead. The exception handler in this
program prints an error message; then the execution of the program will terminate.

There are four predefined exceptions: Constraint_Error, which you will encounter frequently,
as any run-time violation of the type system will raise this exception; Program_Error, which is
raised in unusual situations, such as ‘falling-off’ the end of a function without executing a return
statement; Storage_Error if the program runs out of memory; Tasking_Error, which is raised for
errors in the multitasking constructs (Chapter 13).

2.5 Types

Types are the heart and soul of Ada. The executable statements of the language are almost indis-
tinguishable from those of other languages, but the type system is rich and, yes, complex. After
introductory material on types in Ada, we will return to the use of types in the case study.

Why types?

Why are types so important? Experience has shown that the key to good software design is not in
the algorithms—however complex they may be—but in the data. You can write small programs to
manipulate raw hardware memory such as numbers and bytes, but any large program is necessarily
modelling some complex applications area such as banking, medicine or transportation. The only
way to write software that can be understood, validated and maintained is to model the application
within the program. In Chapter 5 we will discuss how to decompose the program to reflect the
structure of the application; in this section we will discuss types which are used to model the data
of the application. Chapter 6 is on object-oriented programming, which is a method of modelling
both the data itself and the operations on the data.

Types are not merely descriptive. The Ada language provides for type checking. Since each type
is modelling a different kind of real-world data, you cannot assign a value of one type to a variable
of another type. If A contains a number of type Apples and O contains a number of type Oranges,
the statement A := A+O almost certainly contains an error, and an Ada compiler is required to
reject such statements.

The advantage of type checking is a significant reduction in the number of logic and run-time
errors in the software. Figure 2.1 shows a hierarchy of errors:

Compile-time errors These are the errors that are easiest to find and correct. I characterize them
as errors that need not be reported to your boss! Some compile-time errors like missing
punctuation are trivial; others, like visibility errors caused by misplaced declarations, are
more difficult to find, and you may need to consult an expert.

2.5 Types 12

Logic errors

Run-time errors

Compile-time errors

Figure 2.1: Hierarchy of errors

Run-time errors These are errors that cause the program to stop running and to display an error
message.4 Examples are trying to index an array beyond its bounds and trying to dereference
a null pointer. In a language that supports run-time checking, these errors are relatively easy
to diagnose because you know where the program stopped and why. If the error is not caught
when it occurs, it can cause memory assigned to unrelated variables to be ‘smeared’. The
run-time error is then disguised as a logic error, and can be exceedingly difficult to diagnose
because the code that accesses the smeared variables is likely to be correct.

Logic errors This is the term used for errors that manifest themselves as incorrect functioning
of a running program. For example, you might compute a thermostat setting that has no
physical meaning even though the value is within the range of an integer variable. These
are extremely serious because they are often found only after the system is delivered and
installed.

The philosophy of Ada is to push errors down the hierarchy: to turn logic errors into run-time
errors and if possible into compile-time errors. For critical software systems, logic errors are
not merely embarrassing and expensive, they can be truly dangerous. Because it helps prevent
logic errors, the Ada type system is an excellent technological tool for producing safe and reliable
software.

Effective use of the Ada type system requires an investment of effort on your part:

• During the design of the software system, you must select types that best model the data in
the system and that are appropriate for the algorithms to be used. If you write a program in
which every variable is declared as Integer, Float or Character, you might as well use a simpler
language than Ada.

• Occasionally, type checking rules simply must be ignored. For example, a sequence of raw
bytes received from a communications line is to be interpreted as a structured message. You
must learn to carefully use the Ada constructs for bypassing type checking (Sections 4.6, 8.3).

• Certain language rules are checked at run-time and the overhead must be taken into account
in the project design when you select the hardware. Optimizing compilers can reduce this

4Of course, run-time errors are extremely problematical in embedded systems which do not ‘print an error’.

2.5 Types 13

overhead to a minimum; in extreme cases, run-time checks can be suppressed in critical inner
loops (Section 4.4).

The latter two points are often raised as objections to type checking, but in practice they turn out
to be of relatively minor importance. My advice is to invest time in a comprehensive study of the
Ada type system, an investment that will repay you many times over in lower rates of logic and
run-time errors in your programs.

Definition of types

§3.21 A type is characterized by a set of values, and a set of primitive operations which
implement the fundamental aspects of its semantics. . . .

Some types, like Integer, are predefined by the language. The set of values of the type Integer

is implementation-defined. Primitive operations will not be fully explained until Chapter 6, but
they include the predefined operations. Assignment is defined for all types (except limited types
as described in Chapter 5). Other predefined operations of Integer type are the usual arithmetical
and relational operations as described in §4.5. In addition to the predefined types, types like Cars

can be explicitly defined by the programmer.

Types are collected into classes, which group together types with similar properties.

Enumeration types

Type Cars ‡8–15 is an enumeration type §3.5.1. The names listed in the type declaration are the
enumeration literals, which are the values of the type. Predefined operations on enumeration types
are assignment, the relational operations such as "=" and "<" and attributes §4.1.4. These are
predefined operations, usually values or functions, associated with each type in the family. A list
of all predefined attributes is given in §K; some attributes that are defined for enumeration and
integer types are given in the following table, where T is a type, V is a value of the type, N is an
integer and S is a string:

T’First First value of T
T’Last Last value of T
T’Pred(V)∗ Previous value before V

T’Succ(V)∗ Next value after V
T’Pos(V) Position of V
T’Val(N)∗ Value whose position is N
T’Min(V1,V2) Minimum of V1,V2
T’Max(V1,V2) Maximum of V1,V2
T’Image(V) String denoting the value V

T’Value(S)∗ Value denoted by S

T’Width Maximum length of T’Image

Attributes marked with an asterisk may raise Constraint_Error. (In certain circumstances, Pos
may raise Program_Error §3.5.5(8).)

2.5 Types 14

In the case study we used the attribute Cars’Image ‡42, which is a function that converts a value of
type Cars into a string.5 The converse attribute Cars’Value ‡41 is a function that converts strings to
values. The notation S(1..Last) in ‡41 selects the characters of S up to index Last. If the function
parameter is not a string that can converted to a value of type Cars, the exception Constraint_Error

will be raised.

The fundamental principle of type checking is that a value of one type may not be assigned to a
variable (or parameter) of another type §5.2(4), §6.4.1(3). This violation of type checking results
in a compile-time error. Thus we cannot write:

Last := Chevrolet;

because we are attempting to assign a value of type Cars to a variable of type Integer. Similarly,
we cannot write the following function call:

Car_to_Country(63);

because the assignment of an actual parameter of type Integer to a formal parameter of type Cars

is not legal.

Objects

§3.21 . . . An object of a given type is a run-time entity that contains (has) a value of the
type.

§3.313 An object is either a constant object or a variable object. The value of a constant
object cannot be changed between its initialization and its finalization, whereas the
value of a variable object can be changed. . . .

All objects must be declared and explicitly given a type. An initial value is optional for a variable,
but is required for a constant §3.3.1(5-6):

Current_Car: Cars := Opel;
The_Car_I_Want: constant Cars := Rolls_Royce;

Elaboration*

§3.111 The process by which a construct achieves its run-time effect is called execution.
This process is also called elaboration for declarations and evaluation for expres-
sions. . . .

While we normally don’t think of a declaration as being executed, it is clear that it may have a run-
time effect. For example, since memory must be allocated for a variable, every variable declaration
may potentially raise the predefined exception Storage_Error when memory is exhausted. In this

5For extensive input–output of enumeration types, it is more convenient to instantiate the generic package Enumer-

ation_IO. However, generics is a relatively advanced concept that we do not discuss until Chapter 7.

2.5 Types 15

case, we say that the exception is raised when the variable declaration is elaborated, and there are
rules governing the handling of such exception occurrences.

In a language that allows initial values for objects, the declaration may be associated with an
arbitrarily complex computation:

B: Boolean := Is_Prime(2e30 + 1);

Declarations are elaborated in order of their appearance:

§3.117 The elaboration of a declarative_part consists of the elaboration of the declara-

tive_items, if any, in the order in which they are given in the declarative_part.

Once a declaration is elaborated, it can be used in subsequent declarations:

B1: Boolean := Is_Prime(2e30 + 1);
B2: Boolean := not B1;

There is one syntactical problem that must be resolved. In Ada, as in most programming lan-
guages, it is possible to declare more than one object in a single declaration. The question arises
whether the initial value is evaluated once for all objects, or once for each object:

A1, A2, A3: A_Type := Get_Initial_Value_From_User;

§3.3.17 Any declaration that includes a defining_identifier_list with more than one defin-

ing_identifier is equivalent to a series of declarations each containing one defin-

ing_identifier from the list, with the rest of the text of the declaration copied for
each declaration in the series, in the same order as the list. . . .

In the example, the user would be prompted three times for initial values, as if the declarations
were written:

A1: A_Type := Get_Initial_Value_From_User;
A2: A_Type := Get_Initial_Value_From_User;
A3: A_Type := Get_Initial_Value_From_User;

Name equivalence*

Given the declarations:

type American_Cars is (Ford, Chevrolet, Pontiac, Chrysler, Dodge);
type US_Cars is (Pontiac, Chevrolet, Chrysler, Ford, Dodge);
AC: American_Car;
UC: US_Car;

we cannot assign AC to UC or vice versa. Each type declaration defines a separate type. The name,
rather than the structure, of the type determines type equivalence.

In this example, we see an example of overloading, where the same name is used to denote two or
more entities. Context (or qualification—see Section 4.6) can be used to disambiguate the name:

AC := Ford; - - OK, refers to Ford of American_Cars

2.6 Subtypes 16

2.6 Subtypes

Pascal was the first language based on the concept of programmer-defined types and compile-time
type checking. However, it became apparent that the Pascal rules were too restrictive. Consider a
procedure to sort an array:

type Array_Type = array[1..100] of Integer;
procedure Sort(var A: Array_Type);

The procedure is restricted to sorting integer arrays of exactly 100 elements. Even passing the
lower and upper bounds of the array would make no difference, because the actual parameter must
be of type Array_Type.

Definition of a subtype

§3.28 A subtype of a given type is a combination of a type, a constraint on the values of
the type, and certain attributes specific to the subtype. . . .

The constraint, that puts a restriction on the values of the type, is checked at run-time. In the next
chapter, we will see that the specific bounds of an array are considered to be a constraint, so a
single procedure Sort can be called with arrays of different sizes. In this section, we will look at
subtypes in the context of enumeration types.

First a bit of syntax and terminology. When declaring an object, we supply a subtype_indication:6

§3.3.1
2 object_declaration ::=

defining_identifier_list : [constant]
subtype_indication [:= expression];

§3.2.2
3 subtype_indication ::= subtype_mark [constraint]

4 subtype_mark ::= subtype_name

When creating an object, we can append a constraint to a subtype name (called the subtype mark)
and thus restrict the values that can be contained in the object. For an enumeration type, the
appropriate constraint is a range constraint:

Car: Cars;
French_Car: Cars range Peugeot..Citroen;
German_Car: Cars range BMW..Opel;

When executing an assignment statement, constraints are checked:

§5.211 The value of the expression is converted to the subtype of the target. The conversion
might raise an exception (see 4.6).

6The syntax for object_declaration has been simplified.

2.6 Subtypes 17

Thus:

French_Car:= Car; - - Might raise Constraint_Error
French_Car:= German_Car; - - Will raise Constraint_Error
Car := French_Car; - - OK

Note that appending a constraint does not affect the type of an object. The second statement above
is not a compile-time error, nor is French_Car := BMW! The compiler checks only that the types
are the same: in this case, both variables are of type Cars. It is left to the executable code to check
that the constraints are satisfied. An Ada compiler is allowed to diagnose the situation as one that
necessarily raises an exception, and to emit machine code that simply raises the exception without
doing the superfluous check. A friendly Ada compiler will also warn you of the inevitable error.

Declaration of a subtype

If you are planning to declare many objects with the same subtype indication, you can simply
declare a subtype and then use its name §3.2.2(2). An alternate way of implementing the function
associating countries with cars is:

- - File: COUNTRY21 function Car_to_Country(C: Cars) return Countries is
2 - - Associate country with car using subtypes
3 subtype US_Car is Cars range Ford..Dodge;
4 subtype UK_Car is Cars range Rover..Rolls_Royce;
5 subtype French_Car is Cars range Peugeot..Citroen;
6 subtype German_Car is Cars range BMW..Opel;
7 subtype Japanese_Car is Cars range Honda..Toyota;
8 subtype Korean_Car is Cars range Daewoo..Hyundai;
9 begin

10 case C is
11 when US_Car => return US;
12 when UK_Car => return UK;
13 when French_Car => return France;
14 when German_Car => return Germany;
15 when Japanese_Car => return Japan;
16 when Korean_Car => return Korea;
17 end case;
18 end Car_to_Country;

‡3–8 contain declarations of subtypes for each country by constraining the range of values of the
type. A choice of a case statement can be a subtype mark; see §5.4(3), §3.8.1(4–5), §3.6.1(3).

Note that a formal parameter must be a subtype mark and not a subtype indication §6.1(15):

function Korean_Car_to_Country(C: Korean_Cars)
return Countries is - - OK, subtype mark

function Korean_Car_to_Country(C: Cars range Daewoo..Hyundai)
return Countries is - - Error, subtype indication

2.7 Lexical elements 18

Membership tests

A membership test can be used to ask if an expression is in a subtype §4.5.2:

if C in French_Car then . . .

If you want to check membership in a range, a subtype mark need not be given, and there is a
convenient syntax for negations:

if C in Peugeot..Citroen then . . .
if not (C in French_Car) then . . . - - OK
if C not in French_Car then . . . - - OK, nicer syntax

First subtype**

§6.1(15) requires that formal parameters be subtype marks. What about type marks? In order
to simplify the presentation of the language, the phrase ‘type or subtype’ is avoided by defining
types to be nameless. Instead, the identifier in a type declaration is the name of the first subtype
§3.2.1(1) of the type. Additional (named) subtypes may of course be declared as we saw above.
In normal usage, no confusion will result if we talk about the type Cars; in fact, such usage is
sanctioned by the standard §3.2.1(7).

2.7 Lexical elements

We conclude this chapter with an overview of the lexical elements of an Ada program §2.

An Ada program is written in free-format:

§2.21 . . . The text of each compilation is a sequence of separate lexical elements. . . . The
meaning of a program depends only on the particular sequence of lexical elements
that form its compilations, excluding comments.

Upper/lower case is not significant §2.3(5). There are reserved words such as begin that cannot be
used for any other purpose §2.9. This book follows the style recommended in the ARM: reserved
words in lower case and identifiers in mixed case. Certain identifiers such as Integer and String

are predefined (in package Standard §A.1); they can be redefined, but normally you wouldn’t do
that. Comments are denoted by two minus signs and extend to the end of the line §2.7.

String §2.6 and character §2.5 literals and comments can use the character set defined by the BMP
subset of ISO 10646 §2.1(4). The Latin characters have explicit names §A.3.3, so you can easily
use all these characters is a program intended for an international market, even if your computer
display and keyboard support only your local character set. Within the language definition, the
Latin character subset (corresponding to ISO 8859-1) is used §2.1(5).

2.7 Lexical elements 19

Numeric literals §2.4, as well as identifiers, can use the underscore character. Integer literals can
have an exponent, and both integer and real literals can be written in any base from 2 to 16. Each
of the following columns shows three equivalent numeric literals:

1000000 15 3.75
1_000_000 2#1111# 0.375E1

1E6 16#F# 2#11.11#

3 Arrays

In this chapter and the next one, we present the basic concepts of composite types (arrays and
records) and access types (pointers). The main conceptual innovation in Ada is the use of types
and subtypes to separate compile-time from run-time aspects of data structures.

3.1 Case study: fill and justify text

The case study is to implement a core algorithm used in word-processors:

Read a text file and write it with the text filled (as many words as possible on a line)
and justified (set flush with both margins). A word is a maximal sequence of non-
space characters. Assume that the file name, the output line width and the margin size
are fixed.

The following example shows (1) the input data, (2) the text after filling and (3) the text after
justifying in a line of length 25:

The quick brown

 fox

jumped over

 the lazy dog

The quick brown fox

jumped over the lazy dog

The quick brown fox

jumped over the lazy dog

In this and other relatively long programs, we will give the source code in chunks with consecutive
line numbers. The program begins with declarations of subtypes and constants and a file object
Input:

- - File: JUSTIFY1 - -
2 - - Read text from a file and write it filled and justified.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Justify is
6

7 subtype Lines is String(1..80); - - A line of text

20

3.1 Case study: fill and justify text 21

8 subtype Index is Integer range 0..Lines’Last; - - Extra zero value
9

10 - - Constant file name and margins.
11 File_Name: constant String := "example.tex";
12 Margin: constant String(1..10) := (others => ’ ’);
13

14 - - Compute number of characters in printed line.
15 Width: constant Index := Lines’Length - 2*Margin’Length;
16

17 Input: File_Type;

Get_Word reads the next word from the input file; it will not be difficult to understand if you
study it together with the specification of Ada.Text_IO §A.10.

18 procedure Get_Word(- - Get next word from input
19 Word: out Lines; - - The next word
20 Length:out Index; - - Its length
21 EOF: out Boolean) is - - True if eof encountered
22 C: Character; - - Character buffer
23 begin
24 Length := 0;
25 EOF := False;
26 loop - - Skip leading ends-of-line, blanks
27 if End_Of_File(Input) then
28 EOF := True;
29 return;
30 elsif End_Of_Line(Input) then Skip_Line(Input);
31 else
32 Get(Input, C);
33 exit when C /= ’ ’;
34 end if;
35 end loop;
36

37 loop - - Read characters until space or EOL
38 Length := Length + 1;
39 Word(Length) := C;
40 if Length > Width then - - Truncate word longer than line
41 Skip_Line(Input);
42 Length := Width;
43 return;
44 end if;
45 exit when End_Of_Line(Input);
46 Get(Input, C);
47 exit when C = ’ ’;
48 end loop;
49 end Get_Word;

3.1 Case study: fill and justify text 22

The most difficult part of the program is the function Insert_Spaces, which performs the justi-
fication. The function receives the output buffer Line, the Length of the valid data in the buffer
and a Word count. It returns a string containing the justified line. The algorithm is implemented
by creating an array S of the spaces ‡59–60, 67–74 to be inserted after each word. This array is
initialized ‡60 to the minimum one space, plus the number of extra spaces that can be evenly dis-
tributed among the words. Any remaining spaces are then distributed between successive words,
starting from the left or right on alternate lines ‡68 to avoid excessive space on one side of the
page. The new line is built in Buffer ‡76–85. The slice construct ‡81–82 is explained in the next
section.

50 function Insert_Spaces(- - Insert extra spaces in output line
51 Line: Lines; - - Current output line
52 Length: Index; - - Length of current output line
53 Words: Index) - - Number of words in line
54 return Lines is - - Return modified line
55

56 Spaces: Natural := Width-Length; - - Extra spaces
57 - - S is number of spaces after each word
58 - - Initially, divide extra spaces evenly among words
59 S: array(1..Words) of Natural :=
60 (others => (Spaces / (Words-1)) + 1);
61 Buffer: Lines := (others => ’ ’); - - Build new line here
62 K1, K2: Index := 1; - - Indices for copying line
63 L: Index; - - Length of word
64

65 begin
66 - - Distribute remaining spaces alternately left and right.
67 for N in 1 .. Spaces mod (Words-1) loop
68 if Ada.Text_IO.Line mod 2 = 1 then
69 S(Words-N) := S(Words-N) + 1;
70 else
71 S(N) := S(N) + 1;
72 end if;
73 end loop;
74 S(Words) := 0; - - Zero spaces after last word
75

76 for W in 1..Words loop
77 L := 1;
78 while Line(K1+L) /= ’ ’ loop - - Search for end of word
79 L := L + 1;
80 end loop;
81 Buffer(K2 .. K2+L + S(W)) := - - Move word and extra spaces
82 Line(K1 .. K1+L) & (1..S(W) => ’ ’);
83 K1 := K1 + L + 1;
84 K2 := K2 + L + S(W);

3.1 Case study: fill and justify text 23

85 end loop;
86 return Buffer;
87 end Insert_Spaces;

Put_Word implements the fill operation by inserting a Word into the output buffer Line at index
Position ‡109. If there is no room for the new word, Insert_Spaces is called ‡100 to justify the
line, and then the buffer is reset ‡103–105 before inserting the word.

88 procedure Put_Word(- - Put word input output line
89 Word: in Lines; - - The word to insert
90 Word_Length: in Index; - - Its length
91 Words: in out Index; - - Current number of words
92 Line: in out Lines; - - Output line buffer
93 Position: in out Index) is - - Position to insert word
94 begin
95 - - Note that Position points past the trailing space
96 - - Print full line
97 if Position - 1 + Word_Length > Width then
98 if Words >= 2 then
99 - - Make sure there are at least two words for inserting spaces

100 Line := Insert_Spaces(Line, Position-2, Words);
101 end if;
102 Put_Line(Margin & Line(1..Width));
103 Line := (others => ’ ’);
104 Position := 1;
105 Words := 0;
106 end if;
107

108 - - Append word to line and update counters
109 Line(Position..Position+Word_Length) := Word(1..Word_Length) & ’ ’;
110 Position := Position + Word_Length + 1;
111 Words := Words + 1;
112 end Put_Word;

The main subprogram ‡129–133 opens the input file, calls the main loop and then closes the
input file. The main loop ‡113–127 was written as a separate procedure so that its variables are
encapsulated in a local, rather than in a global, scope. The main loop is very simple: it gets the
next Word ‡122 and then places it in the output Buffer ‡124. If EOF is returned from Get_Word

‡123, the current line is flushed before returning from the procedure ‡126.

113 procedure Main_Loop is
114 Word: Lines; - - Word buffer
115 Word_Length: Index; - - Its length
116 EOF: Boolean; - - True if EOF encountered
117 Buffer: Lines := (others => ’ ’); - - Output line buffer
118 Position: Index := 1; - - Next position to insert
119 Word_Count: Index := 0; - - Number of words

3.2 Array types 24

120 begin
121 loop
122 Get_Word(Word, Word_Length, EOF);
123 exit when EOF;
124 Put_Word(Word, Word_Length, Word_Count, Buffer, Position);
125 end loop;
126 Put_Line(Margin & Buffer(1 .. Position-1)); - - Flush last line
127 end Main_Loop;
128

129 begin
130 Open(Input, In_File, File_Name);
131 Main_Loop;
132 Close(Input);
133 end Justify;

We now discuss the array constructs used in the program.

3.2 Array types

Unconstrained arrays

An array is defined by giving the number of dimensions, their types and bounds, and the subtype
of the component. All these characteristics, except the bounds of the dimensions, are declared
in an unconstrained array definition §3.6(3,15). For example, the unconstrained array subtype1

String is predefined §A.1(37) as follows:

type String is array(Positive range <>) of Character;

The type String has one dimension whose type is Integer, constrained to positive values by the
subtype Positive §3.4.5(13); the component type is Character. (The type is also declared to be
Packed, see §13.2.) The bounds of any particular string are not part of its type. This is indicated
by the syntax range <>, where the last two symbols are pronounced ‘box’. For example, the
declaration of the predefined procedure Put for strings §A.10.1(48) is:

procedure Put(Item : in String);

The procedure can be called with any string as its actual parameter.

To create a string object, you must give an index constraint §3.6.1 which specifies the bounds for
each dimension. There are three ways that you can specify the index constraint:

• Explicitly append an index constraint as part of the subtype indication in an object declaration:

S: String(1..80); - - See Country1

• Declare a (constrained) subtype ‡7 and then declare a object of the subtype ‡61:

subtype Lines is String(1..80);
Buffer: Lines := (others => ’ ’);

1That is, the first subtype (Section 2.6) of the array type is unconstrained. For all practical purposes, you can talk of
the type String.

3.2 Array types 25

• If an initial value is given for an array ‡11 (not necessarily a constant array), the compiler will
determine the index constraint §3.3.1(9) from the number of characters in the initial value:

File_Name: constant String := "example.tex";
Current_File_Name: String := File_Name;

Operations on arrays

Assignment and the equality operators are defined for array types; that is, you can assign an array
object to another one, or compare two array objects, provided, of course, that they are of the same
subtype. An indexed component §4.1.1 is obtained by appending a parenthesized expression (or
sequence of expressions for multi-dimensional arrays) to the name of an array object.

For any array object A the following attributes are defined §3.6.2:

A’First The lower bound of the index of A
A’Last The upper bound of the index of A
A’Range The range A’First..A’Last

A’Length The number of components in A

Note that A’First and A’Last are indices, not components:

A((A’First + A’Last) / 2); - - Middle element of the array
(A(A’First) + A(A’Last)) / 2; - - Average of first and last elements

These attributes are also defined for constrained array subtypes like Lines, but not, of course,
for unconstrained subtypes like String. There are also versions for multi-dimensional arrays
§3.6.2(4,6,8,10).

It is impossible to over-emphasize the importance of using attributes. Once a constrained array
subtype or an array object has been declared, subsequent declarations and statements should use
the attributes so that changes in the array bounds are automatically reflected in the source code.
For example, given the following declarations ‡7,8,15:

subtype Lines is String(1..80);
subtype Index is Integer range 0..Lines’Last;
Width: constant Index := Lines’Length - 2*Margin’Length;

changing 80 to 120 in the declaration of Lines does not require any additional change to the source
code.

As a matter of style, I do not recommend using the following Pascal-like sequence of declarations,
even though it is legal:

Line_Width: constant Integer := 80;
subtype Line_Index is Integer range 1..Line_Width;
subtype Lines is String(Line_Index);

The reason is that the attributes supply predefined names for these entities: Lines’Last and Lines’-

Range, and there is no point in adding (and documenting!) duplicate names.

3.2 Array types 26

Aggregates

Recall that a type consists of a set of values and a set of operations on those values. Strangely
enough, most programming languages have no way of denoting a value of an array type! You are
required to work explicitly in terms of components:

type Vector is array(Integer range <>) of Float;
subtype Samples is Vector(0..255);
Zero_Sample: Sample;

for S in Samples’Range loop
Zero_Sample(S) := 0.0;

end loop;

An aggregate denotes a value of a composite type. Array aggregates have a very rich syntax
§4.3.3. The simplest form is to use others to give every component the same value ‡12:

Margin: constant String(1..10) := (others => ’ ’);
Zero_Sample: Samples := (others => 0.0);

Named array aggregates can be used to explicitly associate index values with component values:

- - File: COUNTRY31 Car_to_Country: constant array(Cars) of Countries :=
2 (Ford..Dodge => US,
3 Rover..Rolls_Royce => UK,
4 Honda..Toyota => Japan,
5 Peugeot | Renault | Citroen => France,
6 BMW | Volkswagen | Opel => Germany,
7 Daewoo..Hyundai => Korea);

Note that parentheses are used delimit both parameters and indices2 so the function Car_to_-

Country can be replaced with an array without otherwise modifying the program.

When named aggregates are used, the order in which the component associations are written is not
significant; others is allowed as a final component association to cover index values not explicitly
named:

Step: Samples := (32..63 => 0.5, 0..31 => 1.0, others => 0.0);

Positional array aggregates associate component values according to the sequence in which they
appear. You cannot mix positional and named notation, but an others choice is allowed as the
final component in a positional aggregate §4.3.3(3):

Initial_Sample: Samples := (0.1, 0.2, 0.3, 0.4, others => 0.0);

The examples we have shown use aggregates for initial values; however, it is important to under-
stand that, syntactically, aggregates are expressions and can be used in any context that an expres-
sion is allowed, such as in an assignment statement, a return statement or as an actual parameter.
Furthermore, the components of the aggregate are also expressions and can be dynamically com-
puted. In the following function, the sequence of statements is a single return statement whose
expression is a positional array aggregate, all of whose components are dynamic expressions that
depend on the formal parameters:

2Unlike Pascal, C, C++ and Java which use brackets to delimit indices.

3.2 Array types 27

subtype Vector3 is Vector(1..3);

function "+"(Left, Right: Vector3) return Vector3 is
begin
return (Left(1)+Right(1), Left(2)+Right(2), Left(3)+Right(3));

end "+";

Aggregates for n-dimensional arrays are constructed from subaggregates of n − 1-dimensional
arrays §4.3.3(6):

type Matrix is array(Integer range <>, Integer range <>) of Float;
M: Matrix(1..3, 0..2) :=
((1.0, 2.0, 1.0), (2=>1.0, 1=>0.5, 0=>0.0), (others => 0.0));

Aggregates are always to be preferred over explicit loops because of the check that the number of
components of the aggregate matches the context in which it is used:

function "+"(Left, Right: Vector3) return Vector3 is
Temp: Vector3;

begin
for N in 1..2 loop - - Sorry !!
Temp(N) := Left(N)+Right(N);

end loop;
return Temp;

end "+";

Slices and sliding

Slices reduce the need for explicit loops.

§4.1.2
2 slice ::= prefix(discrete_range)

5 A slice denotes a one-dimensional array formed by the sequence of consecutive
components of the array denoted by the prefix, corresponding to the range of values
of the index given by the discrete_range.

‡81–82 show the assignment of a string obtained by concatenating a slice of Line and an aggregate
to a slice of Buffer.

The following function creates a palindrome from a string by copying it twice to the target string,
the first copy in the original order of the source string ‡9, followed by a second copy in reverse
order ‡10–12. A slice is used to denote the first half of the string.

3.2 Array types 28

- - File: PALIN1 - -
2 - - Create a palindrome from a string.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Palin is

6 function Palindrome(S: in String) return String is
7 T: String(1..2*S’Length);
8 begin
9 T(1..S’Length) := S; - - Slice as a variable

10 for N in S’Range loop
11 T(T’Length - (N-S’First)) := S(N);
12 end loop;
13 return T;
14 end Palindrome;
15

16 S1: String := "Hello world";
17 S2: String(100..100+2*S1’Length-1) := Palindrome(S1);
18 S3: String(1..2*S2’Length) := Palindrome(S2);
19

20 begin
21 Put_Line(S1);
22 Put_Line(S2);
23 Put_Line(S3);
24 end Palin;

A slice can be used either as a variable which is the target of an assignment as shown above, or as
an expression. Consider the following program for swapping the halves of an even-length array:

- - File: SWAP1 - -
2 - - Swap halves of a string.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Swap is
6 S: String := "HelloWorld";
7 Temp: String := S(1..S’Length/2);
8 begin
9 S(1..S’Length/2) := S(S’Length/2+1..S’Length);

10 S(S’Length/2+1..S’Length) := Temp;
11 Put_Line(S);
12 end Swap;

In ‡7 the slice is an expression, in ‡10 the slice is a variable, while in ‡9 one slice is the source
expression of the assignment statement and the other is the target variable. Note that the subtype
of the target is String(1..5), which is not the same as the subtype of the source: String(6..10).
Assignment is permitted if the types are the same, and the subtypes are convertible.

3.3 Constrained array subtypes and objects* 29

§5.211 The value of the expression is converted to the subtype of the target. The conversion
might raise an exception (see 4.6).

For arrays, the compiler will automatically convert array bounds as long as the number of compo-
nents is the same in both the source and the target.

§4.637 If the target subtype is a constrained array subtype, then a check is made that the
length of each dimension of the value of the operand equals the length of the corre-
sponding dimension of the target subtype. The bounds of the result are those of the
target subtype.

The operation is called sliding, because we can think of sliding the indices of the source slice to
match the indices of the target slice.

3.3 Constrained array subtypes and objects*

Unconstrained arrays are flexible because you can declare a subprogram with formal parameters
of the unconstrained subtype, and then call the subprogram with actual parameters that are of any
subtype obtained by constraining the type. Very often, however, the nature of the problem is such
that the bounds will be identical for all arrays of the type. In this case, you can reduce the number
of names in the program and simplify the implementation of parameter passing by declaring a
constrained array subtype §3.6(5,16):

type Telephone_Key is (
One, Two, Three, Four, Five, Six, Seven,
Eight, Nine, Star, Zero, Hash);

type Key_State is array(Telephone_Key) of Boolean;
Pressed: Key_State := (others => False);

type Spatial_Transform is array(1..3, 1..3) of Float;

Of course, objects and formal parameters of type Key_State or Spatial_Transform are necessar-
ily constrained and cannot have further constraints appended §3.6.1(5):

First_Row: Key_State(One..Three); - - Error!

Even if an array subtype is constrained, you should always use attributes so that expressions need
not be modified if the bounds are changed. The following four ways of specifying the range of
a loop traversing the array Pressed are all correct, but are progressively more robust to possible
changes in the definition of the array:

for K in One .. Hash loop
for K in Telephone_Key loop
for K in Key_State’Range loop
for K in Pressed’Range loop

3.4 Type conversion* 30

A further shortcut is possible if you want to declare a single array. This is the only case in Ada
where an object can be declared without giving an explicit type name §3.3.1(2). Since the type is
anonymous §3.2.1(7), the array cannot be directly used as an actual parameter because all formal
parameters have named types. Single array objects are frequently used to declare a global table of
constants:

Sine_Table: constant array(0..90) of Float := (0.0, . . . , 1.0);

3.4 Type conversion*

In Ada, type conversion is allowed only in carefully defined situations that will not break the type
system §4.6. One permissible case is that arrays that ‘look’ the same are convertible §4.6(9–12);
that is, they can be converted to each other §4.6(36–39):

Sine_Table: constant array(0..90) of Float := (0.0, . . . , 1.0);

type Vector is array(Integer range <>) of Float;

V1: Vector := Vector(Sine_Table);
V2: Vector(180..270) := Vector(Sine_Table);

Note that Sine_Table has no named type, so it is not possible to convert another array to its type.

3.5 Operations on one-dimensional arrays*

Most languages allow you to perform operations such as concatenation on strings. Since a string
is nothing more than a one-dimensional array of characters (with a special syntax for literals), Ada
generalizes these operations.

§4.5.33 The concatenation operators & are predefined for every nonlimited, one-
dimensional array type T with component type C. They have the following specifi-
cations:

4 function "&"(Left : T ; Right : T) return T

function "&"(Left : T ; Right : C) return T

function "&"(Left : C ; Right : T) return T

function "&"(Left : C ; Right : C) return T

The reason for the four functions is to save us from having to define a one-component aggregate;
instead, a value of the component type can be concatenated to an array:

’X’ & "-Files"; - - This is better than ...
(1 => ’X’) & "-Files"; - - ... this

(For another example, see ‡110 of the fill-and-justify case study.)

3.6 The context of array aggregates** 31

Note that (’X’) is not legal as a positional aggregate of one component because it cannot be dis-
tinguished from a parenthesized expression §4.3.3(3,32). (’X’)&"-Files" is legal because it is the
same as ’X’&"-Files" except for the unnecessary parentheses.

Lexicographic order between two one-dimensional arrays whose component is of discrete type
may be tested using the relational operators §4.5.2(26). The restriction to discrete components
is obvious: since the arrays are compared by sequentially comparing individual components, a
comparison operator on the components must be available.

The logical operators may be used on one-dimensional arrays whose component type is Boolean
§4.5.1. This is not intended for bitwise operations on numbers; modular types §3.5.4 should be
used instead.

3.6 The context of array aggregates**

Consider the following sequence of declarations:

S1: String(1..5) := (1..5 => ’*’); - - OK
S2: String(1..5) := (2..6 => ’*’); - - OK
S3: String := (1..5 => ’*’); - - OK
S4: String := (2..6 => ’*’); - - OK
S5: String := (0..4 => ’*’); - - Error

S6: String(1..5) := (others => ’*’); - - OK
S7: String := (others => ’*’); - - Error

The index constraints in S1 and S2 match the discrete range defined by the named component of
the aggregate (sliding if necessary). The index constraints of S3 and S4 can be determined from
the ranges of the aggregate. S5 is illegal because zero is not within the range of the index subtype
Positive of String §4.3.3(28).

The meaning of others in the aggregate for S6 can be determined from the index constraint. The
declaration of S7 is illegal because it is not possible to determine the bounds of the aggregate.

§4.3.310 An others choice is allowed for an array_aggregate only if an applicable index
constraint applies to the array_aggregate. An applicable index constraint is a con-
straint provided by certain contexts where an array_aggregate is permitted that can
be used to determine the bounds of the array value specified by the aggregate. . . .

§4.3.3 goes on to specify the contexts where an others choice is permitted, and in §4.3.3(24–27)
the method for determining the bounds of an aggregate. The basic problem is this: for a named
aggregate without others such as (1..5 => ’*’), the index bounds of the aggregate are obvious.
But for a positional aggregate (10.0,6.2,1.4), or for any aggregate with others, the index bounds
cannot be deduced from the aggregate itself. Instead, they are determined from the index constraint
of the object to which the aggregate is assigned. It is not essential to learn the rules in detail; if the
compiler refuses to accept an aggregate, you can easily specify the bounds in more detail either in
the index constraint (as for S6) or in the aggregate (as for S3). Specifying both, as in S1, should
usually be avoided so that if the bounds change, you only have to change one or the other.

3.7 Parameter modes 32

3.7 Parameter modes

Most programming languages define a parameter-passing mechanism such as call-by-value or
call-by-reference. In call-by-value, the value of the actual parameter is copied into the variable
denoted by the formal parameter, whereas in call-by-reference, the formal parameter contains a
pointer to the actual parameter. In Ada, each parameter has a mode associated with it that defines
the permitted uses of the parameter, not the parameter-passing mechanism. (Parameters can also
be passed as access parameters; see Section 9.5.)

in The formal parameter is considered to be a constant §3.3(17), and the actual parameter is an
expression §6.4.1(4) that is used to initialize the constant. This is the default mode if none
is specified. Functions may only have in parameters.

out The formal parameter is an uninitialized variable §6.4.1(15). The actual parameter must be
a variable. An out parameter can be used to pass data from the subprogram to the calling
program.

in out This is like an out parameter, except that the formal parameter is initialized with the value
of the actual parameter.

In the fill-and-justify case study, Get_Word uses out parameters ‡19–21 in order to pass data
back to the calling program. Put_Word uses in parameters ‡89–90 for the word to be appended
and its length, and in out parameters ‡91–93 for buffer state that is manipulated in the procedure.

As a matter of style, I explicitly write in for parameters of procedure declarations even though it
is the default mode, because it helps document the data flow to and from the procedure. I do not
write in mode for function parameters; since a function can only have in parameters, there is no
decision here to document.

The formal parameter of the function Palindrome is of type String, which is an unconstrained array
subtype. The rules of parameter passing §6.4.1 specify that the actual parameter is converted to
the formal parameter. An unconstrained target takes its constraints from the source §4.6(38), so
the function can be called with any string.

Strange: String(17..27) := "Hello World";

Put(Palindrome(Strange));

will print "Hello WorlddlroW elloH". Of course, this only works because we were careful to use
attributes rather than absolute values for the array index expressions in the subprogram.

It is important to understand the trade-off in the Ada design: in order to allow you to write gen-
eralized subprograms, compile-time type checking of array bounds has been traded for run-time
checking of constraints. By using attributes in expressions, the bounds of the actual parameters
need not be explicitly passed.

3.7 Parameter modes 33

Implementation of parameter modes**

The three parameter modes in, out and in out, are defined in terms of use rather than imple-
mentation. However, the ARM does specify most aspects of the implementation, and you will
occasionally need to be aware of these details.

§6.22 A parameter is passed either by copy or by reference. When a parameter is passed by
copy, the formal parameter denotes a separate object from the actual parameter, and
any information transfer between the two occurs only before and after executing
the subprogram. When a parameter is passed by reference, the formal parameter
denotes (a view of) the object denoted by the actual parameter; reads and updates
of the formal parameter directly reference the actual parameter object.

3 A type is a by-copy type if it is an elementary type,
A parameter of a by-copy type is passed by copy.

4 A type is a by-reference type if it is . . .
10 A parameter of a by-reference type is passed by reference. . . .
11 For parameters of other types, it is unspecified whether the parameter is passed by

copy or by reference.

Thus numbers, enumerations and pointers are passed by copy. We have not yet studied types that
are passed by reference, but these are types such as tasks that represent internal data structures
rather than ‘normal’ data.

What is most important is the last sentence §6.2(11): the language does not specify if arrays
and records are passed by copy or by reference. By aliasing two parameters, or a parameter and a
global variable, it is not difficult to create a procedure whose result depends on the implementation.
Such a program is not portable, and you should avoid such programming techniques.

4 Elementary Data Structures

This chapter is an introduction to the construction of data structures in Ada using arrays, records
and access types (pointers). Data structures are normally implemented as abstract data types using
packages and private types to be discussed in the next chapter. The case study is the implementa-
tion of a priority queue, first using arrays and then using pointers.

4.1 Case study: array priority queue

A priority queue is a data structure that stores items in such a way that retrieval the of ‘highest-
priority’ item is can be done efficiently, even if insertion of items will be less efficient. In the
case study, we assume that the items are simply integers and that higher-priority items have lower
values. This is a common situation: customers in a store take numbered tickets and the lowest
outstanding number is served first.

The operations supported by the queue are: Get the lowest number, Put a new number in the
queue, and check if the queue is Empty.1 A Get operation from an empty queue will raise the
exception Underflow and a Put operation to a full queue will raise the exception Overflow.

- - File: PROGPQA1 - -
2 - - Priority queue implemented as an array.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
6 procedure ProgPQA is
7

8 type Vector is array(Natural range <>) of Integer;
9 type Queue(Size: Positive) is

10 record
11 Data: Vector(0..Size); - - Extra slot for sentinel
12 Free: Natural := 0;
13 end record;
14

15 Overflow, Underflow: exception;
16

1Style: the operations are intended to be read ‘put item on queue’ and ‘get item from queue’, and this can be for-
malized using named parameter associations (Section 4.3). Putting the queue parameter first would be more consistent
with languages for object-oriented programming that use distinguished-receiver syntax (Appendix A).

34

4.1 Case study: array priority queue 35

17 function Empty(Q: in Queue) return Boolean is
18 begin
19 return Q.Free = 0;
20 end Empty;
21

22 procedure Put(I: in Integer; Q: in out Queue) is
23 Index: Integer range Q.Data’Range := 0;
24 begin
25 if Q.Free = Q.Size then
26 raise Overflow;
27 end if;
28

29 - - Sentinel search for place to insert
30 Q.Data(Q.Free) := I;
31 while Q.Data(Index) < I loop
32 Index := Index+1;
33 end loop;
34

35 - - Move elements to free space and insert I
36 if Index < Q.Free then
37 Q.Data(Index+1..Q.Free) := Q.Data(Index..Q.Free-1);
38 Q.Data(Index) := I;
39 end if;
40 Q.Free := Q.Free+1;
41 end Put;
42

43 procedure Get(I: out Integer; Q: in out Queue) is
44 begin
45 if Q.Free = 0 then
46 raise Underflow;
47 end if;
48 I := Q.Data(0);
49 Q.Free := Q.Free-1;
50 Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);
51 end Get;
52

53 Q: Queue(10); - - Create queue of size 10
54 I: Integer; - - Element of the queue
55 Test_Data: array(Positive range <>) of Integer :=
56 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);
57

58 begin
59 for N in Test_Data’Range loop
60 Put(Test_Data(N), Width => 5);
61 Put(Test_Data(N), Q);
62 end loop;

4.2 Records 36

63 New_Line;
64

65 Put(17, Q); - - Test overflow (array only!)
66

67 while not Empty(Q) loop
68 Get(I, Q);
69 Put(I, Width => 5);
70 end loop;
71 New_Line;
72

73 Get(I,Q); - - Test underflow
74

75 exception
76 when Underflow => Put_Line("Underflow from queue");
77 when Overflow => Put_Line("Overflow from queue");
78 end ProgPQA;

The program is tested by inserting ten elements into the queue ‡59–62 and then retrieving them
‡67–70. As listed, the program contains a test for overflow ‡65; of course, this will cause the
program to terminate and must be commented-out to test the rest of the program.

4.2 Records

The queue is stored in an array Data; the data structure must also include an indication of the next
Free space in Data (Figure 4.1). The type Queue will thus be implemented as a record with two

Q 5

Free

−6

0

0

1

5

2

10

3

25

4

?

5

?

6

?

7

?

8

?

9

?

10

Figure 4.1: Array priority queue

components ‡9–13. The record definition also includes the declaration of a special component
Size, which is called a discriminant. We will discuss discriminants in detail in Section 8.2; for
now, you need only know that a discriminant is a read-only component of a record whose value
is supplied by a constraint when a record object is declared ‡53. Note that the component Data
includes an index constraint and that Free has a default expression. The default expression is an
initial value given to a component whenever a record object is declared §3.8(6), §3.3.1(18).

Selection of a record component is done using dotted notation §4.1.3. The selected component
is itself an object or value, and further index or selection operations can be applied as appropri-
ate for the type of the component. Thus if Q is of type Queue, Q.Data is of type Vector and
Q.Data(Index) is of type Integer.

4.3 Parameter associations and overloading 37

Implementation of the array priority queue

The elements of the queue are stored in increasing order. The smallest number is in Q.Data(0)

and can be retrieved in constant time. In this implementation, we ‘close-up’ the space that has
been vacated by assigning one slice to another ‡50:

Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);

Assigning slices is more efficient than explicit loops, because on most computers a single machine
instruction can move a block of bytes.

The Put operation is necessarily less efficient, because it must search for the correct place to insert
a new item and move existing items to free the space. The existing items in the queue are stored
in Q.Data(0..Q.Free-1). We use a sentinel search ‡30–33, where the new item I is placed in
Q.Data(Q.Free) prior to beginning the search for an item greater than or equal to I. The sentinel
ensures that even if I is greater than all existing items, the loop will terminate. In this case, no
items need be moved.

Note that Get is implemented as a procedure rather than as a function. A function is allowed to
have only in parameters, but here we need an in out parameter because the queue is modified. An
alternate solution is to use access parameters (Section 9.5).

Record aggregates

Aggregates can be used to create values of a record type. Both positional and named aggregates
may be used. others is also permitted, but is not quite so useful as it is for array aggregates,
because record components are normally of different types. In an aggregate, components for
the discriminants must also be given. The following examples show some legal aggregates for
values of the type Queue; note that either a subaggregate or an array value may be given for the
component Data:

V1: Vector(0..10) := (0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10);

Q1: Queue := (10, (1,2,3,4,5,6,7,8,9,10,11), 0);
Q2: Queue := (10, (1..4 => 7, others => 1), 0);
Q3: Queue := (Data => V1, others => 10);
Q4: Queue := (Size => 10, Data => (others => 1), Free => 0);
Q5: Queue := (Free => V1’First, Data=> V1, Size => V1’Length-1);

4.3 Parameter associations and overloading

Overloading

§8.36 Two or more declarations are overloaded if they all have the same defining name
and there is a place where they are all directly visible.

4.3 Parameter associations and overloading 38

The name Put can be used for a subprogram of the case study ‡22, even though the name already
is directly visible in Ada.Text_IO and Ada.Integer_Text_IO. In fact, there are numerous over-
loaded subprograms with the name Put in these packages. When an overloaded name is used, the
context determines which declaration is intended.

§8.630 For a complete context, if there is exactly one overall acceptable interpretation . . .
then that one overall acceptable interpretation is chosen. Otherwise, the complete
context is ambiguous.

31 A complete context . . . shall not be ambiguous.

‡60–61 contain two calls to procedures named Put, the first with two actual parameters of inte-
ger type and the second with one parameter of integer type and one of type Queue. This type
information is used for overload resolution §8.6, which is the algorithm used by the compiler to
disambiguate a call. The first call is to Put from Ada.Integer_Text_IO §A.10.8 and the second
is to the procedure declared at ‡22.

Overloading is a great convenience though also a possible source of confusion, since given a
name, you have to ‘search’ the list of all visible names to find the correct one. The precise rules
for overloading in §8.6 are extremely complicated; in practice, it is easy to use overloading. If a
problem arises, you can always use additional syntax to disambiguate the use of a name:

Ada.Integer_Text_IO.Put(Test_Data(N), 6);

Parameter associations and default parameters

Most programming languages associate actual with formal parameters by position. Operating-
system command languages typically use a different method: parameters are introduced by key-
words, and for each parameter a default value is specified so that all parameters need not be
specified.

§6.4
5 parameter_association ::=

[formal_parameter_selector_name =>]

explicit_actual_parameter

7 A parameter_association is named or positional according to whether or not the
formal_parameter_selector_name is specified. Any positional associations shall
precede any named associations. . . .

9 A subprogram call shall contain at most one association for each formal parameter.
Each formal parameter without an association shall have a default_expression . . .

10 For the execution of a subprogram call, the name or prefix of the call is evaluated,
and each parameter_association is evaluated (see 6.4.1). If a default_expression

is used, an implicit parameter_association is assumed for this rule. . . .

In one Ada style, parameter names are chosen so that they facilitate named association. For exam-
ple:

4.4 Declaring and raising exceptions 39

procedure Put(Item: in Integer; Into: in out Queue);

Put(Item => Test_Data(N), Into => Q);

The advantage of this style is improved readability; a disadvantage is that the source code can
become too ‘wordy’.

One problem with named association is that the parameter names create a dependence between the
subprogram specification and the caller of the subprogram that would not otherwise exist. That
is, we cannot change the formal parameter names without changing every call that uses named
association!

Default parameters are extensively used in libraries where you want to supply many options,
but default values are sufficient for most uses. For example, Ada.Integer_Text_Put is declared
§A.10.8(11) as:

procedure Put(
Item: in Num;
Width:in Field := Default_Width;
Base: in Number_Base := Default_Base);

Normally, you would print an integer in the default field width and the default base (decimal).
Either or both can easily be changed:

Put(N, Width => 5); - - From ‡69
Put(N, 5); - - Equivalent
Put(N, Base => 16); - - Print in hexadecimal

Default parameters can cause difficulty in overloading resolution. Given the following two proce-
dure declarations, the call Proc(5) is ambiguous:

procedure Proc(N: in Integer; K: in Integer := 10);
procedure Proc(M: in Integer);

4.4 Declaring and raising exceptions

The case study declares two exceptions ‡15:

Overflow, Underflow: exception;

Unlike predefined exceptions that are raised by the run-time system, exceptions that you declare
must be explicitly raised using a raise statement ‡26,46.

§11.43 When an exception occurrence is raised by the execution of a given construct, the
rest of the execution of that construct is abandoned; that is, any portions of the
execution that have not yet taken place are not performed. . . . Then:

5 If the construct is the sequence_of_statements of a handled_sequence_of_-

statements that has a handler with a choice covering the exception, the occurrence
is handled by that handler;

4.4 Declaring and raising exceptions 40

In the country of origin case study, the exception was handled in the same subprogram where it
was raised. Here we demonstrate another possibility: propagating the exception to the caller.

§11.46 Otherwise, the occurrence is propagated to the innermost dynamically enclosing
execution, which means that the occurrence is raised again in that context.

8 Note that exceptions raised in a declarative_part of a body are not handled by the
handlers of the handled_sequence_of_statements of that body.

If you try to Get from an empty queue, the Get subprogram can only diagnose the problem.
It cannot know if you did this on purpose, nor can it know what action is appropriate in this
situation. (This will become clear in the next chapter, where you will learn how to encapsulate the
queue.) Thus we do not handle Overflow and Underflow where they are raised; instead, they are
propagated to the caller—in this case the main subprogram—and are handled there by printing an
error message ‡75–77.

The following program demonstrates what is meant by the dynamically enclosing execution. P3

‡8–11 is statically nested within P1, but since it is called by P2 ‡14, the handler in P2 ‡16, rather
than the handler in P1 ‡21, will be executed.

- - File: PROP1 - -
2 - - Propagating an exception.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Prop is
6 Ex: exception;
7 procedure P1 is
8 procedure P3 is
9 begin

10 raise Ex;
11 end P3;
12 procedure P2 is
13 begin
14 P3;
15 exception
16 when Ex => Put("Handled in P2");
17 end P2;
18 begin
19 P2;
20 exception
21 when Ex => Put("Handled in P1");
22 end P1;
23 begin
24 P1;
25 end Prop;

If no handler is found, the run-time system handles the exception, usually by terminating the
program and printing a message. In an embedded system, you would want to handle all possible
exceptions, because termination and printing are not viable system behaviors.

4.4 Declaring and raising exceptions 41

A certain amount of judgement is needed when using exceptions. Exceptions can almost always be
avoided by using explicit if-statements and additional parameters; conversely, Ada novices often
replace too many if-statements by exceptions. A good rule-of-thumb is to use exceptions for states
that should rarely, if ever, occur. In our case study, you would normally check that a queue is
empty before calling Get, and you would normally declare the queue to be sufficiently large to
contain all the data that you intend to store. Neither overflow nor underflow should ever occur.

It is worth noting that exceptions by themselves do not ensure reliability. It is difficult to plan
for unexpected situations and even more difficult to test them. A good case study of exception
handling can be found in the report on the failure of the first test of the Ariane 5 rocket (Lions
1996). One of the causes of the failure was the incorrect design of an exception handler, which
shut down the navigation computers instead of taking corrective action.

Optimization and Suppress**

Transformations performed by the compiler for the purpose of optimization may subtly effect
the semantics of a program. For example, in the following program fragment, a compiler could
‘optimize away’ the creation of the variable S, provided that S is not used elsewhere in the program.
In doing so, the compiler has ‘optimized away’ the exception that would be raised as a result of
assigning ’G’, the result of Char’Succ(’F’), to a value of subtype Sub:

subtype Sub is Character range ’A’..’F’;
S: Sub := Char’Succ(’F’);
C: Character := S;

A second possibility is that in moving code for purposes of optimization, an exception may not
occur exactly at the place you expect.

§11.6 gives an implementation permission to perform such optimizations.

§11.52 A language-defined check (or simply, a “check”) is one of the situations defined by
this International Standard that requires a check to be made at run-time to determine
whether some condition is true. A check fails when the condition being checked is
false, causing an exception to be raised.

§11.5(9–25) defines the checks; for example, Index_Check checks the bounds of an array value
against its index constraint. A failure of this check will cause Constraint_Error to be raised.

§11.5
4 pragma Suppress(identifier [, [On =>] name]);

8 A pragma Suppress gives permission to an implementation to omit the named check
from the place of the pragma to the end of the innermost enclosing declarative
region, or, if the pragma is given in a package_specification and includes a name,
to the end of the scope of the named entity. If the pragma includes a name, the
permission applies only to checks performed on the named entity, or, for a subtype,
on objects and values of its type. Otherwise, the permission applies to all entities.
If permission has been given to suppress a given check, the check is said to be
suppressed.

4.5 Case study: tree priority queue 42

Checks are not a ‘debugging aid’, but an essential part of the Ada language. Good optimization
techniques will generally ensure that the run-time overhead is minimal. On occasion, if you can
prove that a specific check on a specific type or variable is causing unacceptable overhead, you will
want to suppress the check, even though you risk erroneous execution of the program §11.5(26).

You should not make any semantic use of pragma Suppress.

§11.529 There is no guarantee that a suppressed check is actually removed; hence a pragma
Suppress should be used only for efficiency reasons.

Two checks that are often suppressed are Overflow_Check since it is inefficient to implement
without hardware support, and Elaboration_Check since it is unlikely to occur once you have
successfully built and tested a system (see Section 12.4).

4.5 Case study: tree priority queue

Dynamic data structures are created using pointers and run-time allocation of memory. You can
also create pointers to existing objects and subprograms, but we will defer a discussion of this topic
until Section 9.2. The case study is an implementation of a priority queue using an unbalanced
binary tree, where the value of the data at a node is greater than all the values in its left subtree,
and less than or equal to all the values in its right subtree (Figure 4.2).

0

5

10

15

25

null null null null

null null°°°°°°)

°°°°°°)

°°°°°°)

PPPPPPq

Figure 4.2: Tree priority queue

Get retrieves the smallest item in a tree by recursively traversing the leftmost path until a leaf is
reached ‡47–56. The leaf is then removed and the pointer of its parent updated ‡51–52. (Note that
the node becomes garbage and should be deallocated; see Section 4.6 below.) To insert an element,
the tree is traversed recursively going left if the new item is less than the value stored in this node,
and going right if it is greater than or equal to the value in the node ‡28–38. When a node is reached
whose link is null, a new node is created for the item and linked into the tree ‡31–32. Note that
the exception Overflow will be raised only if we run out of memory; this (unlikely) situation is
signaled by raising the predefined exception Storage_Error, which we reraise as Overflow ‡44.

4.5 Case study: tree priority queue 43

- - File: PROGPQT1 - -
2 - - Priority queue implemented as a tree.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
6 procedure ProgPQT is
7

8 type Node;
9 type Link is access Node;

10 type Node is
11 record
12 Data: Integer;
13 Left, Right: Link;
14 end record;
15

16 type Queue is
17 record
18 Root: Link;
19 end record;
20

21 Overflow, Underflow: exception;
22

23 function Empty(Q: in Queue) return Boolean is
24 begin
25 return Q.Root = null;
26 end Empty;
27

28 procedure Put(I: in Integer; Node_Ptr: in out Link) is
29 - - Recursive procedure to insert in queue
30 begin
31 if Node_Ptr = null then
32 Node_Ptr := new Node’(I, null, null);
33 elsif I < Node_Ptr.Data then
34 Put(I, Node_Ptr.Left);
35 else
36 Put(I, Node_Ptr.Right);
37 end if;
38 end Put;
39

40 procedure Put(I: in Integer; Q: in out Queue) is
41 begin
42 Put(I, Q.Root);
43 exception
44 when Storage_Error => raise Overflow;
45 end Put;
46

4.5 Case study: tree priority queue 44

47 procedure Get(I: out Integer; Node_Ptr: in out Link) is
48 - - Recursive procedure to remove from queue
49 begin
50 if Node_Ptr.Left = null then
51 I := Node_Ptr.Data;
52 Node_Ptr := Node_Ptr.Right;
53 else
54 Get(I, Node_Ptr.Left);
55 end if;
56 end Get;
57

58 procedure Get(I: out Integer; Q: in out Queue) is
59 begin
60 if Q.Root = null then
61 raise Underflow;
62 end if;
63 Get(I, Q.Root);
64 end Get;
65

66 Q: Queue; - - Create queue
67 I: Integer; - - Element of the queue
68 Test_Data: array(Positive range <>) of Integer :=
69 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);
70

71 begin
72 for N in Test_Data’Range loop
73 Put(Test_Data(N), Width => 5);
74 Put(Test_Data(N), Q);
75 end loop;
76 New_Line;
77

78 while not Empty(Q) loop
79 Get(I, Q);
80 Put(I, Width => 5);
81 end loop;
82 New_Line;
83

84 Get(I,Q); - - Test underflow
85

86 exception
87 when Underflow => Put_Line("Underflow from queue");
88 when Overflow => Put_Line("Overflow from queue");
89 end ProgPQT;

4.6 Access types 45

4.6 Access types

A pointer is a value of an access type; it points to an object of a designated subtype §3.10(10). In
the following declaration, Link is an access type and Node is its designated subtype. The variables
L1 and L2 are access objects (pointers) that can point to objects of type Node only.

type Link is access Node;
L1, L2: Link;

As with all (nonlimited) types, pointers can be assigned and compared for equality.

As shown in ‡8–14, recursive data types are created using incomplete type declarations §3.10.1.
The first declaration of Node simply makes its name known so that it can be used as the designated
subtype of the access type declaration. The completion of the declaration of Node can now use
the access type as a component of the record.

For reasons which will become clear in Chapter 5, we have preferred to give a separate type for the
queue itself ‡16–19, even though it is implemented simply as an object of type Link. The recursive
subprograms Put ‡28–38 and Get ‡47–56 overload the interface procedures Put ‡40–45 and Get

‡58–64, respectively.

§3.1013 For each (named) access type, there is a literal null which has a null access value
designating no entity at all. The null value of a named access type is the default
initial value of the type. . . .

Allocators

§4.81 The evaluation of an allocator creates an object and yields an access value that
designates the object.

2 allocator ::=

new subtype_indication |

new qualified_expression

4 An initialized allocator is an allocator with a qualified_expression. An uninitialized
allocator is one with a subtype_indication. . . .

Normally, you combine the allocation of an object with setting its initial value by using an initial-
ized allocator ‡32:

Node_Ptr := new Node; - - OK, now initialize . . .
Node_Ptr.Data := I;
Node_Ptr.Left := null; - - Default, not needed
Node_Ptr.Right := null; - - Default, not needed

Node_Ptr := new Node’(I, null, null); - - Much better!

4.6 Access types 46

Dereference

Given a value of an access type, the operation that returns the designated type is called dereference
§4.1. Since most designated types are records, the dereference is usually followed immediately
by the selection of a component; to simplify the notation, the dereference operation is implicit in
Ada. Thus Node_Ptr.Left ‡34 denotes an implicit dereference of the access object Node_Ptr,
followed by a selection of the component Left from the designated record.2

Occasionally it is necessary to do an explicit dereference, for example to assign the entire contents
of one designated object to another. In addition, if the designated type is elementary rather than
an array or record,3 then explicit dereference must be used. Explicit deference is indicated by an
artificial component named all:

Ptr1: Link := new Node’(1, null, null);
Ptr2: Link := new Node’(2, null, null);

Ptr1 := Ptr2; - - Both point at same node, or...
Ptr1.all := Ptr2.all; - - Contents of both nodes are equal

Unchecked deallocation*

Ada does not encourage explicit deallocation, because it leads to dangling pointers, which can
break type checking:

Deallocate(Node_Ptr); - - Not Ada
Node_Ptr.Data := I; - - Where does I go?

In the case study, discarded nodes ‡52 become ‘garbage’. An Ada implementation is allowed, but
not required, to support garbage collection.

To explicitly deallocate storage obtained by an allocator, you must instantiate the generic proce-
dure §13.11.2(3):

generic
type Object(<>) is limited private;
type Name is access Object;

procedure Ada.Unchecked_Deallocation(X : in out Name);

where Object is the designated subtype and Name is the access subtype. For our case study, the
instantiation would be:

procedure Free is new Ada.Unchecked_Deallocation(Node, Link);

and we could then call the procedure Free with a parameter of type Link such as Node_Ptr. The
storage pointed to by Node_Ptr would be freed and Node_Ptr set to null.

The use of the word Unchecked is intended to inform the reader of your program that the type
system is potentially broken. Before using Unchecked_Deallocation on a project, you must study

2Compare this with Pascal and C, which require an explicit dereference: Node_PtrÝ.Left and (*Node_Ptr).Left,
respectively. C has an alternative syntax for dereference followed by selection: Node_Ptr->Left.

3More exactly, anything that can be a prefix.

4.6 Access types 47

the compiler documentation to determine if the implementation is sufficiently efficient for your
requirements. Even though the procedure is part of the Ada language, the implementation is not
required to actually reclaim storage §13.11.2(17)!

Qualification*

Syntactically, an initialized allocator contains a qualified aggregate:

Node_Ptr := new Node’(I, null, null);

§4.71 A qualified_expression is used to state explicitly the type, and to verify the subtype,
of an operand that is either an expression or an aggregate.

2 qualified_expression ::=

subtype_mark’(expression) | subtype_mark’aggregate

4 The evaluation of a qualified_expression evaluates the operand . . . and checks
that its value belongs to the subtype denoted by the subtype_mark. The exception
Constraint_Error is raised if this check fails.

For example, suppose that the following two overloaded procedures have been defined:

procedure Display(Item: Integer);
procedure Display(Item: Long_Integer);

Then a call Display(28) is ambiguous because 28 is a literal both of Integer type and of Long_In-

teger type. Qualification can be used to specify which procedure to call:

Display(Long_Integer’(28));

Be careful not to confuse qualification with type conversion, which performs a conversion of a
value from one type to another (usually at run-time). Qualification is used purely to identify or
verify a type (usually a compile-time).

5 Packages and Abstract Data Types

5.1 Modularization

A large software system must be decomposed into modules. The structures in a programming
language for creating modules and for describing their interconnections determine the language’s
suitability for the development of complex systems. It is important to distinguish among three
uses of modules:

• A module is a unit of design and management. Even before a single executable statement is
written, the software will be designed as a system of modules. The project manager will then
assign responsibility for the development of each module to a software engineer or team of
engineers.

• A module is a unit of abstraction. To abstract is to hide details of a resource so that it can be
used without knowledge of its internal structure. In a widely used terminology: a client uses an
abstraction supplied by a server that is responsible for its implementation.

• A module is a physical unit of source code. Configuration management of a large software
system requires (at the very minimum) a system for storing modules and for building versions.

In Ada, the package is the unit of design. The package is divided into a specification and a body
which are separate physical units. In addition, they serve as elements of abstraction, separating
the client interface from the implementation. Ada also supports subunits which enable portions of
a package to exist as independent physical units while retaining their semantic status as part of the
package.

Creation of abstract data types in Ada is achieved by following a paradigm that combines private
types and packages.1 In this chapter, we will study the mechanics of creating modules using
packages, as well as techniques for creating abstract data types. We will develop a progression
of six packages for priority queues; the packages encapsulate the array and tree implementations
shown in the previous chapter. Each version will highlight a specific paradigm for programming
with packages.

1Most other object-oriented languages have an abstraction construct called the class. Classes may or may not
serve as units of design and physical units. If you are coming to Ada from another language, be careful not to make
inappropriate analogies: packages are a flexible constructs for encapsulation and are not restricted to the creation of
abstract data types.

48

5.2 Case study: priority queue package 49

5.2 Case study: priority queue package

Version 1

The following package encapsulates a priority queue implemented with an array.

- - File: PQAV11 - -
2 - - Priority queue abstract data type implemented as an array.
3 - - First attempt.
4 - -
5 package Priority_Queue is
6

7 function Empty return Boolean;
8 procedure Put(I: in Integer);
9 procedure Get(I: out Integer);

10

11 Overflow, Underflow: exception;
12

13 end Priority_Queue;
14

15 package body Priority_Queue is
16

17 type Vector is array(Natural range <>) of Integer;
18 type Queue(Size: Positive) is
19 record
20 Data: Vector(0..Size); - - Extra slot for sentinel
21 Free: Natural := 0;
22 end record;
23

24 Q: Queue(100);
25

26 function Empty return Boolean is
27 begin
28 return Q.Free = 0;
29 end Empty;
30

31 procedure Put(I: in Integer) is
32 Index: Integer range Q.Data’Range := 0;
33 begin
34 if Q.Free = Q.Size then
35 raise Overflow;
36 end if;
37

5.2 Case study: priority queue package 50

38 - - Sentinel search for place to insert
39 Q.Data(Q.Free) := I;
40 while Q.Data(Index) < I loop
41 Index := Index+1;
42 end loop;
43

44 - - Move elements to free space and insert I
45 if Index < Q.Free then
46 Q.Data(Index+1..Q.Free) := Q.Data(Index..Q.Free-1);
47 Q.Data(Index) := I;
48 end if;
49 Q.Free := Q.Free+1;
50 end Put;
51

52 procedure Get(I: out Integer) is
53 begin
54 if Q.Free = 0 then
55 raise Underflow;
56 end if;
57 I := Q.Data(0);
58 Q.Free := Q.Free-1;
59 Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);
60 end Get;
61

62 end Priority_Queue;

The package is divided into a specification ‡5–13 and a body ‡15–62. Declarations in a spec-
ification specify the interface to the package. We can also say that the entities declared in the
specification are exported from the package. The specification may not contain executable code
such as bodies of subprograms §7.1(3). The body of a package may contain both declarations and
bodies.

§7.110 If a declaration occurs immediately within the specification of a package, and the
declaration has a corresponding completion that is a body, then that body has to
occur immediately within the body of the package.

Thus, the body should be considered as the implementation of resources promised in the specifi-
cation.

The queue package specification contains the declarations of three subprograms and two excep-
tions. The package body contains the bodies for the subprograms declared in the specifications as
well as the declarations of the queue type ‡17–22 and of the variable that holds the queue ‡24.

The following program tests the priority queue package: it fills the queue by calling Put ‡73–76

and then calls Get to retrieve the values which are then printed ‡79–82. The exception handlers
‡88–89 print error messages if either of the exported exceptions occur.

5.2 Case study: priority queue package 51

63 with Priority_Queue;
64 with Ada.Text_IO; use Ada.Text_IO;
65 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
66 procedure PQAV1 is
67

68 I: Integer; - - Element of the queue
69 Test_Data: array(Positive range <>) of Integer :=
70 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);
71

72 begin
73 for N in Test_Data’Range loop
74 Put(Test_Data(N), Width => 5);
75 Priority_Queue.Put(Test_Data(N));
76 end loop;
77 New_Line;
78

79 while not Priority_Queue.Empty loop
80 Priority_Queue.Get(I);
81 Put(I, Width => 5);
82 end loop;
83 New_Line;
84

85 Priority_Queue.Get(I); - - Test underflow
86

87 exception
88 when Priority_Queue.Underflow => Put_Line("Underflow from queue");
89 when Priority_Queue.Overflow => Put_Line("Overflow from queue");
90 end PQAV1;

To use a package, the context clause of the client unit (the main subprogram or another package)
must contain a ‘with’ context item for the package ‡63. Within the client, any entity in the package
specification can be accessed by giving its expanded_name: the package name followed by the
entity name; for example, Priority_Queue.Empty ‡79. The client is said to import these entities
from the package.

Note that the client does not have access to declarations within the package body. For example, a
clever programmer might wish to quickly empty the queue by writing:

Q.Free := 0;

However, this is a compilation error.

5.2 Case study: priority queue package 52

Compilation

The Ada standard specifies that a compiler shall include a library mechanism called an environ-
ment:

§10.1.41 Each compilation unit submitted to the compiler is compiled in the context of an
environment declarative_part (or simply, an environment), . . .

2 The declarative_items of the environment are library_items . . .
3 The mechanisms for creating an environment and for adding and replacing compi-

lation units within an environment are implementation defined.

The environment is used to ensure that both the package body and the clients are always consistent
with respect to the same specification. A package specification must be compiled before the
compilation of its body and before the compilation of any client. However, there is no prescribed
order of compilation between the body and a client.

§10.1.126 A library_unit_body depends semantically upon the corresponding li-

brary_unit_declaration, if any. A compilation unit depends semantically
upon each library_item mentioned in a with_clause of the compilation unit. . . .

§10.1.45 When a compilation unit is compiled, all compilation units upon which it depends
semantically shall already exist in the environment; . . .

In fact, you can write clients even before the the package body has been written. This is extremely
useful in the management of software development by project teams, because you can directly use
packages as units of work:

• The designer writes and compiles the package specification.

• An engineer is assigned to develop the body.

• Engineers who program clients refer to the package specification; they may create simplified
bodies to test their modules before the final package body is completed.

The fact that all programming is done relative to compiled specifications means that integration of
all the packages in a system is immediate. There will be few, if any, last-minute surprises caused
by misunderstandings or inconsistencies in the declarations within the specifications.

Is this package an adequate implementation of a priority queue in terms of abstraction and usabil-
ity?

Analyze this program yourself before continuing!

Version 2

The package is an abstract priority-queue server. As long as the semantics of the priority queue
are maintained, the implementation in the body can be repeatedly modified with no effect on the
clients. In fact, they need not even be recompiled!

5.2 Case study: priority queue package 53

We can demonstrate this by replacing the package body with one that implements the priority
queue using a binary tree.2

- - File: PQTV21 - -
2 - - Priority queue abstract data type implemented as a tree.
3 - - First attempt.
4 - -
5 package body Priority_Queue is
6

7 type Node;
8 type Link is access Node;
9

10 type Queue(Size: Positive) is - - Size ignored!
11 record
12 Root: Link;
13 end record;
14

15 type Node is
16 record
17 Data: Integer;
18 Left, Right: Link;
19 end record;
20

21 Q: Queue(100);
22

23 function Empty return Boolean is
24 begin
25 return Q.Root = null;
26 end Empty;
27

28 procedure Put(I: in Integer; Node_Ptr: in out Link) is
29 - - Recursive procedure to insert in queue
30 begin
31 if Node_Ptr = null then
32 Node_Ptr := new Node’(I, null, null);
33 elsif I < Node_Ptr.Data then
34 Put(I, Node_Ptr.Left);
35 else
36 Put(I, Node_Ptr.Right);
37 end if;
38 end Put;
39

2The discriminant Size is obviously not needed in the tree implementation; it is retained for compatibility with
subsequent versions.

5.2 Case study: priority queue package 54

40 procedure Put(I: in Integer) is
41 begin
42 Put(I, Q.Root);
43 exception
44 when Storage_Error => raise Overflow;
45 end Put;
46

47 procedure Get(I: out Integer; Node_Ptr: in out Link) is
48 - - Recursive procedure to remove from queue
49 begin
50 if Node_Ptr.Left = null then
51 I := Node_Ptr.Data;
52 Node_Ptr := Node_Ptr.Right;
53 else
54 Get(I, Node_Ptr.Left);
55 end if;
56 end Get;
57

58 procedure Get(I: out Integer) is
59 begin
60 if Q.Root = null then
61 raise Underflow;
62 end if;
63 Get(I, Q.Root);
64 end Get;
65

66 end Priority_Queue;

The package body contains the additional subprograms Put ‡28–38 and Get ‡47–56 that are
needed to implement the subprograms Put ‡40–45 and Get ‡58–64 that were promised in the
specification. These additional subprograms are not exported from the package.

There is, however, a problem. The package declares a single queue; if we needed many queues, we
would have to write a package for each one.3 In more formal terms, we have created an abstract
data object, while what is usually needed is an abstract data type so that we can declare multiple
objects of the same queue type, pass queues as parameters, embed them in more complex data
structures, and so on.

Before proceeding, we must emphasize that abstract data objects are very common. Consider, for
example, a air-traffic control system: we would need a type for each individual airplane being
tracked, but typically all such tracks are contained in a single data structure. A good design
is to encapsulate the data structure within a package body, exporting only operations such as
Get_Track, Update_Track and Delete_Track.

To create a data type, we modify the package so that the type Queue is exported.

3To a certain extent, generics (Chapter 7) can be used to create multiple instances of a package. However, each
generic instance is a separate package and it would be impossible to pass queues as parameters.

5.2 Case study: priority queue package 55

- - File: PQAV21 - -
2 - - Priority queue abstract data type implemented as an array.
3 - - Second attempt.
4 - -
5 package Priority_Queue is
6

7 type Vector is array(Natural range <>) of Integer;
8 type Queue(Size: Positive) is
9 record

10 Data: Vector(0..Size); - - Extra slot for sentinel
11 Free: Natural := 0;
12 end record;
13

14 function Empty(Q: in Queue) return Boolean;
15 procedure Put(I: in Integer; Q: in out Queue);
16 procedure Get(I: out Integer; Q: in out Queue);
17

18 Overflow, Underflow: exception;
19

20 end Priority_Queue;
21

22 package body Priority_Queue is
23

24 function Empty(Q: in Queue) return Boolean is
25 begin
26 return Q.Free = 0;
27 end Empty;
28

29 procedure Put(I: in Integer; Q: in out Queue) is
30 Index: Integer range Q.Data’Range := 0;
31 begin
32 if Q.Free = Q.Size then
33 raise Overflow;
34 end if;
35

36 - - Sentinel search for place to insert
37 Q.Data(Q.Free) := I;
38 while Q.Data(Index) < I loop
39 Index := Index+1;
40 end loop;
41

42 - - Move elements to free space and insert I
43 if Index < Q.Free then
44 Q.Data(Index+1..Q.Free) := Q.Data(Index..Q.Free-1);
45 Q.Data(Index) := I;
46 end if;

5.2 Case study: priority queue package 56

47 Q.Free := Q.Free+1;
48 end Put;
49

50 procedure Get(I: out Integer; Q: in out Queue) is
51 begin
52 if Q.Free = 0 then
53 raise Underflow;
54 end if;
55 I := Q.Data(0);
56 Q.Free := Q.Free-1;
57 Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);
58 end Get;
59

60 end Priority_Queue;

Note carefully the differences between a package implementing a data type and one implementing
a data object. A package implementing a data object contains the declaration of a variable:

Q: Queue(100);

In other words, the package has a state, meaning that data is associated with the package; calls
to the subprograms modify the data, changing the state. Since the state is associated with the
package, the exported subprograms need not carry it in a parameter:

procedure Put(I: in Integer);

On the other hand, a package declaring a type must not have a state,4 because the subprograms of
the package are used to process many different objects declared to be of the type. The subprograms
must include a parameter specifying which object the subprogram is to process ‡15:

procedure Put(I: in Integer; Q: in out Queue);

Note that any subprogram that modifies an object must declare the object parameter to be of mode
in out.

In the following test program, the data type Queue is used. An object of the type is declared ‡66

and the imported operations of the package are called with the object as the actual parameter ‡74,
78, 79, 84. Of course, any number of objects could have been declared.

61 with Priority_Queue;
62 with Ada.Text_IO; use Ada.Text_IO;
63 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
64 procedure PQAV2 is
65

66 Q: Priority_Queue.Queue(10); - - Create queue of size 10
67 I: Integer; - - Element of the queue

4There may be some common state associated with the ensemble of objects of the type—what other languages call
class variables. This is easily implemented in Ada by declaring variables in the package body.

5.2 Case study: priority queue package 57

68 Test_Data: array(Positive range <>) of Integer :=
69 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);
70

71 begin
72 for N in Test_Data’Range loop
73 Put(Test_Data(N), Width => 5);
74 Priority_Queue.Put(Test_Data(N), Q);
75 end loop;
76 New_Line;
77

78 while not Priority_Queue.Empty(Q) loop
79 Priority_Queue.Get(I, Q);
80 Put(I, Width => 5);
81 end loop;
82 New_Line;
83

84 Priority_Queue.Get(I,Q); - - Test underflow
85

86 exception
87 when Priority_Queue.Underflow => Put_Line("Underflow from queue");
88 when Priority_Queue.Overflow => Put_Line("Overflow from queue");
89 end PQAV2;

Analyze this program yourself before continuing!

Version 3

The package declared a data type, but we have lost all abstraction by declaring the type in the
package specification! Any modification of the specification potentially invalidates all the clients.
If the representation of the type in the package specification is modified, all uses of resources of
the package by clients must be checked to see if they need to be modified (and tested).

Furthermore, since the implementation of the type is not hidden, unintended manipulation of ob-
jects of the type can be done:

Q.Free := 0;

This creates unnecessary coupling between the data type and its clients, and Murphy’s Law ensures
that such dependencies are discovered after the programmer has left the company!

Now we have a dilemma: if the type is declared in the package specification, it is not abstract,
but if it is declared in the package body, clients cannot declare objects. Why don’t we try the
solution used for subprograms: declare the interface to the type in the specification ‡7 and the
implementation in the body ‡19–24?

5.3 Private types 58

- - File: PQAV31 - -
2 - - Priority queue abstract data type implemented as an array.
3 - - Third attempt.
4 - -
5 package Priority_Queue is
6

7 type Queue(Size: Positive);
8

9 function Empty(Q: in Queue) return Boolean;
10 procedure Put(I: in Integer; Q: in out Queue);
11 procedure Get(I: out Integer; Q: in out Queue);
12

13 Overflow, Underflow: exception;
14

15 end Priority_Queue;
16

17 package body Priority_Queue is
18

19 type Vector is array(Natural range <>) of Integer;
20 type Queue(Size: Positive) is
21 record
22 Data: Vector(0..Size); - - Extra slot for sentinel
23 Free: Natural := 0;
24 end record;
25

26 . . .
27 end Priority_Queue;

Analyze this program yourself before continuing!

5.3 Private types

Version 4

This is an excellent package: the clients see the existence of the type, but its implementation is
hidden in the package body. There is only one minor problem: clients of this package cannot be
compiled!

To see why this must be true, consider what must be done when compiling:

Q1, Q2: Priority_Queue(100);

The compiler must allocate memory for the variables Q1 and Q2. From the specification alone,
the compiler cannot know that a value of type Priority_Queue must be allocated Size+3 integers.
Furthermore, compiling an assignment statement such as:

Q1 := Q2;

5.3 Private types 59

also requires that the size of these variables be known. In other words, the compiler needs certain
information about the representation of a type that the programmer does not.

Given a choice between programming at a high level of abstraction and being able to compile a
program, it is not surprising that the solution is to weaken abstraction so that the program can be
compiled.5

A package specification is divided into two parts: the visible part and the private part. The reserved
word private indicates the boundary between the two parts. Declarations in the visible part of a
specification are accessible to clients; declarations in the private part of a specification are not
accessible to clients.

§7.16 The first list of declarative_items of a package_specification of a package . . . is
called the visible part of the package. The optional list of declarative_items after
the reserved word private (of any package_specification) is called the private part
of the package. . . .

7 An entity declared in the private part of a package is visible only within the declar-
ative region of the package itself In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; . . .

Within the visible part, you can declare a private type. The completion of a private type by a full
type declaration must be given in the private part of the same package. The predefined operations
on a private type are assignment, equality and inequality; other operations must be explicitly
declared. Of course within the package body, whatever operations permitted by the full type
declaration are available.

The following specification shows the declaration of Queue as a private type in the visible part ‡7,
and its completion as a record in the private part ‡17–21.

- - File: PQAV41 - -
2 - - Priority queue abstract data type implemented as an array.
3 - - Fourth attempt.
4 - -
5 package Priority_Queue is
6

7 type Queue(Size: Positive) is private;
8

9 function Empty(Q: in Queue) return Boolean;
10 procedure Put(I: in Integer; Q: in out Queue);
11 procedure Get(I: out Integer; Q: in out Queue);
12

13 Overflow, Underflow: exception;
14

15 private
16 type Vector is array(Natural range <>) of Integer;
17 type Queue(Size: Positive) is

5An alternate solution is to use indirect allocation as is done in languages that use reference semantics. This is
discussed further in Section 5.4 below.

5.3 Private types 60

18 record
19 Data: Vector(0..Size); - - Extra slot for sentinel
20 Free: Natural := 0;
21 end record;
22 end Priority_Queue;

The private type declares a partial view of the type; the full view of the type is declared in the
private part and is accessible within the package body only. If the programmer of a client writes:

Q.Free := 0;

a compilation error would result, because the source code of the client can only access the par-
tial view—from which we cannot conclude that Queue is a record, much less that it contains a
component Free.

The designer of an Ada package can place a declaration in three places. The implications of
each choice are as follows (where by ‘modification’ we mean a change of implementation that is
semantically equivalent to the original one):

Visible part of specification The declaration is accessible to clients. A modification potentially
affects all clients, which must be recompiled and verified.

Private part of specification The declaration is not accessible to any client, but the object code
of a client depends on the declaration. A modification never affects the correctness of a
client;6 however, all clients must be recompiled.

Body The declaration cannot be accessed outside the body, so the clients do not depend on the
declaration. If the body is modified, clients need only be relinked, not recompiled.

Placing a declaration as low as possible in this hierarchy reduces the coupling of the program
modules and makes it easier to verify and maintain the system. Even avoiding recompilation can
be important. A large system may take hours to compile—time that may not be available when
the system is being integrated and installed.

To demonstrate that a change of type representation need not affect a client, we show a modifica-
tion of the package specification that implements the queue using a binary tree. Since the visible
part is not modified, the client need only be recompiled, not modified or checked. In order to
export the same interface, the visible part is the same for both implementations, even though the
discriminant Size ‡7 is not used in the tree implementation.

- - File: PQTV41 - -
2 - - Priority queue abstract data type implemented as a tree.
3 - - Fourth attempt.
4 - -
5 package Priority_Queue is
6

7 type Queue(Size: Positive) is private;
8

6Well, hardly ever! See below.

5.4 Limited types 61

9 function Empty(Q: in Queue) return Boolean;
10 procedure Put(I: in Integer; Q: in out Queue);
11 procedure Get(I: out Integer; Q: in out Queue);
12

13 Overflow, Underflow: exception;
14

15 private
16 type Node;
17 type Link is access Node;
18 type Node is
19 record
20 Data: Integer;
21 Left, Right: Link;
22 end record;
23

24 type Queue(Size: Positive) is - - Size ignored!
25 record
26 Root: Link;
27 end record;
28 end Priority_Queue;

5.4 Limited types

Version 5

Suppose that we have declared two queues and then assign one to another:

Q1, Q2: Priority_Queue.Queue(100);

Q1 := Q2;

The assignment operation copies the block of memory allocated to Q2 to the memory cells allo-
cated to Q1. If an array implementation is used, the assignment correctly makes a copy of the
queue; however, if a tree implementation is used, the assignment merely copies the access values,
and the two variables point to the same queue (Figure 5.1). We promised that a semantically-
equivalent modification of the private part cannot affect the correctness of a client, yet here we
have a case where an assignment statement in the client is not longer correct. Furthermore, prede-
fined equality is not meaningful for either implementation of a priority queue (why?).

One solution to this problem is to claim that predefined assignment and equality are meaningless
operations on a data structure such as a queue. The only meaningful operations are those explicitly
declared: Empty, Get and Put. By declaring a private type to be limited,7 we restrict the allowable
operations to those explicitly declared:

7Limited types need not be private: task and protected types are automatically limited and any record may be
declared limited.

5.4 Limited types 62

5

Free

−6

0

0

1

5

2

10

3

25

4

?

5

? ? ? ? ?

10

Q1

Q2

6 6 6

Q1

Q2

Root

6

-

Q
Q

Q
Q

QQs
@

@

@
@

Figure 5.1: Assignment of a queue

- - File: PQTV5,PQA1 package Priority_Queue is
2

3 type Queue(Size: Positive) is limited private;
4

5 . . .
6 end Priority_Queue;

§7.51 A limited type is (a view of) a type for which the assignment operation is not al-
lowed. A nonlimited type is a (view of a) type for which the assignment operation
is allowed.

8 There are no predefined equality operators for a limited type.

Limited types cannot be used in contexts such as initialization of objects §3.3.1(5), which perform
an assignment operation. See §7.5(9–15) for a summary of the properties of limited types.

Like any operator, equality can be overloaded for any type,8 and this is particularly useful for
limited types that have no predefined equality. However, the assignment symbol is not an operator
in Ada and cannot be overloaded, though you can declare a normal procedure:

type Queue(Size: Positive) is limited private;
function "="(Left, Right: Queue) return Boolean;
procedure Assign(Target: out Queue; Source: in Queue);

The semantics of assignment can also be changed by using controlled types; see Section 9.7.

8See Quizzes 13 and 14 for the exact details.

5.4 Limited types 63

Version 6

Consider the package specification:

- - File: PQT1 - -
2 - - Priority queue abstract data type implemented as a tree.
3 - - Queue is limited private, representation of nodes in body.
4 - -
5 package Priority_Queue is
6

7 type Queue(Size: Positive) is limited private;
8

9 function Empty(Q: in Queue) return Boolean;
10 procedure Put(I: in Integer; Q: in out Queue);
11 procedure Get(I: out Integer; Q: in out Queue);
12

13 Overflow, Underflow: exception;
14

15 private
16 type Node; - - Completion in body
17 type Link is access Node;
18 type Queue(Size: Positive) is - - Size ignored!
19 record
20 Root: Link;
21 end record;
22 end Priority_Queue;
23

24 package body Priority_Queue is
25

26 type Node is - - Completion of type declaration
27 record
28 Data: Integer;
29 Left, Right: Link;
30 end record;
31

32 . . .
33 end Priority_Queue;

Note that an incomplete type declaration is given for Node ‡16, but its completion has not been
declared in the specification; instead, the declaration of its completion is in the body ‡26–30.

5.4 Limited types 64

§3.10.13 An incomplete_type_declaration requires a completion, which shall be a full_-

type_declaration. If the incomplete_type_declaration occurs immediately within
either the visible part of a package_specification or a declarative_part, then the
full_type_declaration shall occur later and immediately within this visible part or
declarative_part. If the incomplete_type_declaration occurs immediately within
the private part of a given package_specification, then the full_type_declaration

shall occur later and immediately within either the private part itself, or the decla-

rative_part of the corresponding package_body.
5 The only allowed uses of a name that denotes an incomplete_type_declaration are

as follows:
7 as the subtype_mark in the subtype_indication of an ac-

cess_to_object_definition; . . .

The reason this works is that objects of an access type such as Link have the same representation
regardless of what they point to.9 We can freely change the representation of Node in the package
body without even recompiling the clients. All the client can do is allocate a queue that is a pointer
to the root, and pass the queue as a parameter.

This final version of the package gives the highest level of abstraction for a data type, similar to
the abstract data object of the first version. Representing an object as a pointer to the actual data
is called indirect allocation. Many object-oriented languages such as Java, Eiffel and Smalltalk
use indirect allocation for all abstract data types. Languages of this kind are said to use reference
semantics, as opposed to value semantics where objects directly contain values. References se-
mantics can significantly simplify programming since explicit pointer manipulation is no longer
needed, but other complications are introduced because value semantics are still used for elemen-
tary data types like integer and character.

The philosophy of Ada is that access types are explicitly used, but can be encapsulated in the
package body. In the next chapter, we will see a similar situation, where access types must be used
to implement a data structure but the clients need not be aware of the pointers.

Limited and nonlimited private types

Since assignment and equality are so troublesome, why would you want to declare a type just
private and not limited private?

The answer is that private types are used not just for complex data structures, but also for simple
information hiding of the components of a record. In these common cases, there is no reason to
forbid predefined assignment and equality. The standard example is a complex number, which
you will want to declare as private so that you can change the implementation from a Cartesian
representation:

9Different access types can have different representations (Section 9.6), but once an access type has been declared,
its representation is fixed regardless of changes in the designated type.

5.4 Limited types 65

- - File: COMPLEX11 - -
2 - - Complex numbers: Cartesian representation.
3 - -
4 package Complex_Numbers is
5 type Complex is private;
6 I: constant Complex;
7 private
8 type Complex is
9 record

10 Real_Part, Im_Part: Float;
11 end record;
12 I: constant Complex := (Real_Part => 0.0, Im_Part => 1.0);
13 end Complex_Numbers;

to a polar representation:

- - File: COMPLEX21 - -
2 - - Complex numbers: polar representation.
3 - -
4 package Complex_Numbers is
5 type Complex is private;
6 I: constant Complex;
7 private
8 type Complex is
9 record

10 Rho: Float;
11 Theta: Float range 0.0 .. 360.0;
12 end record;
13 I: constant Complex := (Rho => 1.0, Theta => 90.0);
14 end Complex_Numbers;

without modifying the clients. By declaring the type to be nonlimited, you can still use predefined
assignment and equality, which are clearly meaningful for both representations of the type. (This
example is for demonstration only; libraries for complex numbers are predefined in Annex §G.1.
See Section 10.8.)

This example also demonstrates the use of deferred constants. When a private type is declared, it
is often useful to compare values of the type to a constant, in this case the imaginary value ı ‡6.
Clients can use the deferred constant without knowing its actual value, which is specified in the
full constant declaration given in the private part ‡13.

§7.43 A deferred constant declaration that is completed by a full constant declaration shall
occur immediately within the visible part of a package_specification. For this case,
the following additional rules apply to the corresponding full declaration:

4 The full declaration shall occur immediately within the private part of the same
package;

5 The deferred and full constants shall have the same type;
6 . . . The constant itself will be constrained, like all constants; . . .

6 Type Extension and Inheritance

6.1 Case study: discrete event simulation

Simulations are invariably used during the design of large embedded systems. You cannot ‘debug’
the design of a rocket by launching rocket after rocket! It takes months of time and tens of mil-
lions of dollars to build each rocket, so extensive simulation is the only way to develop enough
confidence in the design to build and launch one with a reasonable chance of success.

The case study in this chapter is a framework for a simulation of a rocket. Needless to say, we will
omit all the physical calculations that would require domain-specific knowledge. The choice of a
rocket is arbitrary; the framework can be used for any simulation.

The method used is discrete event simulation. In this method, events are generated and placed on
a queue (Figure 6.1).

- - - - - -
Head

342 671 895 931 1109 1226

Main
Engine

Main
Engine

Aux.
Engine

Aux.
Engine

Steer-
ing

Steer-
ing

Figure 6.1: Event queue

Each event is time-stamped with the time at which it is to ‘occur’. The program does not attempt
to maintain a physical clock.1 Instead, the events are ordered by time, and the program simply
removes the event whose occurrence is ‘soonest’ in the future, sets the simulated clock to the
event’s time and performs the simulation of the event. This is easily done by maintaining a priority
queue, where higher priority is given to earlier events.

The events themselves would normally be generated by additional tasks in a multitasking imple-
mentation. For now, we simplify the program and specify that all events are generated and placed
on the queue before the simulation is commenced. A multitasking simulation will be developed in
Section 14.8.

1In an actual system, you might have an operator’s console that would display the progress of the simulation in real
time, rather than trying to simulate as many events as possible in as short a time as possible.

66

6.2 Tagged types 67

Conveniently, we have already implemented a priority queue in the previous case study. The
outline of the simulation is given by the following program fragment:

for All_Events loop
Put(Create_Event, Q);

end loop;

while Queue_Not_Empty loop
Simulate(Get(Q));

end loop;

We have a major problem to solve: how do we represent an event? If all events were identical, a
simple record would suffice. But, as shown in Figure 6.1, different events will have different com-
ponents associating with them. Some components are, of course, identical in all events: the link
and the simulation time. However, the data actually required to conduct the simulation depends on
the specific event type. For example, an engine event will need the fuel flow rate, while a steering
event will need the deflection angles of the fins or nozzles.

The simplest solution to the problem is to include all possible components in a record. This is
clearly impractical, because the records will be too large and confusing. A modification of this
solution is to use variant records (Section 8.3), which may be familiar to you from languages like
Pascal and C.2 Each record will contain only the components required by the specific event type;
when accessing the record, you must explicitly select the correct variant using a case statement.
This solution can make maintenance difficult, because if you add an event, you must modify every
case statement that selects according to the record variant.

A better solution is to use inheritance. We will define a general event type and then specialize
the type for each specific event. To use the correct terminology, we will derive the specific event
types from the parent type. The parent type will contain the components that are common to all
events, and these will be inherited by the derived types, which will be extended with event-specific
components.

6.2 Tagged types

We start by declaring in package Root_Event a record type Event containing a single component
Time. Event is an abstract data type, because it is declared to be private ‡5 with the completion in
the private part of the specification ‡17–20.

- - File: ROCKET1 package Root_Event is
2 - -
3 - - Declaration of abstract event at root of event class.
4 - -
5 type Event is abstract tagged private;
6

7 - - Declare (abstract) primitive operations of an Event.

2They are called unions in C.

6.2 Tagged types 68

8 function Create return Event is abstract;
9 procedure Simulate(E: in Event) is abstract;

10

11 - - Comparison of events is common to all events in the class.
12 function "<"(Left, Right: Event’Class) return Boolean;
13

14 private
15

16 subtype Simulation_Time is Integer range 0..10_000;
17 type Event is abstract tagged
18 record
19 Time: Simulation_Time; - - Common component of all events
20 end record;
21

22 end Root_Event;

The type is declared to be abstract. (Do not confuse this technical term to be discussed in Sec-
tion 6.10 with the general concept of abstract data type.) You cannot declare an object of an
abstract type §3.9.3(8). This is reasonable because a record with just the Time component doesn’t
actually represent an event that can be simulated. The type will serve only as the root of a class
of types, one type for each event. Similarly, the operations declared for the type ‡8–9 are abstract,
which means that no body will be defined for them. If you can’t declare an object of the type, you
don’t have to have an operation for it.

The word tagged3 indicates that the type can be extended. We now extend the abstract type
Event for each concrete event type that is needed in the simulation. Package Root_Event.Engine

declares three types: Engine_Event ‡25 derived from Event and two events Main_Engine_Event

‡31 and Aux_Engine_Event ‡34, which are in turn derived from Engine_Event.

23 package Root_Event.Engine is
24

25 type Engine_Event is new Event with private;
26

27 - - Override primitive operations of Event.
28 function Create return Engine_Event;
29 procedure Simulate(E: in Engine_Event);
30

31 type Main_Engine_Event is new Engine_Event with private;
32 function Create return Main_Engine_Event;
33

34 type Aux_Engine_Event is new Engine_Event with private;
35 function Create return Aux_Engine_Event;
36 procedure Simulate(E: in Aux_Engine_Event);
37

38 private

3The choice of the word tagged will be explained in Section 6.6.

6.2 Tagged types 69

39

40 type Engine_Event is new Event with
41 record
42 Fuel, Oxygen: Natural;
43 end record;
44

45 type Main_Engine_Event is new Engine_Event with
46 null record;
47

48 type Aux_Engine_ID is (Left, Right);
49

50 type Aux_Engine_Event is new Engine_Event with
51 record
52 Side: Aux_Engine_ID;
53 end record;
54

55 end Root_Event.Engine;

Packages Root_Event.Steering and Root_Event.Telemetry each declare a single type: Steer-

ing_Event ‡58 and Telemetry_Event ‡78, respectively.

56 package Root_Event.Steering is
57

58 type Steering_Event is new Event with private;
59

60 - - Override primitive operations of Event.
61 function Create return Steering_Event;
62 procedure Simulate(E: in Steering_Event);
63

64 private
65

66 type Commands is (Roll, Pitch, Yaw);
67 subtype Degrees is Integer range -90 .. 90;
68 type Steering_Event is new Event with
69 record
70 Command: Commands;
71 Degree: Degrees;
72 end record;
73

74 end Root_Event.Steering;
75

76 package Root_Event.Telemetry is
77

78 type Telemetry_Event is new Event with private;
79

80 - - Override primitive operations of Event.

6.2 Tagged types 70

81 function Create return Telemetry_Event;
82 procedure Simulate(E: in Telemetry_Event);
83

84 private
85

86 type Subsystems is (Engines, Guidance, Communications);
87 type States is (OK, Failed);
88 type Telemetry_Event is new Event with
89 record
90 ID: Subsystems;
91 Status: States;
92 end record;
93

94 end Root_Event.Telemetry;

The following syntax chart shows how a derived type is declared as a new version of an existing
type together with a set of components for the derived type. Only a tagged type can be extended
§3.4(5). Event is called the parent type §3.4 of Engine_Event, which in turn is the parent type of
Main_Engine_Event.

§3.4
2 derived_type_definition ::=

[abstract] new parent_subtype_indication

[record_extension_part]

§3.9.1
2 record_extension_part ::= with record_definition

To maintain abstraction in the data type, the derived types are declared as private extensions in
the visible part of the specifications, with the actual derivation done as a completion in the private
part.

§7.3
3 private_extension_declaration ::=

type defining_identifier [discriminant_part] is
[abstract] new ancestor_subtype_indication with private;

The derivations in this program are done in child packages, as indicated by extended names such
as Root_Event.Engine ‡23. This allows the child package access to the private part of the parent
package (see Section 6.7).

The types derived from Event can be displayed in a tree (Figure 6.2). The components of a
derived type consist of the components inherited §3.4(12) from the parent type, as well as any
additional components added in the extension. Since there is no provision for removing compo-
nents upon derivation, we can be sure that every component of a parent type, for example Oxygen
in Engine_Event, is also contained in each descendant of the parent: Main_Engine_Event and
Aux_Engine_Event. This fact will be of crucial importance in the discussion of type conversion
(Section 6.8).

6.3 Primitive operations 71

Time

°°°°°°1

@
@I

XXXXXXXXy

°°°°°°1

PPPPPPi

Event

Engine

Main
Engine

Aux
Engine

Steering Telemetry

Time

Fuel

Oxygen

Time

Fuel

Oxygen

Time

Fuel

Oxygen

Side

Time

Command
Degree

Time

ID
Status

Figure 6.2: Derivation class

A tree of derived types is called a derivation class.

§3.4.12 A derived type is derived from its parent type directly; it is derived indirectly from
any type from which its parent type is derived. The derivation class of types for a
type T (also called the class rooted at T) is the set consisting of T (the root type of
the class) and all types derived from T (directly or indirectly) . . .

Note that the full view of the private extension can be indirectly derived from the ancestor §7.3(8);
in the following example, the partial view of Main_Engine_Event is derived from Event, while
the full view is derived directly from Engine_Event and only indirectly from Event.

package Root_Event.Engine is
type Engine_Event is new Event with private;
type Main_Engine_Event is new Event with private;

private
type Engine_Event is new Event with . . .
type Main_Engine_Event is new Engine_Event with. . . ;

end Root_Event.Engine;

6.3 Primitive operations

Primitive operations of a type are operations that are so closely associated with the type that they
are ‘carried along’ with type.4 The following section of the ARM defining primitive operations is
extremely important, so we quote it in full for future reference though you may not understand all
the concepts just yet.

4Primitive operations are like methods or messages in other languages.

6.3 Primitive operations 72

§3.2.31 An operation operates on a type T if it yields a value of type T, if it has an operand
whose expected type (see 8.6) is T, or if it has an access parameter (see 6.1) desig-
nating T. A predefined operator, or other language-defined operation such as assign-
ment or a membership test, that operates on a type, is called a predefined operation
of the type. The primitive operations of a type are the predefined operations of the
type, plus any user-defined primitive subprograms.

2 The primitive subprograms of a specific type are defined as follows:
3 The predefined operators of the type (see 4.5);
4 For a derived type, the inherited (see 3.4) user-defined subprograms;
5 For an enumeration type, the enumeration literals (which are considered parameter-

less functions—see 3.5.1);
6 For a specific type declared immediately within a package_specification, any sub-

programs (in addition to the enumeration literals) that are explicitly declared im-
mediately within the same package_specification and that operate on the type;

§3.2.37 Any subprograms not covered above that are explicitly declared immediately within
the same declarative region as the type and that override (see 8.3) other implicitly
declared primitive subprograms of the type.

8 A primitive subprogram whose designator is an operator_symbol is called a prim-
itive operator.

Predefined operators are always primitive; for example, "+" is a primitive operation of the type
Integer and "=" is a primitive operation of the type Event. You can declare additional primitive
operations. These are subprograms which are declared immediately in the same package specifi-
cation as the type §3.2.3(6) and that have a parameter or result of the type §3.2.3(1). A primitive
operation may be declared in the private part, but it will not be accessible outside the package body
and the children of the package. The restriction to the package specification is critical: it means
that once an abstraction is defined in a package specification, all clients of the abstraction see ex-
actly the same primitive operations. Subprograms with a parameter of the type can be declared
elsewhere, such as in clients or in the package body, but they are not primitive.

The importance of primitive operations is that they are inherited §3.4(17) by derived types, just as
record components are inherited. Thus the subprogram Simulate which is a primitive operation of
Engine_Event ‡29 is inherited by Main_Engine_Event. It is as if the declaration

procedure Simulate(E: in Main_Engine_Event);

appeared just after the declaration of the type ‡31. The compiler considers a call to Simulate with
an object of type Main_Engine_Event to be a call to the inherited (primitive) subprogram:

M: Main_Engine_Event;

Simulate(M); - - Calls Simulate of Engine_Event

6.4 Overriding an operation 73

6.4 Overriding an operation

All the components of the parent type are inherited by the derived type. You can add components
upon derivation, but not modify or remove them. Primitive operations are inherited, but they can
also be overridden §8.3(10). You declare an operation with the same name, replacing parameters
of the parent type with parameters of the derived type. The new operation is used when called
with parameters of the derived type, while the original operation is retained for calls with param-
eters of the parent type. For example, the declaration of Aux_Engine_Event ‡34 is followed by
declarations of Create and Simulate ‡35–36 that override the inherited subprograms:

function Create return Aux_Engine_Event;
procedure Simulate(E: in Aux_Engine_Event);

M: Main_Engine_Event;
A: Aux_Engine_Event;

Simulate(M); - - Inherited Simulate of Engine_Event
Simulate(A); - - Overridden Simulate of

- - Aux_Engine_Event

Note that overriding subprograms are themselves primitive §3.2.3(7), and can be overridden upon
subsequent derivation. As with components, an operation cannot be removed, so that, given an
object of any type descended from Event, the subprogram Simulate is defined on the object: either
it was overridden when the type was declared, or the last declaration of Simulate in the chain of
ancestors is inherited.

We now give the package bodies for the event packages, starting with the body of the root package:

95 package body Root_Event is
96

97 - - Implement class wide operation.
98 function "<"(Left, Right: Event’Class) return Boolean is
99 begin

100 return Left.Time < Right.Time;
101 end "<";
102

103 end Root_Event;

Abstract operations cannot be called, so they have no bodies. We will discuss class-wide types in
the next section.

It is in the bodies for the derived types that our simulation becomes totally artificial, as it is pre-
cisely in the creation and simulation of events that the real work takes place. Create simply
constructs an aggregate with random components and Simulate prints the data contained in the
event record. The body for the engine types is:

6.4 Overriding an operation 74

104 with Ada.Text_IO; use Ada.Text_IO;
105 with Root_Event.Random_Time;
106 package body Root_Event.Engine is
107

108 G: Random_Time.Generator;
109

110 function Create return Engine_Event is
111 begin
112 return (Time => Random_Time.Random(G),
113 Fuel => Random_Time.Random(G) mod 100,
114 Oxygen => Random_Time.Random(G) mod 500);
115 end Create;
116

117 function Create return Main_Engine_Event is
118 begin
119 return Main_Engine_Event’(Engine_Event’(Create) with null record);
120 end Create;
121

122 function Create return Aux_Engine_Event is
123 begin
124 return (Engine_Event’(Create) with
125 Aux_Engine_ID’Val(Random_Time.Random(G) mod 2));
126 end Create;
127

128 procedure Put_Data(
129 E: Engine_Event; Engine_ID: String; Thrust: Integer) is
130 begin
131 Put("Time " & Integer’Image(E.Time) & ": ");
132 Put(Engine_ID);
133 Put_Line(" engine fuel " & Integer’Image(E.Fuel) &
134 " L, oxygen " & Integer’Image(E.Oxygen) &
135 " L, produced " & Integer’Image(Thrust) &
136 " KG thrust");
137 end;
138

139 procedure Simulate(E: in Engine_Event) is
140 begin
141 Put_Data(E, "Main", E.Fuel * E.Oxygen);
142 end Simulate;
143

144 procedure Simulate(E: in Aux_Engine_Event) is
145 begin
146 Put_Data(Engine_Event(E),
147 Aux_Engine_ID’Image(E.Side),

6.4 Overriding an operation 75

148 E.Fuel * E.Oxygen / 2);
149 end Simulate;
150

151 begin
152 Random_Time.Reset(G);
153 end Root_Event.Engine;

and the bodies for the steering and telemetry systems are:

154 with Ada.Text_IO; use Ada.Text_IO;
155 with Root_Event.Random_Time;
156 package body Root_Event.Steering is
157

158 G: Random_Time.Generator;
159

160 function Create return Steering_Event is
161 use Random_Time;
162 begin
163 return (
164 Time => Random(G),
165 Command => Commands’Val(
166 Random(G) mod (Commands’Pos(Commands’Last)+1)),
167 Degree => (Random(G) mod 181) - 90
168);
169 end Create;
170

171 procedure Simulate(E: in Steering_Event) is
172 begin
173 Put("Time " & Integer’Image(E.Time) & ": ");
174 Put_Line("Steering command " &
175 Commands’Image(E.Command) & " to " &
176 Integer’Image(E.Degree) & " degrees");
177 end Simulate;
178

179 begin
180 Random_Time.Reset(G);
181 end Root_Event.Steering;
182

6.4 Overriding an operation 76

183 with Ada.Text_IO; use Ada.Text_IO;
184 with Root_Event.Random_Time;
185 package body Root_Event.Telemetry is
186

187 G: Random_Time.Generator;
188

189 function Create return Telemetry_Event is
190 use Random_Time;
191 begin
192 return (
193 Time => Random(G),
194 ID => Subsystems’Val(
195 Random(G) mod (Subsystems’Pos(Subsystems’Last)+1)),
196 Status=> States’Val(Random(G) mod (States’Pos(States’Last)+1))
197);
198 end Create;
199

200 procedure Simulate(E: in Telemetry_Event) is
201 begin
202 Put("Time " & Integer’Image(E.Time) & ": ");
203 Put_Line("Telemetry message " &
204 Subsystems’Image(E.ID) & " " &
205 States’Image(E.Status));
206 end Simulate;
207

208 begin
209 Random_Time.Reset(G);
210 end Root_Event.Telemetry;

The random number generator is created by instantiating the generic package Ada.Numerics.-

Discrete_Random §A.5.2.

211 - -
212 - - Instantiate random number generator for all events
213 - - Private package so it can instantiate with private Simulation_Time
214 - -
215 with Ada.Numerics.Discrete_Random;
216 private package Root_Event.Random_Time is
217 new Ada.Numerics.Discrete_Random(Simulation_Time);

Once the package Random_Time has been declared, we can declare a Generator ‡108,158,187

and call the function Random ‡112–114,. . . to return a random value of type Simulation_Time.
For simplicity, we use only a single generator and convert the returned random number to other
numeric types.

The procedure Reset that initializes the generator is put in the sequence of statements of the pack-
age body ‡152,180,209, which is executed when the package is elaborated.

6.5 Class-wide types 77

§7.2
2 package_body ::=

package body defining_program_unit_name is
declarative_part

[begin
handled_sequence_of_statements]

end [[parent_unit_name.]identifier];

6 For the elaboration of a nongeneric package_body, its declarative_part is first
elaborated, and its handled_sequence_of_statements is then executed.

6.5 Class-wide types

Now that we have declared types for the events in the simulation, we can return to the problem of
constructing a queue that can store events of different types. A data structure that contains items
of more than one type is called heterogeneous, as opposed to a homogeneous data structure whose
elements are all of one type. We cannot create a heterogenous data structure containing items of
arbitrary type; this would not be compatible with the strong type checking of Ada. Instead, the
design of Ada chooses a flexible intermediate approach: objects of all types derived from a parent
type can be stored in a data structure. The specific type of an object is checked, if necessary, when
it is used at run-time.

§3.4.14 Class-wide types—Class-wide types are defined for (and belong to) each derivation
class rooted at a tagged type (see 3.9). Given a subtype S of a tagged type T,
S’Class is the subtype_mark for a corresponding subtype of the tagged class-wide
type T’Class. Such types are called “class-wide” because when a formal parameter
is defined to be of a class-wide type T’Class, an actual parameter of any type in the
derivation class rooted at T is acceptable (see 8.6).

Given the derivation class of types shown in Figure 6.2, the values of the type Event’Class are the
union of the values of all the derived types in the class. As noted in the last sentence of §3.4.1(4)
above, if a formal parameter is of class-wide type, the actual parameter can be of any type in
the class. For example, the function "<" in package Root_Event ‡12 takes two parameters of
the class-wide type Event’Class so it can be called with actual parameters of any event type. Of
course, the body of the function ‡98–101 can only reference components common to all types in
the class.

However, you can’t simply declare an object of a class-wide type:

EC: Event’Class; - - Error!

Recall the analogous situation with unconstrained array types such as String. It is not possible to
declare an uninitialized variable or a record component of the type. However, an object can be of
unconstrained type provided that it will be supplied with a constraint upon elaboration:

S1: String; - - Error!
S2: String := "Hello world"; - - OK

6.5 Class-wide types 78

type String_Pointer is access String;
- - Pointer to string of any length
P: String_Pointer := new String(1..80); - - OK, see §4.8

type String_Record is
record
F1: String; - - Error!
F2: String(1..80); - - OK
F3: String_Pointer; - - OK

end record;

function Palindrome(S: String) return String;
- - Create a palindrome from a string of any length

Unconstrained array types and class-wide types are indefinite types.

§3.323 . . . A subtype is an indefinite subtype if it is an unconstrained array subtype, or
. . . ; otherwise the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is . . . an indefinite subtype. An indefinite subtype
does not by itself provide enough information to create an object; an additional
constraint or explicit initialization expression is necessary (see 3.3.1). A component
cannot have an indefinite nominal subtype.

The implications for the design of a heterogeneous priority queue are as follows. The Put proce-
dure ‡225 is declared with a parameter of class-wide type so that an event of any type in the class
can be inserted into the queue, and the Get function ‡226 returns a result of class-wide type so that
an event of any type can be removed from the queue. Here is the specification of the package for
a heterogeneous priority queue of events:

218 with Root_Event; use Root_Event;
219 package Event_Queue is
220

221 type Queue is limited private;
222 type Queue_Ptr is access Queue;
223

224 function Empty(Q: in Queue) return Boolean;
225 procedure Put(E: in Event’Class; Q: in out Queue);
226 function Get(Q: Queue_Ptr) return Event’Class;
227

228 private
229 - -
230 - - Implement as tree.
231 - -
232 type Node;
233 type Link is access Node;

6.5 Class-wide types 79

234 type Queue is
235 record
236 Root: Link;
237 end record;
238

239 end Event_Queue;

A node of the queue cannot directly contain an item of class-wide type; instead, Node contains
‡248 a pointer to the event ‡244 (Figure 6.3).

Data

Left Right

 ©
@

@R

- Time

Fuel

Oxygen

Main_
Engine_
Event

Figure 6.3: Node of a heterogeneous tree

The data structure is encapsulated in the body of the package, which is adapted from the final
version of the priority queue package.

240 package body Event_Queue is
241

242 - - Heterogeneous data cannot be directly stored in Node.
243 - - Store a pointer to the data.
244 type Event_Class_Ptr is access Event’Class;
245

246 type Node is
247 record
248 Data: Event_Class_Ptr;
249 Left, Right: Link;
250 end record;
251

252 procedure Put(E: in Event’Class; Node_Ptr: in out Link) is
253 begin
254 if Node_Ptr = null then
255 Node_Ptr := new Node’(new Event’Class’(E), null, null);
256 elsif E < Node_Ptr.Data.all then
257 Put(E, Node_Ptr.Left);
258 else
259 Put(E, Node_Ptr.Right);
260 end if;
261 end Put;
262

6.5 Class-wide types 80

263 procedure Put(E: in Event’Class; Q: in out Queue) is
264 begin
265 Put(E, Q.Root);
266 end Put;
267

268 function Empty(Q: in Queue) return Boolean is
269 begin
270 return Q.Root = null;
271 end Empty;
272

273 procedure Get(Node_Ptr: in out Link; Found: out Link) is
274 begin
275 if Node_Ptr.Left = null then
276 Found := Node_Ptr;
277 Node_Ptr := Node_Ptr.Right;
278 else
279 Get(Node_Ptr.Left, Found);
280 end if;
281 end Get;
282

283 function Get(Q: Queue_Ptr) return Event’Class is
284 Found: Link;
285 begin
286 Get(Q.Root, Found);
287 return Found.Data.all;
288 end Get;
289

290 end Event_Queue;

An object of type Event’Class is allocated and initialized by copying the data from E. The access
to the object is used to initialize the Data component of the allocated node ‡255. Node_Ptr.Data

must be explicitly dereferenced ‡256 in order to compare it with inserted event E. Similarly, to
return a value of type Event’Class, Found.Data must be dereferenced ‡287.

How to avoid indirect allocation*

An alternative approach is to derive the entire class from the data structure for the node:5

type Node is tagged
record
Left, Right: Link;

end record;

type Event is new Node with null record;
5We have ignored encapsulation and abstraction in these declarations.

6.6 Dynamic dispatching 81

Now, each descendant of Event simply extends Node with new components and there is no need to
use indirect allocation. The problem with this technique is that you can’t ‘add it on’ to an existing
abstraction. Furthermore, if the technique is used naively with multiple queues, it is possible to put
elements of distinct classes on the same queue which might cause an exception when the elements
are removed. (See Section 4.4.1 of the Rationale for a more detailed discussion of this technique.)

Self-referential data structures can also be used to avoid indirect allocation (see Section 9.8).

6.6 Dynamic dispatching

We are finally ready to put the pieces together. The main subprogram follows the outline given at
the beginning of the chapter.

291 with Event_Queue;
292 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
293 use Root_Event;
294 procedure Rocket is
295 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;
296 begin
297 for I in 1..15 loop
298 Event_Queue.Put(Engine.Main_Engine_Event’(Engine.Create), Q.all);
299 Event_Queue.Put(Engine.Aux_Engine_Event’(Engine.Create), Q.all);
300 Event_Queue.Put(Telemetry.Create, Q.all);
301 Event_Queue.Put(Steering.Create, Q.all);
302 end loop;
303

304 - - Get event from queue and dispatch to Simulate procedure.
305 while not Event_Queue.Empty(Q.all) loop
306 Root_Event.Simulate(Event_Queue.Get(Q));
307 end loop;
308 end Rocket;

We allocate a queue object and assign the access value to Q ‡295, Create and Put events—fifteen
of each type—on the queue ‡297–302, and then remove the events in order of increasing time,
calling Simulate on each event ‡305–307.

There is a technical reason for the dynamic allocation of the queue: since Get must be a function
rather than a procedure (as explained below) and since a function cannot have in out parameters,
we pass an access object as an in parameter and modify the designated object. (A better solution
is to use access parameters which we will study in Section 9.5.)

Let us follow the processing of the event from creation to simulation, paying particular attention
to the types of objects and parameters. We call a function such as Telemetry.Create and then pass
the returned event to the procedure Event_Queue.Put.

Event_Queue.Put(Telemetry.Create, Q.all);

6.6 Dynamic dispatching 82

What type of object is returned by the function, and what type is expected for the first formal
parameter of the procedure? By examining the declaration of the function Create ‡81 in package
Root_Event.Telemetry, we see that the function returns an object of type Telemetry_Event. By
examining the declaration of Put ‡225 in package Event_Queue, we see that the first formal
parameter is of type Event’Class. As noted in the previous section, §3.4.1(4) allows a class-wide
formal parameter to be matched by an actual parameter of any specific type in the class. The
call is legal because the actual parameter (the object returned by Telemetry.Create) is of type
Telemetry_Event, which is in the class rooted at Event. Similarly, the calls to the other Create
functions all return objects of types within the class rooted at Event and are acceptable actual
parameters in the calls to Put.

Consider now the removal of events from the queue and the call to the procedure Simulate:

Root_Event.Simulate(Event_Queue.Get(Q));

Again let us examine what type is returned from the function Event_Queue.Get, and what type is
expected by Simulate. Get ‡226 returns an object of type Event’Class:

function Get(Q: Queue_Ptr) return Event’Class;

This is as it should be because the queue is heterogeneous, so before calling Get we cannot know
what the type of the returned event will be. By specifying that the return type is Event’Class, we
indicate that we are willing to process an event of any type in the class.

The value returned by Get is the actual parameter of the call to the procedure Simulate. Obviously,
the Simulate in Root_Event is not the appropriate procedure for all events in the class, because
we have overridden it four times:

procedure Simulate(E: in Engine_Event); - - ‡29
- - Also for Main_Engine_Event, by inheritance

procedure Simulate(E: in Aux_Engine_Event); - - ‡36
procedure Simulate(E: in Steering_Event); - - ‡62
procedure Simulate(E: in Telemetry_Event); - - ‡82

(In fact, Root_Event.Simulate is abstract and does not even have a body that can be called.) How
can the compiler decide which subprogram to call?

The answer is that the compiler doesn’t decide! Instead, it emits code that checks the specific
type of the object of class-wide type, and jumps to the appropriate procedure for that object. This
is called dynamic dispatching or simply dispatching. See Figure 6.4, where EV_CL denotes an
actual parameter of type Event’Class.

A call to Root_Event.Simulate with an object of type Main_Engine_Event is dispatched to
the subprogram inherited from Engine_Event. The other event types have explicitly overridden
Simulate, and calls are dispatched to the overriding subprograms.

The advantages of dynamic dispatching are clear. The simulation loop is written once, and never
needs to be changed (or even recompiled!), regardless of how many additional event types are
added to the system. Without dispatching, we would have to explicitly include an additional
component in the event record identifying the event, and then use a case statement to choose the

6.6 Dynamic dispatching 83

procedure
Simulate(E: in

procedure
Simulate(E: in

procedure
Simulate(E: in

procedure
Simulate(E: in

Engine_Event); Aux_Engine_Event);Steering_Event); Telemetry_Event);

Root_Event.Simulate(EV_CL);

¸¸¸¸¸9̧

?
¨¨¹̈

?
HHHj

?
XXXXXXz

?

Figure 6.4: Dynamic dispatching

correct subprogram. Every additional extension would require that the loop be recompiled and
tested.

You can now understand the meaning of the word tagged. For dispatching to work, an object
must carry with it at run-time an indication of its type. This is conventionally called a tag. If
a subprogram is called with an actual parameter of a specific type—the parameter is statically
tagged—then the compiler can decide which subprogram to bind to the call. In the following
declarations and statements, it is simply a matter of resolving the overloaded subprograms declared
in the package Root_Event.Engine:

E: Root_Event.Engine.Engine_Event := Root_Event.Engine.Create;
A: Root_Event.Engine.Aux_Engine_Event := Root_Event.Engine.Create;

Root_Event.Engine.Simulate(E); - - No question which Simulate to call
Root_Event.Engine.Simulate(A); - - No question which Simulate to call

This is called early or static binding. However, if the actual parameter is dynamically tagged, that
is, if it is of class-wide type, the compiler cannot bind the call and the binding is done dynamically
at run-time. This is called late or dynamic binding.

§3.9.21 The primitive subprograms of a tagged type are called dispatching operations. A
dispatching operation can be called using a statically determined controlling tag, in
which case the body to be executed is determined at compile time. Alternatively,
the controlling tag can be dynamically determined, in which case the call dispatches
to a body that is determined at run time; such a call is termed a dispatching call. . . .

4 The name or expression is statically tagged if it is of a specific tagged type
5 The name or expression is dynamically tagged if it is of a class-wide type,

Note carefully that dispatching is only done on primitive subprograms. These subprograms (de-
clared in the same package specification as the tagged type) contain formal parameters of the
tagged type called controlling formal parameters; the corresponding actual parameters are called
controlling operands.

6.7 Encapsulation and child packages 84

§3.9.22 A call on a dispatching operation is a call whose name or prefix denotes the decla-
ration of a primitive subprogram of a tagged type, that is, a dispatching operation.
A controlling operand in a call on a dispatching operation of a tagged type T is one
whose corresponding formal parameter is of type T . . . ; the corresponding formal
parameter is called a controlling formal parameter. . . .

20 For the execution of a call on a dispatching operation, the body executed is the one
for the corresponding primitive subprogram of the specific type identified by the
controlling tag value. . . .

We wrote the dispatching call Root_Event.Simulate as an expanded name §4.1.3(4) rather than
depending on the ‘use’-clause. This emphasizes that to dispatch with a controlling operand of a
class-type Root_Event.Event’Class, you (syntactically) call the primitive operation of the corre-
sponding tagged type Root_Event.Event §3.9.2(2). Similarly, given a controlling operand of type
Root_Event.Engine.Engine_Event’Class, the call Root_Event.Engine.Simulate would dispatch
according to the specific engine type. Note that the function

function "<"(Left, Right: Event’Class) return Boolean;

is not dispatching. If a formal parameter is of class-wide type, the actual parameter may be of any
type within the class. The function is not primitive, cannot be overridden and does not dispatch.

To summarize:

• The primitive operations of a tagged type are dispatching.

• Formal parameters of the tagged type are controlling.

• If a dispatching operation is called with controlling operands (actual parameters) of a specific
type, the call is bound at compile-time.

• If a dispatching operation is called with controlling operands (actual parameters) of a class-wide
type, the call is dispatched at run-time to the subprogram whose controlling (formal) parameter
matches the tag of the operand.

6.7 Encapsulation and child packages

There are no particular encapsulation requirements for tagged types (except that primitive op-
erations be declared in the same package specification). The following specification compiles
correctly, and the resulting rocket simulation needs only minor modifications that are due to the
change in the package name.

- - File: ROCKETC1 - -
2 - - Discrete event simulation of a rocket.
3 - - Child packages are not used.
4 - -
5 package Event_Package is
6 subtype Simulation_Time is Integer range 0..10_000;

6.7 Encapsulation and child packages 85

7 type Event is abstract tagged
8 record
9 Time: Simulation_Time; - - Common component of all events

10 end record;
11 function Create return Event is abstract;
12 procedure Simulate(E: in Event) is abstract;
13 function "<"(Left, Right: Event’Class) return Boolean;
14

15 type Engine_Event is new Event with
16 record
17 Fuel, Oxygen: Natural;
18 end record;
19 function Create return Engine_Event;
20 procedure Simulate(E: in Engine_Event);
21

22 type Main_Engine_Event is new Engine_Event with
23 null record;
24 function Create return Main_Engine_Event;
25

26 type Aux_Engine_ID is (Left, Right);
27 type Aux_Engine_Event is new Engine_Event with
28 record
29 Side: Aux_Engine_ID;
30 end record;
31 function Create return Aux_Engine_Event;
32 procedure Simulate(E: in Aux_Engine_Event);
33

34 type Commands is (Roll, Pitch, Yaw);
35 subtype Degrees is Integer range -90 .. 90;
36 type Steering_Event is new Event with
37 record
38 Command: Commands;
39 Degree: Degrees;
40 end record;
41 function Create return Steering_Event;
42 procedure Simulate(E: in Steering_Event);
43

44 type Subsystems is (Engines, Guidance, Communications);
45 type States is (OK, Failed);
46 type Telemetry_Event is new Event with
47 record
48 ID: Subsystems;
49 Status: States;
50 end record;
51 function Create return Telemetry_Event;

6.7 Encapsulation and child packages 86

52 procedure Simulate(E: in Telemetry_Event);
53 end Event_Package;

Recall that in previous simulation program, the dispatching call was to Root_Event.Simulate.
Here, all versions of Simulate are declared in the same package Event_Package. The type of
the actual parameter in the call to Simulate ‡69 is Event’Class, so the call is dispatched to the
appropriate version of Simulate in the derivation class for the type Event.

54 with Event_Queue;
55 with Event_Package; use Event_Package;
56 procedure RocketC is
57 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;
58 begin
59 for I in 1..15 loop
60 Event_Queue.Put(Main_Engine_Event’(Create), Q.all);
61 Event_Queue.Put(Aux_Engine_Event’(Create), Q.all);
62 Event_Queue.Put(Telemetry_Event’(Create), Q.all);
63 Event_Queue.Put(Steering_Event’(Create), Q.all);
64 end loop;
65

66 - - Get event from queue and dispatch to Simulate procedure.
67 while not Event_Queue.Empty(Q.all) loop
68 Simulate(Event_Queue.Get(Q));
69 end loop;
70 end RocketC;

This encapsulation of the entire class of types in a single package is legal, though almost certainly
not the optimal solution, because too many types are contained in one module and a modification
of any one of them will cause too much recompilation and testing. However, it does emphasize
that in Ada, decisions relating to encapsulation (packages) are independent of decisions relating to
derivation classes of types. This point is worth emphasizing because many languages for object-
oriented programming identify a type with its encapsulation in a ‘class’.

The limitation that a client can only see the visible part of a package is too inflexible for some
applications. Consider the declaration of Root_Event.Event: on one hand we wish to restrict the
accessibility of the implementation of the type (the component Time), while on the other hand,
derived types should be able to access this component because computations within Simulate may
be time-dependent.

The solution is to use child packages to form a subsystem of packages §10.1(9). (Library proce-
dures may have child procedures §6.1(4,7).) Packages within the subsystem share abstractions by
granting child packages visibility of the private parts of their specifications. Child packages are
denoted syntactically by concatenating the child name to the parent’s name using dotted notation.
The hierarchy of descendants may be carried to any depth.

The accessibility rules are determined by assuming that a child package is declared after the par-
ent’s specification, but before its body (Figure 6.5). The figure is intended to show that since the
children come between the specification and the body, they are can access the private part but

6.7 Encapsulation and child packages 87

package body
Root_Event

package
Root_Event.
Engine

package
Root_Event.
Steering

package
Root_Event.
Telemetry

private package
Root_Event.
Random_Time

package
Root_Event

Figure 6.5: Child packages

not the body. Any package can ‘with’ a child package; for example, sibling packages such as
Root_Event.Steering ‘with’ Root_Event.Random_Time. The parent body has no special privi-
leges and must also ‘with’ the child if it needs to. Note that ‘with’ing a child package automatically
‘with’s the parent package §10.1.2(6).

§8.17 The declarative region includes the text of the construct together with additional
text determined (recursively), as follows:

9 If the declaration of a library unit . . . is included, so are the declarations of any
child units The child declarations occur after the declaration.

16 The children of a parent library unit are inside the parent’s declarative region, even
though they do not occur inside the parent’s declaration or body. This implies that
one can use (for example) "P.Q" to refer to a child of P whose defining name is Q,
and that after "use P;" Q can refer (directly) to that child.

In the main subprogram of the simulation, we ‘with’ all the child packages:

with Event_Queue;
with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
use Root_Event;
procedure Rocket is
. . .

end Rocket;

The context clause contains use Root_Event, so we can directly refer to the child package (for
example Telemetry.Create ‡300) as noted in §8.1(16) above.

Since child packages have access to the private parts of its ancestors, we must prevent exportation
of declarations from the private part:

package Root_Event.Export is
subtype Export_Time is Simulation_Time; - - Error!

end Root_Event.Export;

There is a special rule that excludes the visible part of a child package specification from accessing
the private part of its parent.

6.7 Encapsulation and child packages 88

§8.24 The immediate scope of a declaration in the private part of a library unit does not
include the visible part of any public descendant of that library unit.

Consider, however, the random number generator package Root_Event.Random_Time. The
package is declared as a generic instantiation of a package from the standard libraries, but in the
context of our simulation program, an equivalent specification is as follows:

private package Root_Event.Random_Time is
type Generator is limited private;
function Random (Gen: Generator) return Simulation_Time;
procedure Reset (Gen: in Generator);

private
. . .

end Root_Event.Random_Time;

The function Random in the visible part of the specification returns a value of type Simula-

tion_Time that is declared in the private part of its parent, in effect exporting the type. This
is not normally acceptable, because Simulation_Time was intentionally made private to prevent
its exportation from the simulation subsystem.

Ada defines two types of child packages: public and private. The rule in §8.2(4) holds only for
public children; the visible part of a private child is allowed access to the private part of a parent;
however, to prevent unwanted exportation, a client of a private child must be within the family that
already has access to the private part.

§10.1.28 If a with_clause of a given compilation_unit mentions a private child of some
library unit, then the given compilation_unit shall be either the declaration of a
private descendant of that library unit or the body or subunit of a (public or private)
descendant of that library unit.

In the simulation, Root_Event.Random_Time is declared to be a private child and is used only
within the bodies of the packages rooted at Root_Event.

Freezing*

Could we rearrange the declarations in Event_Package so that all the type derivations are declared
before the primitive operations?

package Event_Package is
type Event is abstract tagged . . .
type Engine_Event is new Event with . . .
type Main_Engine_Event is new Engine_Event with . . .
type Steering_Event is new Event with . . .
type Telemetry_Event is new Event with . . .
procedure Simulate(E: in Event) is abstract;
procedure Simulate(E: in Engine_Event);
procedure Simulate(E: in Aux_Engine_Event);

6.8 Type conversion* 89

procedure Simulate(E: in Steering_Event);
procedure Simulate(E: in Telemetry_Event);

end Event_Package;

The answer is no. For reasons that will become clear in Section 6.11, implementing extension
requires that the entire set of primitive operations for a type be known when the type is extended.
Thus the declarations of primitive operations must be ‘close to’ the declaration of the tagged type
or extension. The rule is expressed in terms of a concept called freezing §13.14: once an entity is
frozen, any declaration that would change its representation is forbidden.

§13.147 The declaration of a record extension causes freezing of the parent subtype.
16 The explicit declaration of a primitive subprogram of a tagged type shall occur

before the type is frozen (see 3.9.2).

6.8 Type conversion*

A value of a type in a derivation class can be converted to a value of another type in the class
subject to the following rule.

§4.621 . . . if the target type is tagged, then either:
22 The operand type shall be covered by or descended from the target type; or
23 The operand type shall be a class-wide type that covers the target type.

This rule can be easily understood by examining Figure 6.2. We can convert a value of type
Aux_Engine to a value of type Engine or to a value of type Event simply by ignoring the extra
components. However, we cannot convert a value of type Engine to Aux_Engine, because it has
no Side component. Similarly, a specific type can be converted to a class-wide type that covers it
§3.4.1(9).

Consider now converting a class-wide type to a specific type:

E_CL:Event’Class := . . . ;
Eng: Engine := Engine(E_CL);

E_CL contains a value of some specific type within Event’Class. If we are ‘lucky’ and the value of
E_CL is in fact of type Engine (or Main_Engine or Aux_Engine), the conversion will succeed;
otherwise, the conversion will fail and raise Constraint_Error §4.6(42,57). You would not do such
a conversion unless you have reason to believe that the conversion will succeed. Alternatively, you
can use a membership test §4.5.2(30) to check the type of the class-wide value at run-time:

if E_CL in Engine’Class then
Eng := Engine(E_CL); - - OK

else
. . . - - Do something else

end if;

6.8 Type conversion* 90

Extension aggregates

Though a value of a parent type cannot be converted to a value of a type derived from it, it is
possible to create a value of the derived type by supplying the additional components that are
‘missing’ from the parent type.

§4.3.21 An extension_aggregate specifies a value for a type that is a record extension by
specifying a value or subtype for an ancestor of the type, followed by associations
for any components not determined by the ancestor_part.

2 extension_aggregate ::=

(ancestor_part with record_component_association_list)

3 ancestor_part ::= expression | subtype_mark

6 For the record_component_association_list of an extension_aggregate, the only
components needed are those of the composite value defined by the aggregate that
are not inherited from the type of the ancestor_part, . . .

7 For the evaluation of an extension_aggregate, the record_component_associ-

ation_list is evaluated. If the ancestor_part is an expression, it is also evaluated; if
the ancestor_part is a subtype_mark, the components of the value of the aggregate
not given by the record_component_association_list are initialized by default as
for an object of the ancestor type. . . .

9 If all components of the value of the extension_aggregate are determined by the
ancestor_part, then the record_component_association_list is required to be
simply null record.

10 If the ancestor_part is a subtype_mark, then its type can be abstract. . . .

Here are two examples based on expressions from the case study:

(Engine_Event’(Create) with Left);
- - Extend Engine_Event to create Aux_Engine_Event aggregate

(Engine_Event’(Create) with null record);
- - Extend Engine_Event to create Main_Engine_Event aggregate

Even though Main_Engine_Event does not add any components during the extension of Engine_-

Event, it is still derived from Main_Engine_Event and an extension aggregate must be used with
null record.

Extension aggregates built from subtype marks are intended to be used when the ancestor is ab-
stract. For example, an aggregate for Engine can be written:

return (Event with
Fuel => Random_Time.Random(G) mod 100,
Oxygen => Random_Time.Random(G) mod 500);

Normally, the declaration of Event would contain a meaningful default value for Time.

View conversion and redispatching

Type conversion of tagged types is quite different from what you normally think of as type con-
version. A new value is not created; instead, you get a new view of the original value which hides

6.8 Type conversion* 91

components that are not part of the target type.

§4.65 A type_conversion whose operand is the name of an object is called a view con-
version if its target type is tagged, . . . ; other type_conversions are called value
conversions.

42 The tag of the result is the tag of the operand. . . .
55 If the target type is tagged, then an assignment to the view assigns to the corre-

sponding part of the object denoted by the operand; . . .

Since neither the tag §4.6(42) nor the value of the operand is changed by the conversion, you can
always recover the original value and type.

During an assignment, both the source and the target objects retain their tags §5.2(15), and only
the relevant components are copied §5.2(13), §4.6(56):

E: Engine_Event := . . . ; - - Tagged as Engine_Event
A: Aux_Engine_Event := . . . ; - - Tagged as Aux_Engine_Event

E := Engine_Event(A); - - Side component ignored
Engine_Event(A) := E; - - Side component not assigned to

View conversions can be used for redispatching. Consider the following tagged type Parent where
the derived type Derived inherits the primitive procedure Proc1 but overrides Proc2, and suppose
that P_CL is a class-wide object containing a value of type Derived.

type Parent is tagged . . . ;
procedure Proc1(V: in Parent);
procedure Proc2(V: in Parent);
type Derived is new Parent with . . . ;
procedure Proc2(V: in Derived);

D: Derived := . . . ;
P_CL: Parent’Class := Parent’Class(D);

Proc1(P_CL);

When Proc1 is called, the value of class-wide type will be converted to the specific type Parent

of the formal parameter V §4.6(23). However, the conversion is only a view conversion and V re-
mains tagged as Derived. Within Proc1, the following statement will redispatch to the overridden
Proc2:

Proc2(Parent’Class(V));

because the tag of the result is taken from the tag of the operand, namely Derived. This works
because tagged types are passed by-reference §6.2(5) so that within Proc1 the tag of its actual
parameter exists unchanged.

6.9 Objects of class-wide type* 92

6.9 Objects of class-wide type*

Block statement

Before discussing objects of class-wide type, we need to make a short digression to study the block
statement. A block is like a parameterless procedure written within a sequence of statements.

§5.6
2 block_statement ::=

[block_statement_identifier:]

[declare
declarative_part]

begin
handled_sequence_of_statements

end [block_identifier];

Blocks are used to declare objects that depend on a computation:

Get(N);
String_Block:
declare
S: String(1..N);

begin
. . .

end String_Block;

Another use for blocks is to retry a computation after an exception:

- - File: COUNTRY41 - -
2 - - Read the manufacturer of a car and write the country
3 - - of origin of the car.
4 - - Exception handler in block.
5 - -
6 with Ada.Text_IO; use Ada.Text_IO;
7 procedure Country4 is
8

9 . . .
10

11 begin
12 loop
13 begin - - Block begins here ...
14 Put("Enter the make of the car: ");
15 Get_Line(S, Last);
16 Car := Cars’Value(S(1..Last));
17 Put_Line(Cars’Image(Car) & is made in " &
18 Countries’Image(Car_to_Country(Car)));

6.9 Objects of class-wide type* 93

19 exception
20 when Constraint_Error =>
21 Put_Line(S(1..Last) & " is not recognized");
22 when Ada.Text_IO.End_Error =>
23 Put_Line("Have a nice day!");
24 exit;
25 end; - - ... and ends here.
26 end loop;
27 end Country4;

Since the block contains a handled sequence of statements, completion of the exception handler
for Constraint_Error is a successful completion of the statement and the loop statement continues
as usual. When end-of-file occurs (CTRL-D or CTRL-Z on a terminal), End_Error will be raised and
the exit statement will cause the loop containing the block to be left.

Objects of class-wide type

Why didn’t we use a procedure for Event_Queue.Get?

procedure Get(E: out Event’Class; Q: in Queue_Ptr);

The reason is that a class-wide type is indefinite, but an actual parameter is an object of some
specific type and cannot have its type changed when the assignment to the out parameter is done:

EV_CL: Event’Class := Engine_Event’(100, 4102, 5335);
- - EV_CL contains a value of type Engine_Event . . .
Get(EV_CL, Q);
- - . . . but a Telemetry_Event might be returned,
- - . . . raising Constraint_Error!

When a function returns an object, it must allocate (temporary) storage for the object. This object
can then be used in an expression, for example as an actual parameter of a dispatching subprogram
call.

As with any other indefinite type, one way to create a class-wide object that can store objects of
different types within the class is to make it a formal parameter of a subprogram. The formal
parameter is elaborated anew in each call and the constraint is taken from the actual parameter.

procedure Do_Simulation(EV_CL: in Event’Class) is
begin
Root_Event.Simulate(EV_CL);
Write_Event_to_Log(EV_CL);

end Do_Simulation;

while not Event_Queue.Empty(Q.all) loop
Do_Simulation(Event_Queue.Get(Q));

end loop;

Alternatively, you can use a block statement:

6.10 Abstract types* 94

while not Event_Queue.Empty(Q.all) loop
declare
EV_CL: Event’Class := Event_Queue.Get(Q);

begin
Root_Event.Simulate(EV_CL);
Write_Event_to_Log(EV_CL);

end;
end loop;

In each iteration of the loop, EV_CL is allocated and initialized with the object returned from
Event_Queue.Get(Q). This object is discarded when leaving the block, just as local variables are
discarded when leaving a subprogram. In this example, the object retrieved from the queue is
used in two expressions (actual parameters of procedure calls), so the use of the local variable is
essential. See Section 6.13 for another example of this technique.

It is important to understand the paradigms for programming with indefinite types. They enable
you to encapsulate pointer-based implementations, so that client programmers can work directly
with objects.

6.10 Abstract types*

We will now explain abstract types and subprograms in more detail. The specification of Root_-

Event is repeated here for convenience:

- - File: ROCKET1 package Root_Event is
2 - -
3 - - Declaration of abstract event at root of event class.
4 - -
5 type Event is abstract tagged private;
6

7 - - Declare (abstract) primitive operations of an Event.
8 function Create return Event is abstract;
9 procedure Simulate(E: in Event) is abstract;

10

11 - - Comparison of events is common to all events in the class.
12 function "<"(Left, Right: Event’Class) return Boolean;
13

14 private
15

16 subtype Simulation_Time is Integer range 0..10_000;
17 type Event is abstract tagged
18 record
19 Time: Simulation_Time; - - Common component of all events
20 end record;
21

22 end Root_Event;

6.11 Implementation of dispatching** 95

The abstract type Event serves as the ancestor of all the event types. Promoting one of the actual
events to be the parent of all others would be arbitrary and inappropriate, so we declare an abstract
event even though objects of this type are meaningless. In the simulation program, the abstract
type Root_Event.Event is a convenient place to declare the common component Time. More
commonly, an abstract type is declared as a null record.

The abstract primitive subprograms serve as ancestors of the real primitive subprograms to be
declared upon derivation.

§3.9.31 An abstract type is a tagged type intended for use as a parent type for type exten-
sions, but which is not allowed to have objects of its own. An abstract subprogram
is a subprogram that has no body, but is intended to be overridden at some point
when inherited. Because objects of an abstract type cannot be created, a dispatch-
ing call to an abstract subprogram always dispatches to some overriding body.

‡306 is an example of the last sentence of the above paragraph.

§3.9.34 For a derived type, if the parent or ancestor type has an abstract primitive subpro-
gram, . . . then:

5 If the derived type is abstract or untagged, the inherited subprogram is abstract.
6 Otherwise, the subprogram shall be overridden with a nonabstract subprogram; . . .
7 A call on an abstract subprogram shall be a dispatching call; nondispatching calls

to an abstract subprogram are not allowed.
8 The type of an aggregate, or of an object created by an object_declaration or

an allocator, . . . shall not be abstract. The type of the target of an assignment,
operation (see 5.2) shall not be abstract. The type of a component shall not be
abstract. . . .

13 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the
class-wide type for the class is not abstract, and an object of the class-wide type
can be created; the tag of such an object will identify some nonabstract type in the
class.

While a abstract type must be tagged §3.9.3(1), an abstract subprogram can be primitive for an
untagged derived type §3.9.3(5); see Section 8.6. Such a subprogram is never callable and can be
used to avoid exporting inherited operations.

6.11 Implementation of dispatching**

This book presents the Ada language as seen by a programmer and is not normally concerned with
the implementation techniques used in the compiler and run-time system. Nevertheless, an outline
of a possible implementation of dynamic dispatching will enable you to use the technique with the
knowledge of the run-time overhead that is incurred.

6.11 Implementation of dispatching** 96

Figure 6.6 shows a data structure that can be used in the implementation of dispatching for the
rocket simulator.6

Dispatch
Table

Jump Tables Subprograms

Engine

Steering

Telemetry

Main

Aux

-
-

-

-

-

Simulate

Create

Simulate

Create

Simulate

Create

-

--

-

-

-

Figure 6.6: Implementation of dynamic dispatching

A dispatch table is created by the compiler and loaded at run-time. Tags are represented by
offsets into the dispatch table. When a dispatching call is made, the offset is used to obtain the
address of the jump table corresponding to the specific type of the controlling operands. The jump
table contains a pointer to each primitive subprogram; an indirect call on this pointer calls the
subprogram. Since Main_Engine_Event inherits Simulate from Engine_Event, a new procedure
is not created for the derived type. Instead, the jump table pointer for Main_Engine.Simulate is
directed at the procedure already declared for the parent type.

An implication of this implementation is that the run-time overhead is small and, more importantly,
fixed. Two or three machine instructions will suffice for doing the double indirection, and for any
given machine and compiler the overhead can be computed or measured. All dispatching calls will
have exactly this overhead, so there is no uncertainty that would prevent the use of dispatching in
real-time systems.

Once a tagged type or extension is declared, additional derived descendants can be declared with-
out recompiling the package specification that declares the parent. Each additional derivation
will add an entry to the dispatch table, a new jump table and code for any primitive subprograms
overridden or added upon derivation. Existing tags (offsets) and jump tables are not affected.

Primitive subprogram must be declared in the package specification: since no more entries can be
made to the jump table for this type, the table can be created during the compilation of the specifi-
cation. This implementation is possible because derivation can only add primitive operations, not
remove them, and any operation not overridden is inherited. Thus if a primitive operation Proc

is defined for a tagged type T, then Proc will also be defined for any type in T’Class. Further-
more, the primitive operation can only be called with a controlling operand of the class-wide type
T’Class or with the specific type T. This is checked at compile-time, so at run-time the dispatching
call can be made without a run-time check.

6For lack of space, two jump tables and most subprograms have been omitted.

6.12 Multiple controlling operands** 97

Even though the run-time overhead is small and fixed regardless of the complexity of the derivation
class, deep derivation trees can make it difficult to understand and maintain a program. The reason
is that for each specific type, you may have to examine the entire chain of ancestors to locate an
inherited subprogram. A good development environment can help by automating the search.

6.12 Multiple controlling operands**

A primitive operation is allowed to have more than one controlling formal parameter. This is
particularly useful for dispatching on binary operators:7

type T is tagged . . . ;
function "<"(Left: T; Right: T) return Boolean;

Suppose now that a class of types T1, T2, . . . , has been derived from T. Given two objects X and
Y of some types within T’Class, what is the meaning of X < Y? Clearly, if both X and Y are of
the same specific type, the compiler binds to the function declared for the type, either the inherited
function or an overriding function. Equally clearly, if X and Y are of different specific types such
as T3 and T5, no appropriate function exists. However, what happens if either X or Y, or both, are
of the class-wide type T’Class?

§3.9.28 A call on a dispatching operation shall not have both dynamically tagged and stati-
cally tagged controlling operands.

16 . . . If there is more than one dynamically tagged controlling operand, a check is
made that they all have the same tag. If this check fails, Constraint_Error is raised
. . .

Given the declarations:

W:T3 := T3’(. . .);
X:T’Class:= T3’(. . .);
Y:T’Class:= T3’(. . .);
Z:T’Class:= T5’(. . .);

W < X is illegal by §3.9.2(8), X < Y dispatches to the function for T3 and X < Z raises Con-
straint_Error. The restrictions are intended to simplify the language implementation.

You can avoid the Constraint_Error promised by §3.9.2(16) by comparing the tags of the class-
wide type §3.9(17–18):

with Ada.Tags; use Ada.Tags;

C1: T’Class := Get(Q);
C2: T’Class := Get(Q);

7This "<" operator is a primitive operation since its parameters are of the specific tagged type T, unlike the operator
"<" in the case study, which had parameters of type Event’Class.

6.13 Dispatching on the function result** 98

if C1’Tag = C2’Tag then
if C1 < C2 then . . . - - Dispatch!
else . . .
end if;

else . . . - - Different types - do something else
end if;

Note that we are only comparing tags for equality, not asking if a value of class-wide type has a
specific tag, so that the statement need not be modified if additional derivations are done.

There is a special rule concerning the inheritance of the equality operator; see Quiz 12.

6.13 Dispatching on the function result**

A primitive function such as Create is said to have a controlling result if it returns a tagged type.
So far, we have used expanded names and qualified expressions to indicate to the compiler which
version of Create to call; no dispatching is needed:

Event_Queue.Put(Engine.Aux_Engine_Event’(Engine.Create), Q.all);
Event_Queue.Put(Telemetry.Create, Q.all);

However, a call of a primitive function can also be a controlling operand of a dispatching sub-
program call. Such a function call is termed tag indeterminate §3.9.2(3); a tag-indeterminate
operand is legal only if there is sufficient context to determine how to bind it. For example, in the
call Simulate(Create), not enough context is supplied to dispatch Create.

Suppose we wish to modify the rocket simulation so that whenever an event is removed from the
queue, a new event of the same type is inserted into the queue. This can be done by dispatching
Create using the technique that we now describe. First, declare a new primitive subprogram
Another ‡11 with two controlling parameters:

- - File: ROCKETF1 - -
2 - - Discrete event simulation of a rocket.
3 - - Demonstrates dispatching on function result.
4 - -
5 package Root_Event is
6

7 type Event is abstract tagged private;
8

9 function Create return Event is abstract;
10 procedure Simulate(E: in Event) is abstract;
11 function Another(Original: Event; Copy: Event) return Event’Class;
12

13 . . .
14

15 end Root_Event;

Next modify the main loop of the simulation to call Another ‡26 with two parameters—one dy-
namically tagged of class-wide type and the other a tag-indeterminate function call:

6.13 Dispatching on the function result** 99

16 with Event_Queue;
17 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
18 use Root_Event;
19 procedure RocketF is
20

21 . . .
22

23 loop
24 declare
25 First: Event’Class := Event_Queue.Get(Q);
26 Second: Event’Class := Another(First, Root_Event.Create);
27 begin
28 Event_Queue.Put(Second, Q.all);
29 Root_Event.Simulate(First);
30 end;
31 end loop;
32 end RocketF;

There is now sufficient context to disambiguate the call to Create: since all controlling operands
must have the same tag, Create is dynamically dispatched to the version appropriate for the specific
type contained in First!

The function Another is just a framework for this dispatching:

33 package body Root_Event is
34

35 function Another(Original: Event; Copy: Event) return Event’Class is
36 begin
37 return Event’Class(Copy);
38 end Another;
39

40 - - Implement class wide operation.
41 function "<"(Left, Right: Event’Class) return Boolean is
42 begin
43 return Left.Time < Right.Time;
44 end "<";
45

46 end Root_Event;

A tag-indeterminate operand is statically bound if the other parameters are all statically bound:

T: Telemetry_Event;
E: Event’Class := Another(T, Create);
- - Create is statically bound to Telemetry.Create

Dispatching on a function call can also occur in the default expression for a controlling formal
parameter §3.9.2(11), in an assignment statement §5.2(9) and in enclosing tag-indeterminate calls
§3.9.2(6). A program FUNC.ada demonstrating these features is included on the CD-ROM.

7 Generics

In Chapter 4 we developed a priority queue abstract data type and showed how to change the im-
plementation of the queue from an array to a tree without changing the client interface supplied
by the package specification. Suppose now that we want a priority queue for another type such as
floating point numbers. We could simply copy the source code of the existing package and replace
all occurrences of Integer by Float. Obviously, this is tedious and error-prone. The modification
of the source code could be automated by using a macro processor, either an external program
or a preprocessor built into the language implementation. However, the use of a macro processor
is also error-prone because the substitutions are done on pure text regardless of syntactic or se-
mantic implications. For example, replacement of Rec by Rec2 will result in the replacement of
the reserved word record by Rec2ord. While this problem can be resolved by taking delimiters
into account, macro processors are always problematical, particularly if you are making several
substitutions in succession.

Another solution to the generalization of abstract data types is the use of heterogenous types that
we discussed in the previous chapter. In fact, some languages for object-oriented programming
use this approach exclusively by defining every type to be an extension of a root type Object.
Since every type is derived from Object, a data structure whose elements are of type Object can
be used to store elements of any type. There are two drawbacks to this approach: (a) it requires
additional overhead because reference semantics is used, and (b) a potentially dangerous type
conversion must be done on an item retrieved from the data structure. While Ada allows run-time
type checking within the narrow confines of a class of closely-related types, a data structure of
unrelated types would not be compatible with strong type checking.

The Ada solution to parameterizing data structures is generic units, which are templates that can be
used to create instances of a unit at compile-time. Since type checking is done at compile-time, the
use of generics entails no run-time overhead.1 The creation of an instance—called instantiation—
is done by the compiler, which enforces syntactic and semantic rules.

7.1 Generic declaration and instantiation

A generic declaration declares a generic package or subprogram. Syntactically, a generic specifica-
tion is an ordinary specification preceded by a generic formal part: §12.1

1There are a few exceptions to this statement. For example, since a generic can be instantiated anywhere, accessi-
bility checks (Section 9.4) must be done at run-time.

100

7.1 Generic declaration and instantiation 101

2 generic_declaration ::=

generic_subprogram_declaration |

generic_package_declaration

3 generic_subprogram_declaration ::=

generic_formal_part subprogram_specification;

4 generic_package_declaration ::=

generic_formal_part package_specification;

5 generic_formal_part ::=

generic
{generic_formal_parameter_declaration | use_clause}

Case study: generic priority queue

Here is a generic version of the package Priority_Queue. The details of the generic formal part
are left to the next section. The package is unchanged except for the substitution of the generic
formal parameter Item for Integer.

- - File: PQGEN1 - -
2 - - Priority queue abstract data type implemented as a tree.
3 - - Queue is limited private; representation of nodes is in body.
4 - - Queue element is generic.
5 - -
6 generic
7 type Item is . . .
8 with function "<"(Left, Right: Item) return Boolean is <>;
9 package Priority_Queue is

10

11 type Queue(Size: Positive) is limited private;
12

13 function Empty(Q: in Queue) return Boolean;
14 procedure Put(I: in Item; Q: in out Queue);
15 procedure Get(I: out Item; Q: in out Queue);
16

17 Overflow, Underflow: exception;
18

19 private
20 . . .
21 end Priority_Queue;
22

7.1 Generic declaration and instantiation 102

23 package body Priority_Queue is
24

25 type Node is - - Completion of type declaration
26 record
27 Data: Item;
28 Left, Right: Link;
29 end record;
30

31 . . .
32

33 procedure Put(I: in Item; Node_Ptr: in out Link) is
34 - - Recursive procedure to insert in queue
35 begin
36 if Node_Ptr = null then
37 Node_Ptr := new Node’(I, null, null);
38 elsif I < Node_Ptr.Data then
39 Put(I, Node_Ptr.Left);
40 else
41 Put(I, Node_Ptr.Right);
42 end if;
43 end Put;
44 . . .
45 end Priority_Queue;

§12.21 The body of a generic unit (a generic body) is a template for the instance bodies.
The syntax of a generic body is identical to that of a nongeneric body.

§12.312 A generic_instantiation declares an instance; it is equivalent to the instance decla-
ration (a package_declaration or subprogram_declaration) immediately followed
by the instance body, both at the place of the instantiation.

13 The instance is a copy of the text of the template. Each use of a formal parameter
becomes (in the copy) a use of the actual, as explained below. An instance of a
generic package is a package, that of a generic procedure is a procedure, and that
of a generic function is a function.

The following program instantiates Priority_Queue twice, once with Integer ‡51 and once with
Float ‡52. Note that, like any other library unit, you must ‘with’ the generic unit ‡46 in order
to access it. Once the instances have been created, they are normal packages and their resources
accessed using expanded names ‡54, 55, 71, 77, . . . , or a ‘use’ clause. Procedure Put for floating
point output ‡64–66 is obtained by renaming the library procedure so as to change the default
parameters (see Section 12.5).

7.1 Generic declaration and instantiation 103

46 with Priority_Queue;
47 with Ada.Text_IO; with Ada.Integer_Text_IO; with Ada.Float_Text_IO;
48 use Ada; use Text_IO;
49 procedure PQGEN is
50

51 package Integer_Queueis new Priority_Queue(Item => Integer);
52 package Float_Queue is new Priority_Queue(Item => Float);
53

54 QI: Integer_Queue.Queue(10); - - Create queue of size 10
55 QF: Float_Queue.Queue(10); - - Create queue of size 10
56

57 I: Integer; - - Element of the queue
58 F: Float; - - Element of the queue
59 Integer_Test_Data: array(Positive range <>) of Integer :=
60 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);
61 Float_Test_Data: array(Positive range <>) of Float :=
62 (10.0, 5.0, 0.0, 25.0, 15.0, 30.0, 15.0, 20.0, -6.0, 40.0);
63

64 procedure Put(F: in Float;
65 Fore: in Field:=3; Aft: in Field:=1; Exp: in Field:=0)
66 renames Float_Text_IO.Put;
67

68 begin
69 for N in Integer_Test_Data’Range loop
70 Integer_Text_IO.Put(Integer_Test_Data(N), Width => 5);
71 Integer_Queue.Put(Integer_Test_Data(N), QI);
72 end loop;
73 New_Line;
74

75 for N in Float_Test_Data’Range loop
76 Put(Float_Test_Data(N));
77 Float_Queue.Put(Float_Test_Data(N), QF);
78 end loop;
79 New_Line;
80

81 while not Integer_Queue.Empty(QI) loop
82 Integer_Queue.Get(I, QI);
83 Integer_Text_IO.Put(I, Width => 5);
84 end loop;
85 New_Line;
86

87 while not Float_Queue.Empty(QF) loop
88 Float_Queue.Get(F, QF);
89 Put(F);
90 end loop;

7.2 The contract model 104

91 New_Line;
92

93 exception
94 when Integer_Queue.Underflow | Float_Queue.Underflow =>
95 Put_Line("Underflow from queue");
96 when Integer_Queue.Overflow | Float_Queue.Overflow =>
97 Put_Line("Overflow from queue");
98 end PQGEN;

7.2 The contract model

Suppose we try to instantiate the generic package Priority_Queue with a record:

type Point is
record
X: Float;
Y: Float;

end record;

package Point_Queue is new Priority_Queue(Item => Point);

Recall that the package body of Point_Queue is a copy of the text of the template; this copy must
now be compiled. When the compiler attempts to compile the expression I < Node_Ptr.Data

in ‡38, an error will occur since the operator "<" is not defined on the type Point. You need to
ensure that Priority_Queue can only be instantiated for types for which the operator is defined
and visible.

We are able to diagnose the problem quickly because the text of the generic package is well
known to us since it has appeared so often in this book. If you had obtained the package from
another employee in your company, you would probably have to seek help in understanding the
package. Furthermore, it would be nearly impossible to create a a proprietary generic package if
an instantiation by the customer could cause arbitrary compilation errors in the body.

The contract model of generics in Ada has been designed to minimize, if not eliminate, these
problems. The idea is that the generic formal parameters contain sufficient information so that:2

• The generic unit itself can be compiled. Since the generic unit is just a template for which no
code is generated, it would be more exact to say that the unit is checked for legality.

• An instantiation may fail if the generic actual parameters do not match the formal parameters,
but no other compilation errors will occur as a result of the instantiation.

Thus the generic parameters form a contract between the programmer writing the generic unit and
the programmers using the unit.

The contract model is illustrated in Figure 7.1. The generic formal parameter declaration (left side
of the figure) specifies a class of types. The generic unit is allowed to use at most the operations

2The explanation of the contract model here is only approximate. The precise explanation is given in Section 7.11.

7.2 The contract model 105

common to all types in the class. The generic actual parameter must be a type which supplies at
least those operations.

limited private

private

(<>)

range <>

-

-

-

-

'
&

$
%

'

&

$

%

'

&

$

%

'

&

$

%

All types

Nonlimited types

Discrete types

Signed integer types

:=
=
/=

<
<=
>
>=
T’Pos
T’Val

+
−
*
/
abs
mod
rem

Figure 7.1: Generic types

For example, if the generic formal parameter is private, the generic unit is allowed to create
objects of the type, to perform assignments and to use the equality and inequality operators. In an
instantiation, the generic actual parameter can be any nonlimited type. The actual parameter may,
of course, be the type Integer, which also supplies operations like addition, but the generic unit is
not allowed to use such operations, only those operations that are common to all types in the class
‘nonlimited types’.

Similarly, if the formal parameter is (<>),3 indicating the class of all discrete types, the generic
unit would be allowed to write:

for N in Item’Range loop

because any discrete type can be used as the type of a loop parameter. We could instantiate with
Character or Cars or even Integer, but not with Point.

Note that classes of types do not form always a simple inclusion hierarchy as implied by Figure 7.1;
for example, floating point operations are neither a superset nor a subset of integer operations, so
they have distinct formal parameter declarations, and a generic floating point formal parameter
cannot be associated with an actual parameter of type Integer.

3Do not try to read too much into the syntax of generic formal parameters. Familiar reserved words and symbols
are reused in a manner that hints at the semantics, but you must learn the exact meaning of each construct.

7.3 Generic formal subprograms 106

§12.5.21 A formal scalar type is one defined by any of the formal_type_definitions in this
subclause. The class determined for a formal scalar type is discrete, signed integer,
modular, floating point, ordinary fixed point, or decimal.

2 formal_discrete_type_definition ::= (<>)

3 formal_signed_integer_type_definition ::= range <>

4 formal_modular_type_definition ::= mod <>

5 formal_floating_point_definition ::= digits <>

6 formal_ordinary_fixed_point_definition ::= delta <>

7 formal_decimal_fixed_point_definition ::= delta <> digits <>

Let us return to the problem of the priority queue. One possibility would be declare the generic
formal parameter to be of class discrete:

generic
type Item is (<>);

package Priority_Queue is . . .

This would allow us to instantiate the package for any discrete type such as Character and Integer.
The package would compile correctly, because "<" is predefined for every discrete type. However,
it would not allow us to create a priority queue of floating point values, because floating point types
are not discrete. Nor would it allow us to create a priority queue of objects of type Point, even
assuming that "<" were defined (though not predefined) for the type.

7.3 Generic formal subprograms

A generic formal subprogram parameter declares a subprogram that can be invoked within the
generic unit. An instantiation must supply a subprogram which is the one actually called by the
instance. A contract model is enforced upon instantiation: the subprogram given as an actual
parameter must conform to the formal parameter declaration. A flexible generic priority queue
package is obtained by declaring (a) the type Item as private so that a queue can be instantiated
for any nonlimited type, and (b) a generic formal function for the less-than operator:4

generic
type Item is private;
with function "<"(Left, Right: Item) return Boolean is <>;

package Priority_Queue is . . .

The instantiation must supply an actual function that is mode-conformant5 with the formal param-
eter. The following function uses short circuit control forms and then and or else §4.5.1 for
efficient evaluation of the Boolean expression.

4The reserved word with is reused here a syntactic marker to indicate that the subprogram specification is that of a
formal parameter, not of the generic subprogram.

5See the Glossary for the definition of this term.

7.4 Dependence of generic formal parameters 107

function Less_Than(Left, Right: Point) return Boolean is
begin
return (Left.X < Right.X) or else
((Left.X = Right.X) and then (Left.Y < Right.Y));

end Less_Than;

package Point_Queue is
new Priority_Queue(Item => Point, "<" => Less_Than);

Of course, a predefined operator will always be visible and can be used as an actual parameter:

package Float_Queue is new Priority_Queue(Float, "<");

§12.6
2 formal_subprogram_declaration ::=

with subprogram_specification [is subprogram_default];

3 subprogram_default ::= default_name | <>

4 default_name ::= name

10 If a generic unit has a subprogram_default specified by a box, and the correspond-
ing actual parameter is omitted, then it is equivalent to an explicit actual parameter
that is a usage name identical to the defining name of the formal.

We have declared the generic formal function of the priority queue generic package with a box
<>, so that a visible conforming function will be used by default:

package Float_Queue is new Priority_Queue(Float);

Similarly, if the comparison function for type Point had been declared by overloading the "<"

operator, we would not have had to give it explicitly as an actual parameter:

function "<"(Left, Right: Point) return Boolean is . . .
package Point_Queue is new Priority_Queue(Item => Point);

7.4 Dependence of generic formal parameters

The generic formal function "<" has parameters which are of the type of the previous generic
formal type Item. Such a dependence of one formal parameter on another is often used in the
construction of generic units, in particular when the formal parameter is an array type §12.5.3 or
an access type §12.5.4.

Case study: generic sort subprogram

We demonstrate dependence of generic formal parameters in a generic procedure for sorting,
where the generic array type Vector depends on previous formal parameters for both its Index

and its component type Item. The declaration of the generic procedure is:

7.4 Dependence of generic formal parameters 108

- - File: SORT1 - -
2 - - Generic procedure for selection sort.
3 - -
4 generic
5 type Index is (<>);
6 type Item is private;
7 type Vector is array(Index range <>) of Item;
8 with function "<"(Left, Right: Item) return Boolean is <>;
9 procedure SelectionSort(A: in out Vector);

The generic subprogram body is the completion of the generic declaration §12.2(3). (For a sub-
program that is not generic, the subprogram body can also serve as the subprogram declaration
§6.3(4).) Note the computation of the loop bounds in ‡14: Index is of class (<>) and may
be instantiated with any discrete type, not necessarily with an integer type. So we cannot write
A’Last-1; instead the attribute Index’Pred, which is defined for any discrete type is used.

10 procedure SelectionSort(A: in out Vector) is
11 Min: Index;
12 Temp: Item;
13 begin
14 for I in A’First .. Index’Pred(A’Last) loop
15 Min := I;
16 for J in I .. A’Last loop
17 if A(J) < A(Min) then Min := J; end if;
18 end loop;
19 Temp := A(I); A(I) := A(Min); A(Min) := Temp;
20 end loop;
21 end SelectionSort;

The procedure can be instantiated ‡40–41 with any discrete type for its index and any nonlimited
type for its component, in this case Character and Point:

22 with SelectionSort;
23 with Ada.Text_IO; use Ada.Text_IO;
24 with Ada.Float_Text_IO; use Ada.Float_Text_IO;
25 procedure Sort is
26

27 type Point is
28 record
29 X, Y: Float;
30 end record;
31

32 type Point_Vector is array(Character range <>) of Point;
33

7.5 Generic formal tagged private types* 109

34 function "<"(Left, Right: Point) return Boolean is
35 begin
36 return (Left.X < Right.X) or else
37 ((Left.X = Right.X) and then (Left.Y < Right.Y));
38 end "<";
39

40 procedure Point_Sort is new SelectionSort(
41 Character, Point, Point_Vector);
42

43 A: Point_Vector :=
44 ((10.0,1.0), (4.0,2.0), (5.0,3.4), (10.0,0.5));
45 begin
46 Point_Sort(A);
47 for I in A’Range loop
48 Put(A(I).X,5,2,0);
49 Put(A(I).Y,5,2,0);
50 New_Line;
51 end loop;
52 end Sort;

§12.5.3 gives the rules for matching actual array types with formal array types; in particular, both
types must be either unconstrained (as in the example) or constrained. Formal access types whose
designated type is a previous formal parameter can be used to build generic units that work on
linked structures; see §12.5.4.

7.5 Generic formal tagged private types*

There are two ways that tagged types can be used as generic formal parameters. We begin with
generic tagged private types. Generic derived types are discussed in the next section.

A generic formal private type can be declared as tagged:
generic
type Item is tagged private;

The class of types that may be used as actual parameters is the class of all nonlimited tagged
types. (As with ordinary formal private types, limited may be specified in the formal parameter
§12.5.1(17), in which case any tagged type may be the actual parameter.) What can you do with
any tagged type? Obviously, you cannot call any of its primitive operations (other than equality),
as these will be different for different tagged types. But any tagged type can be extended!

Case study: mixin inheritance

In the following program,6 an arbitrary tagged type Item ‡5 is extended to define a new type
Displayed_Item ‡8 with an additional component ‡15 and primitive subprograms ‡9–11.

6The packages for the simulation are unchanged and omitted here.

7.5 Generic formal tagged private types* 110

- - File: MIXIN11 - -
2 - - ‘Mixin’ inheritance using tagged generic parameter.
3 - -
4 generic
5 type Item is tagged private;
6 with function Init return Item;
7 package Display is
8 type Displayed_Item is new Item with private;
9 procedure Show(D: in Displayed_Item);

10 procedure Set_Size(D: in out Displayed_Item; N: Natural);
11 function Create return Displayed_Item;
12 private
13 type Displayed_Item is new Item with
14 record
15 Size: Integer;
16 end record;
17 end Display;

The new subprograms are implemented in the package body. The generic function parameter Init
is used in the extension aggregate to create a value of type Displayed_Item ‡34.

18 with Ada.Text_IO;
19 package body Display is
20

21 procedure Show(D: in Displayed_Item) is
22 begin
23 Ada.Text_IO.Put_Line("Size = " & Integer’Image(D.Size));
24 end Show;
25

26 procedure Set_Size(D: in out Displayed_Item; N: Natural) is
27 begin
28 D.Size := N;
29 end Set_Size;
30

31 function Create return Displayed_Item is
32 Initial_Size: constant Natural := 300;
33 begin
34 return (Init with Size => Initial_Size);
35 end Create;
36 end Display;

The instantiation Displayed_Main_Engine of Display ‡39–41 creates a type that is like Main_-

Engine_Event, but extended.

7.5 Generic formal tagged private types* 111

37 with Display;
38 with Root_Event.Engine;
39 package Displayed_Main_Engine is
40 new Display(Root_Event.Engine.Main_Engine_Event,
41 Root_Event.Engine.Create);

The main subprogram ‘with’s the instantiated package ‡44. Both the subprogram Simulate ‡67

which is primitive for Event (the generic actual type) and the new subprograms Create ‡53, Show
‡69 and Set_Size ‡55, can be used on objects of type Displayed_Main_Engine.Displayed_Item.

42 with Priority_Queue;
43 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
44 with Displayed_Main_Engine;
45 use Root_Event;
46 procedure Mixin1 is
47 package Event_Queue is new Priority_Queue(Event’Class);
48 Q: aliased Event_Queue.Queue;
49 begin
50 for I in 1..15 loop
51 declare
52 M: Displayed_Main_Engine.Displayed_Item :=
53 Displayed_Main_Engine.Create;
54 begin
55 Displayed_Main_Engine.Set_Size(M, 500+I*10);
56 Event_Queue.Put(M, Q);
57 end;
58 Event_Queue.Put(Engine.Aux_Engine_Event’(Engine.Create), Q);
59 Event_Queue.Put(Telemetry.Create, Q);
60 Event_Queue.Put(Steering.Create, Q);
61 end loop;
62

63 while not Event_Queue.Empty(Q) loop
64 declare
65 EC: Event’Class := Event_Queue.Get(Q’Access);
66 begin
67 Root_Event.Simulate(EC);
68 if EC in Displayed_Main_Engine.Displayed_Item then
69 Displayed_Main_Engine.Show(
70 Displayed_Main_Engine.Displayed_Item(EC));
71 end if;
72 end;
73 end loop;
74 end Mixin1;

This programming paradigm is called mixin inheritance. We have no intention of creating objects
of type Display.Displayed_Item ‡8; in any case, it is a just a template. Our intention is to ‘mix

7.6 Generic formal derived types* 112

in’ the properties of this type with an existing parent type (here Main_Engine_Event) to derive a
new type (here Displayed_Main_Engine.Displayed_Item).

Some languages for object-oriented programming use multiple inheritance (MI) in these situa-
tions: a derived type can have more than one parent. MI presents technical difficulties in both the
language definition and the implementation, so the designers of Ada 95 chose to omit MI from the
language. Instead, programming paradigms using single inheritance together with other constructs
like generics are used where other languages might use MI. See Section 4.6 of the Rationale for
additional examples.

7.6 Generic formal derived types*

The second way to use a tagged type as a formal type is to use a generic formal derived type:

with Root_Event;
generic
type Item is new Root_Event.Event with private;

The actual parameter can be Event or any type descended from it. According to the contract, within
the generic unit any primitive operation of Event can be used, since any descendant of Event is
certain to supply that operation, either by inheritance or by overriding. Additional operations
that were declared for the descendants upon extension are of course not available, since they are
different for each type (Figure 7.2). Create and Simulate are supplied by all descendants, while
the other subprograms Emergency_Status and Computer_Heading (assumed to have been added
during the extensions) are not available within the generic unit.

new Event with private
?'

&

$

%

'

&

$

%

'

&

$

%
Create
Simulate

Event

Emergency_Status Compute_Heading

Telemetry_Event Steering_Event

Figure 7.2: Generic tagged types

We now give another version of the mixin program where the generic formal parameter is derived
from Event, rather than from an unspecified tagged type. The primitive operations of the tagged
type are copied into the instance §12.3(16), so Create can be used directly in the generic package
body ‡34, and need not be supplied as an additional generic parameter.

7.6 Generic formal derived types* 113

- - File: MIXIN21 - -
2 - - ‘Mixin’ inheritance using generic formal derived type
3 - -
4 with Root_Event;
5 generic
6 type Item is new Root_Event.Event with private;
7 package Display is
8 type Displayed_Item is new Item with private;
9 procedure Show(D: in Displayed_Item);

10 procedure Set_Size(D: in out Displayed_Item; N: Natural);
11 function Create return Displayed_Item;
12 private
13 type Displayed_Item is new Item with
14 record
15 Size: Integer;
16 end record;
17 end Display;
18

19 with Ada.Text_IO;
20 package body Display is
21 procedure Show(D: in Displayed_Item) is
22 begin
23 Ada.Text_IO.Put_Line("Size = " & Integer’Image(D.Size));
24 end Show;
25

26 procedure Set_Size(D: in out Displayed_Item; N: Natural) is
27 begin
28 D.Size := N;
29 end Set_Size;
30

31 function Create return Displayed_Item is
32 Initial_Size: constant Natural := 300;
33 begin
34 return Displayed_Item’(Item’(Create) with Size => Initial_Size);
35 end Create;
36 end Display;
37

38 with Display;
39 with Root_Event.Engine;
40 package Displayed_Main_Engine is
41 new Display(Root_Event.Engine.Main_Engine_Event);

A generic formal derived type is more specialized than a generic formal private type, but it does
give direct access to the primitive operations of the actual type.

7.6 Generic formal derived types* 114

Mixing at the root

Rather than mixing the display into each event, it might be better to mix it once into the root
event; then, all events would automatically be Displayed_Items. The generic package Display

is unchanged from Section 7.5. Package Root_Event is modified so that Event ‡2 is no longer
abstract. The reason is that Create ‡25 must be given as a generic actual parameter and cannot be
abstract §3.9.3(11).

- - File: MIXIN31 package Root_Event is
2 type Event is tagged private;
3 function Create return Event;
4 procedure Simulate(E: in Event);
5 function "<"(Left, Right: Event’Class) return Boolean;
6 private
7 . . .
8 end Root_Event;

Within the body, we do the processing of the Time component ‡16, since it will no longer be
visible after the mixin.

9 with Root_Event.Random_Time;
10 with Ada.Text_IO; use Ada.Text_IO;
11 package body Root_Event is
12 G: Random_Time.Generator;
13

14 function Create return Event is
15 begin
16 return (Time => Random_Time.Random(G));
17 end Create;
18

19 . . .
20

21 end Root_Event;

Next comes the instantiation to perform the mixin:

22 with Display;
23 with Root_Event;
24 package Displayed_Event is
25 new Display(Root_Event.Event, Root_Event.Create);

The overridden operations in the extensions for the various events can call the operations from the
mixin ‡34,38.

7.6 Generic formal derived types* 115

26 with Ada.Text_IO; use Ada.Text_IO;
27 with Root_Event.Random_Time;
28 package body Root_Event.Engine is
29

30 G: Random_Time.Generator;
31

32 function Create return Engine_Event is
33 E: Engine_Event :=
34 (Displayed_Event.Create with
35 Fuel => Random_Time.Random(G) mod 100,
36 Oxygen => Random_Time.Random(G) mod 500);
37 begin
38 Displayed_Event.Set_Size(Displayed_Event.Displayed_Item(E), 500);
39 return E;
40 end Create;
41

42 . . .
43

44 end Root_Event.Engine;

Finally, within the main subprogram, primitive operations of both ‘parents’ may be called. Show
‡70 is a primitive operation added to the extension Displayed_Item in the generic package specifi-
cation, and Simulate ‡71 is an implicit declaration in the instance Displayed_Event §12.3(16–17)
of a primitive operation inherited from the generic actual parameter Root_Event.Event.

45 with Priority_Queue;
46 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
47 with Displayed_Event;
48 procedure Mixin3 is
49 package Event_Queue is
50 new Priority_Queue(Root_Event.Event’Class, Root_Event."<");
51 Q: aliased Event_Queue.Queue;
52 begin
53 for I in 1..15 loop
54 declare
55 use Root_Event;
56 begin
57 Event_Queue.Put(Engine.Main_Engine_Event’(Engine.Create), Q);
58 Event_Queue.Put(Engine.Aux_Engine_Event’(Engine.Create), Q);
59 Event_Queue.Put(Telemetry.Create, Q);
60 Event_Queue.Put(Steering.Create, Q);
61 end;
62 end loop;
63

7.7 Generic formal objects* 116

64 while not Event_Queue.Empty(Q) loop
65 declare
66 use Displayed_Event;
67 DIC: Displayed_Item’Class :=
68 Displayed_Item’Class(Event_Queue.Get(Q’Access));
69 begin
70 Simulate(DIC);
71 Show(DIC);
72 end;
73 end loop;
74 end Mixin3;

There is a special rule that requires that any extension to a generic formal tagged type be done in
the generic package specification (visible or private part), not in the body (Section 7.11).

7.7 Generic formal objects*

§12.41 A generic formal object can be used to pass a value or variable to a generic unit.
2 formal_object_declaration ::=

defining_identifier_list : mode subtype_mark

[:= default_expression];

7 For a generic formal object of mode in, the actual shall be an expression. For a
generic formal object of mode in out, the actual shall be a name that denotes a
variable for which renaming is allowed (see 8.5.1).

10 In an instance, a formal_object_declaration of mode in declares a new stand-
alone constant object whose initialization expression is the actual, whereas a for-

mal_object_declaration of mode in out declares a view whose properties are
identical to those of the actual.

A formal object of mode in is typically used to configure a generic unit. A formal object of mode in
out can be used to give the generic unit access to a variable in the unit enclosing the instantiation.

generic
Size: in Integer := 100;
Current: in out State; - - State must be visible here

package P is
subtype Name is String(1..Size);

end P;

Note the difference between the use of Size as a generic formal object and the use of Size as
a discriminant of the type Priority_Queue. All objects of type Name from a single instantiation
will have the same Size, while we can declare Queue’s of different sizes from a single instantiation
of Priority_Queue.

7.8 Indefinite and abstract parameters** 117

7.8 Indefinite and abstract parameters**

Can we instantiate the priority queue package with type Event’Class?

package Event_Queue is new Priority_Queue(Event’Class);

The answer is no. In ‡37 of the generic priority queue package (Section 7.1), an aggregate is used
to allocate a new node; an aggregate is an ‘anonymous object’ §4.3 which stores the components.
But you cannot create a record object with components of indefinite type such as a class-wide
type. To preserve the contract model, it is illegal to use an indefinite type as the actual parameter
for a definite generic formal private parameter §12.5.1(6).

You can write a generic priority queue package that will accept Event’Class items by changing the
body to use indirect allocation as we did in Chapter 6, and by declaring the formal parameter to
have unknown discriminants:

- - File: ROCKETQ1 generic
2 type Item(<>) is private; - - Object of type Item never declared
3 with function "<"(Left, Right: Item) return Boolean is <>;
4 package Heterogeneous_Priority_Queue is . . .

The contract is now valid: you cannot declare objects of type Item within the generic package, so
there is no reason to forbid instantiation with indefinite types.

Formal tagged types can also be declared as abstract.

§12.5.1
2 formal_private_type_definition ::=

[[abstract] tagged] [limited] private
3 formal_derived_type_definition ::=

[abstract] new subtype_mark [with private]
18 The presence of the reserved word abstract determines whether the actual type

may be abstract.

Note the difference between an abstract type and an indefinite type: an object can never be declared
for an abstract type, but an object can be declared for an indefinite type provided that an initial
value is given. This might be done by passing the generic unit an initializing function as a formal
parameter. If the formal is abstract, since you cannot declare objects within the generic unit, it
might as well have unknown discriminants, allowing indefinite actual parameters.

7.9 Formal package parameters** 118

7.9 Formal package parameters**

§12.71 Formal packages can be used to pass packages to a generic unit. The for-

mal_package_declaration declares that the formal package is an instance of a
given generic package. Upon instantiation, the actual package has to be an instance
of that generic package.

2 formal_package_declaration ::=

with package defining_identifier is
new generic_package_name formal_package_actual_part;

3 formal_package_actual_part ::= (<>) | [generic_actual_part]

4 The generic_package_name shall denote a generic package (the template for the
formal package); the formal package is an instance of the template.

5 The actual shall be an instance of the template. If the for-

mal_package_actual_part is (<>), then the actual may be any instance of
the template; otherwise, each actual parameter of the actual instance shall match
the corresponding actual parameter of the formal package . . .

Composing abstractions is an important programming technique. With generic package parame-
ters, you can supply one abstraction—a generic unit—with a second abstraction, without listing all
the types and operations of the second abstraction as separate parameters. Section 10.8 contains an
example of the direct composition of generics. Here we demonstrate the use of an empty generic
package called a signature to specify an abstraction needed by a generic unit.

Case study: generic simulation

We generalize the rocket simulation by declaring a generic simulation package that can be instan-
tiated for any event type and for any priority queue implementation.

We start by declaring a Root_Event package. Note that the event type is no longer abstract,
because generic events will now be put on the queue, not just events derived from the root event.
The package body (omitted) contains dummy bodies for the primitive operations.

- - File: ROCKETG1 - -
2 - - Root event
3 - -
4 package Root_Event is
5 type Event is tagged private;
6 function Create return Event;
7 procedure Simulate(E: in Event);
8 function "<"(Left, Right: Event’Class) return Boolean;
9 private

10 subtype Simulation_Time is Integer range 0..10_000;

7.9 Formal package parameters** 119

11 type Event is tagged
12 record
13 Time: Simulation_Time;
14 end record;
15 end Root_Event;

The next stage is to declare a signature for a generic event priority queue. The meaning of the
signature is that an event priority queue is any package that supplies the type and subprograms
declared as generic formal parameters.

16 - -
17 - - Generic event priority queue signature
18 - -
19 with Root_Event;
20 generic
21 type Queue(Size: Positive) is limited private;
22 with function Empty(Q: access Queue) return Boolean is <>;
23 with procedure Put(E: in Root_Event.Event’Class; Q: access Queue) is <>;
24 with function Get(Q: access Queue) return Root_Event.Event’Class is <>;
25 package Generic_Event_Priority_Queue is
26 end Generic_Event_Priority_Queue;

The signature is used as a generic formal package parameter ‡33 for the package Generic_Simu-

lator; the generic body uses subprograms Get ‡50, Empty ‡49 and Put ‡45 from the specification
of the formal parameter. In terms of the contract model, the formal parameter specifies the types
and subprograms from the package available for use within the generic unit; the actual parameter
must be a package that provides at least those types and subprograms.

27 - -
28 - - Generic simulator
29 - -
30 with Root_Event;
31 with Generic_Event_Priority_Queue;
32 generic
33 with package Event_Queue is new Generic_Event_Priority_Queue(<>);
34 package Generic_Simulator is
35 procedure Add_Event(E: in Root_Event.Event’Class);
36 procedure Run;
37 end Generic_Simulator;

7.9 Formal package parameters** 120

38 - -
39 - - Generic simulator body
40 - -
41 package body Generic_Simulator is
42 Q: aliased Event_Queue.Queue(100);
43 procedure Add_Event(E: in Root_Event.Event’Class) is
44 begin
45 Event_Queue.Put(E, Q’Access);
46 end Add_Event;
47 procedure Run is
48 begin
49 while not Event_Queue.Empty(Q’Access) loop
50 Root_Event.Simulate(Event_Queue.Get(Q’Access));
51 end loop;
52 end Run;
53 end Generic_Simulator;

Generic_Simulator is instantiated in three stages! Firstly, the packages Event_Tree_Queue and
Event_Array_Queue ‘conveniently’ supply all the items promised by the signature. They are
obtained by instantiating our familiar generic priority queue packages.

54 - -
55 - - Instantiation of event queue implemented by trees
56 - -
57 with Tree_HPQ;
58 with Root_Event; use Root_Event;
59 package Event_Tree_Queue is new Tree_HPQ(Event’Class);
60 - -
61 - - Instantiation of event queue implemented by arrays
62 - -
63 with Array_HPQ;
64 with Root_Event; use Root_Event;
65 package Event_Array_Queue is new Array_HPQ(Event’Class);

Secondly, these packages are used to instantiate the signature to obtain Event_Queue_1 and
Event_Queue_2. The instantiation is simple because the actual subprograms are supplied by
default.

66 - -
67 - - Instantiation of the signature with tree queue
68 - -
69 with Event_Tree_Queue; use Event_Tree_Queue;
70 with Generic_Event_Priority_Queue;
71 package Event_Queue_1 is new Generic_Event_Priority_Queue(Queue);
72 - -
73 - - Instantiation of the signature with array queue

7.9 Formal package parameters** 121

74 - -
75 with Event_Array_Queue; use Event_Array_Queue;
76 with Generic_Event_Priority_Queue;
77 package Event_Queue_2 is new Generic_Event_Priority_Queue(Queue);

Finally, we instantiate the generic simulator package to obtain two simulators: Simulator_1 and
Simulator_2. As required by §12.7(4–5), the actual package parameters are themselves instanti-
ations of the generic formal package parameters.

78 - -
79 - - Instantiation of the simulator with tree queue
80 - -
81 with Generic_Simulator;
82 with Event_Queue_1;
83 package Simulator_1 is new Generic_Simulator(Event_Queue_1);
84 - -
85 - - Instantiation of the simulator with array queue
86 - -
87 with Generic_Simulator;
88 with Event_Queue_2;
89 package Simulator_2 is new Generic_Simulator(Event_Queue_2);
90

Note that so far we have not said anything about the rocket! The hierarchy of events for the rocket
simulation is defined in a child of Root_Event. Except for the package names, the source code
for the rest of the rocket packages is unchanged and is omitted here.

91 - -
92 - - Rocket root event
93 - -
94 package Root_Event.Rocket_Event is
95 type Event is abstract new Root_Event.Event with null record;
96 end Root_Event.Rocket_Event;

The main subprogram can use both simulators. In a more realistic program, tasking would be used
to run the two simulators concurrently.

97 - -
98 - - Run two simulators
99 - -

100 with Simulator_1;
101 with Simulator_2;
102 with Root_Event.Rocket_Event; use Root_Event.Rocket_Event;
103 with Root_Event.Rocket_Event.Engine;
104 with Root_Event.Rocket_Event.Telemetry;
105 with Root_Event.Rocket_Event.Steering;

7.10 Generic children* 122

106 procedure RocketG is
107 begin
108 for I in 1..15 loop
109 Simulator_1.Add_Event(Engine.Main_Engine_Event’(Engine.Create));
110 Simulator_1.Add_Event(Engine.Aux_Engine_Event’(Engine.Create));
111 Simulator_1.Add_Event(Telemetry.Create);
112 Simulator_1.Add_Event(Steering.Create);
113 end loop;
114 for I in 1..15 loop
115 Simulator_2.Add_Event(Engine.Main_Engine_Event’(Engine.Create));
116 Simulator_2.Add_Event(Engine.Aux_Engine_Event’(Engine.Create));
117 Simulator_2.Add_Event(Telemetry.Create);
118 Simulator_2.Add_Event(Steering.Create);
119 end loop;
120

121 Simulator_1.Run;
122 Simulator_2.Run;
123 end RocketG;

7.10 Generic children*

A non-generic package may have generic children §10.1.1; for example, Ada.Numerics is not
generic but its children are. However, the child of a generic unit must itself be generic §10.1.1(16–
19). If the child package were not generic, the child would have to be compiled for every existing
instantiation of the parent, whether it is needed or not. By requiring that the child be generic,
instances are created only when explicitly requested.

The following example demonstrates the rules; a realistic application will be given in Section 10.8.
Note that the instantiation of the child ‡20 requires two ‘with’ clauses. The first is the usual ‘with’
clause for the generic package being instantiated. However, what is actually being instantiated is
the generic child of the instance of the parent, so it must also be ‘with’ed. This is what enables
the instance to access the generic actual parameter of the instance, so that Child_Instance.V2 is
of type Integer.

- - File: GENCHILD1 - -
2 - - Generic child of a generic package
3 - -
4 generic
5 type T is private;
6 package Parent is
7 V1: T;
8 end Parent;
9

7.11 Limitations of the contract model** 123

10 generic
11 package Parent.Child is
12 V2: T;
13 end Parent.Child;
14

15 with Parent;
16 package Parent_Instance is new Parent(Integer);
17

18 with Parent.Child;
19 with Parent_Instance;
20 package Child_Instance is new Parent_Instance.Child;

7.11 Limitations of the contract model**

The explanation of the contract model in Section 7.2 was only approximate. Occasionally, you
will have to understand the precise details of the model, as discussed in this section.

Consider the following rule:

§3.9.13 . . . If the parent type is nonlimited, then each of the components of the
record_extension_part shall be nonlimited. . . .

Does it apply to the declaration of T1 in the following generic package?

- - File: LEGAL1 generic
2 type Parent is tagged limited private;
3 type Component_Type is limited private;
4 package P is
5 type T1 is new Parent with
6 record
7 X: Component_Type;
8 end record;
9 private

10 type T2 is new Parent with
11 record
12 X: Component_Type;
13 end record;
14 end P;

The formal type Parent is limited, so the component X in the extension can be of the formal limited
type Component_Type. This generic package specification compiles successfully. The technical
term is ‘assume-the-best’: since the formal parameters are declared to be limited, the compiler
assumes that the actual parameters will also be limited.

Consider, however, an instantiation of P where the actual parameter associated with Parent is
unlimited and the actual parameter associated with Component_Type is limited:

7.11 Limitations of the contract model** 124

15 with P;
16 package Legal is
17 type Un_Lim is tagged null record;
18 type Lim is tagged limited null record;
19 package Instance is new P(Un_Lim, Lim);
20 end Legal;

The type Instance.T1 is an extension of the unlimited type Un_Lim with a limited component of
type Lim—clearly, an illegal situation.

§12.311 In a generic unit Legality Rules are enforced at compile-time of the
generic_declaration and generic body, given the properties of the formals. In the
visible part and formal part of an instance, Legality Rules are enforced at compile-
time of the generic_instantiation, given the properties of the actuals. In other parts
of an instance, Legality Rules are not enforced; this rule does not apply when a
given rule explicitly specifies otherwise.

According to the second sentence of this rule, legality rules such as §3.9.1(3) are enforced during
the compilation of the of the instantiation; the declaration of T1 in the instance is an error. This
will be somewhat surprising, since there is nothing wrong with the instantiation (given the generic
formal part) and the generic specification itself compiles correctly.

The contract model is not between the generic specification and the instantiation, but between the
generic body and the instantiation. An instantiation will never cause the generic body to become
illegal; conversely, a modification of the body cannot make an instantiation illegal. Almost all
violations of the contract will be caught as conflicts between the generic actual parameters and
the generic formal parameters, but occasionally—as shown here—the conflict may be with the
specification.

What about the declaration of T2 ‡10–13? This is rejected during the compilation of the instanti-
ation by the third sentence of §12.3(11), together with the following sentence that appears later in
the paragraph quoted above:

§3.9.13 . . . In addition to the places where Legality Rules normally apply (see 12.3), these
rules apply also in the private part of an instance of a generic unit.

A list of the legality rules that apply in the private part of a generic instance can be found in the
index of the ARM under the entry ‘generic contract issues’.

7.11 Limitations of the contract model** 125

Finally, what about the extension T3 in the following body of P?7

21 package body P is
22 type T3 is new Parent with
23 record
24 X: Component_Type;
25 end record;
26 end P;

It appears that the instantiation will cause the body to be illegal—precisely the situation that the
contract model was intended to avoid. The solution is simply to forbid this construct so that the
compilation of the body is already illegal, regardless of the actual parameters supplied during the
instantiation.

§3.9.14 A type extension shall not be declared in a generic body if the parent type is declared
outside that body.

This is known as ‘assume-the-worst’. Though it is unlikely that an extension of a formal type in
the body will cause a problem, it is in fact possible, so all such extensions are forbidden. The
workaround in this case is simply to move the extension to the private part of the specification.

The flexibility of ‘assume-the-best’ when compiling the specification should not be a problem
because the generic specification is the interface that is visible to users of the package.

7Strictly speaking P is not allowed to have a body, but that can be easily remedied.

8 Types Revisited

8.1 Characters and strings

Thirty pages of Annex §A of the ARM are devoted to packages for character and string handling!

Ada.Characters.Latin_1 §A.3.3 supplies names for all characters (except for the digits and the
upper-case letters ’A’ through ’Z’). Ada.Characters.Handling §A.3.2 contains functions such as
Is_Alphanumeric for classifying characters, as well as conversion functions such as To_Upper

and To_Wide_Character. Note that the category letters includes international characters such as
the letter ç (LC_C_Cedilla) used in French; the predefined upper/lower case conversion functions
take account of these characters.

Ada.Strings §A.4.1 has child packages that provide extensive operations for three string types (see
Figure 8.1):1

• Fixed—This is the predefined type String.

• Bounded—A bounded string object must be declared with a maximal length; the current length
is automatically maintained by the library subprograms.

• Unbounded—An unbounded string has no maximal length.

Figure 8.1 also shows null-terminated strings that are defined in Interfaces.C.Strings §B.3.1 and
are used to manipulate strings passed to or received from external subprograms in written in C.2

Obviously, the more flexible the string type, the more overhead is required. For bounded strings,
you will declare a maximum size that is at least as large as the longest string of the type. For un-
bounded strings, heap allocation and deallocation may be needed for each operation. The subpro-
gram libraries for all three types are very similar so your choice can be based on the requirements
of your application.

Package Ada.Strings.Maps §A.4.2 implements operations on type Character_Set, which will be
familiar if you have used a string processing language such as SNOBOL and Icon. These sets are
used as patterns in search operations such as ‘find the first occurrence of any upper case character’.
The package also declares the type Character_Mapping, which can be used to translate one set of
characters to another. For example, the following statement will do a case-insensitive search for
a lower-case Pattern within Source by mapping Source to lower case using the predefined map
Lower_Case_Map §A.4.6(5):

1An implementation need not use these data structures; furthermore, information on the index bounds is not shown
in the figure.

2More generally, any software that uses the C convention.

126

8.1 Characters and strings 127

Fixed string

Bounded string

Unbounded string

C-string

H e l l o W o r l d

11 H e l l o W o r l d

11 - H e l l o W o r l d

- H e l l o W o r l d 0

Figure 8.1: Strings in Ada

Ada.Strings.Fixed.Index(
Source, Pattern, Ada.Strings.Forward,
Ada.Strings.Maps.Constants.Lower_Case_Map);

You can read detailed descriptions of these packages in the ARM. We now present a case study
showing how they can be used.

Case study: Ada to LATEX

LATEX (Lamport 1986, Diller 1993) is the software I use to format and typeset my books. The text
of the book is written in ordinary ASCII characters together with formatting commands. The LATEX
software formats the text, creating a device-independent file that can be previewed on a screen and
then printed. I have written a program that takes an Ada program and inserts formatting commands
so that the program can be used in a LATEX document without manually keying in the text or the
commands.

The transformations performed on the text are as follows:

• The characters #, & and _ that are used in the Ada syntax are preceded by the escape character
\.

• The reserved words are enclosed in the command for boldface font {\bf }.3

• The program is enclosed in a tabbing environment, where \> denotes a tab stop and \\ denotes
the end of line.
3The program will incorrectly perform this transformation on a reserved word that occurs within a string literal! We

leave it to the reader to correct the program.

8.1 Characters and strings 128

• Comments are formatted using macros that I defined: \cml{} for a comment that takes up an
entire line and \cm{} for a comment that trails a source line.

Before looking at the program, we must discuss the choice of string types. Strings are needed for
the program lines to be processed and for a table of reserved words. Since the size of these strings
can be bounded, there is no reason to use dynamic strings. Bounded strings are obviously appro-
priate, but fixed strings can be used as well, since the library subprograms automatically justify
and pad their results. For example, the Move procedure allows you to choose the justification di-
rection, padding character and the action to be taken if there are too many characters in the source
string:

procedure Move(
Source: in String;
Target: out String;
Drop: in Truncation := Error;
Justify: in Alignment := Left;
Pad: in Character := Space);

I have written several versions of this program. the one displayed here uses fixed strings for
reserved words and bounded strings for the program lines; other versions are on the CD-ROM.
(The file names are TOLATEXB, TOLATEXF, TOLATEXP, respectively.

The package Ada.Strings.Bounded consists entirely of a generic package that must be instantiated
with the maximum length of the bounded string type.4 Types resulting from different instantiations
cannot be directly converted to each other, though you can convert indirectly by converting to and
from String. The instantiation Line of the bounded string package is done at the library level to
save compilation time when debugging the program.

- - File: TOLATEX1 with Ada.Strings.Bounded;
2 package Line is new Ada.Strings.Bounded.Generic_Bounded_Length(120);

The reserved words are stored in a constant table of fixed strings ‡23–37. The components of this
array are of a string subtype constrained to the length of the longest reserved word. The table
could be initialized by manually padding each word ("if "), but it is easier to write a
function to do this automatically ‡16–21. The table is sorted so that it can be efficiently searched
using binary search ‡47–64. Formatting commands are declared as constants ‡39–45.

3 - -
4 - - Format Ada program with LaTeX commands.
5 - -
6 with Line;
7 with Ada.Strings.Maps.Constants;
8 with Ada.Strings.Fixed;
9 with Ada.Text_IO;

10 with Ada.Command_Line;

4This is a good test to see if your implementation does code sharing among instantiations. If not, the size of your
executable code will increase with each instantiation. You may want to ‘round up’ the size of some strings to save code
memory at the expense of data memory.

8.1 Characters and strings 129

11 use Line, Ada.Strings;
12 procedure ToLaTeX is
13

14 subtype Keyword is String(1..9);
15

16 function P(Source: in String) return Keyword is
17 Target: Keyword;
18 begin
19 Fixed.Move(Source, Target);
20 return Target;
21 end P;
22

23 Words: constant array(Natural range <>) of Keyword := (
24 P("abort"), P("abs"), P("abstract"), P("accept"), P("access"),
25 P("aliased"), P("all"), P("and"), P("array"), P("at"),
26 P("begin"), P("body"), P("case"), P("constant"), P("declare"),
27 P("delay"), P("delta"), P("digits"), P("do"), P("else"),
28 P("elsif"), P("end"), P("entry"), P("exception"), P("exit"),
29 P("for"), P("function"), P("generic"), P("goto"), P("if"),
30 P("in"), P("is"), P("limited"), P("loop"), P("mod"),
31 P("new"), P("not"), P("null"), P("of"), P("or"),
32 P("others"), P("out"), P("package"), P("pragma"), P("private"),
33 P("procedure"), P("protected"), P("raise"), P("range"), P("record"),
34 P("rem"), P("renames"), P("requeue"), P("return"), P("reverse"),
35 P("select"), P("separate"), P("subtype"), P("tagged"), P("task"),
36 P("terminate"), P("then"), P("type"), P("until"), P("use"),
37 P("when"), P("while"), P("with"), P("xor"));
38

39 Tab_Size: constant Natural := 2; - - At least 2
40 Tab_String: constant String := "\>";
41 Bold: constant String := "{\bf ";
42 EOL: constant String := "\\";
43 Trail_Comment: constant String := "\cm{";
44 Line_Comment: constant String := "\cml{";
45 Escapes: constant Maps.Character_Set := Maps.To_Set("_&#");
46

47 function Search(S: String) return Boolean is
48 Mid: Natural;
49 Low: Natural := Words’First;
50 High: Integer := Words’Last;
51 K: Keyword;
52 begin
53 if S’Length > Keyword’Length then return False;
54 else Fixed.Move(S, K);
55 end if;

8.1 Characters and strings 130

56 loop
57 if Low > High then return False; end if;
58 Mid := (Low + High) / 2;
59 if K = Words(Mid) then return True;
60 elsif K < Words(Mid) then High := Mid - 1;
61 else Low := Mid + 1;
62 end if;
63 end loop;
64 end Search;

Procedure Split_Comment searches for the first non-blank character ‡67 and the first comment
sequence ‡68. The results are used to split the program line into its source code and comment
substrings. Null_Bounded_String is predefined §A.4.4(7). Note that the concatenation operator
"&" is overloaded for mixed bounded and fixed string operands §A.4.4(21–25).

65 procedure Split_Comment(
66 S: in Bounded_String; Source, Comment: out Bounded_String) is
67 Start: Natural := Index_Non_Blank(S);
68 MM: Natural := Index(S, "- -");
69 begin
70 if Start = 0 or MM = 0 then
71 Source := S;
72 Comment := Null_Bounded_String;
73 elsif Start = MM then
74 Source := Null_Bounded_String;
75 Comment := Line_Comment & Tail(S, Length(S)-MM-1) & "}";
76 else
77 Source := Head(S, MM-1);
78 Comment := Trail_Comment & Tail(S, Length(S)-MM-1) & "}";
79 end if;
80 end Split_Comment;

Procedure Tabbing begins by searching for the first non-blank character in a line and computing
the number of tabs ‡82. Then it replaces the blanks by the tab string ‡87–88. The function "*"

§A.4.3(105) is used to replicate the tab string ‡88:

function "*" (Left: in Natural; Right: in String) return String;

The ‘use’ clause for Fixed is needed so that operator syntax can be used (see Quiz C53).

81 procedure Tabbing(S: in out Bounded_String) is
82 Blank_Count: Natural :=
83 ((Index_Non_Blank(S)-1) / Tab_Size) * Tab_Size;
84 use Fixed;

8.1 Characters and strings 131

85 begin
86 if Blank_Count > 0 then
87 Replace_Slice(
88 S, 1, Blank_Count, (Blank_Count/Tab_Size) * Tab_String);
89 end if;
90 end Tabbing;

The procedure Insert_Escapes is a bit more difficult than Tabbing because once a character such
as # is replaced by \#, the search for the next character in the set must start after the character
already replaced; otherwise an infinite loop will result. This is done by maintaining a current
position variable Pos ‡93 and using the function Tail ‡97 §A.4.4(72) to search within the tail of
a string. The character set Escapes ‡45 is created using function To_Set which creates a set
from a Character_Sequence (a synonym for String). Character sets can also be created from a
Character_Range §A.4.2(6) which is defined by two characters bounding a range.

91 procedure Insert_Escapes(S: in out Bounded_String) is
92 First: Natural;
93 Pos: Natural := 0;
94 begin
95 loop
96 exit when Pos >= Length(S);
97 First := Index(Tail(S, Length(S)-Pos), Escapes);
98 exit when First = 0;
99 Pos := Pos + First;

100 Insert(S, Pos, "\");
101 Pos := Pos + 2;
102 end loop;
103 end Insert_Escapes;

Procedure Emphasize_Keywords also has to keep track of the current position. Function Find_-

Token ‡113 §A.4.3(67–68) simplifies programming by directly finding the first substring com-
posed of characters Inside the set Word_Set and delimited by characters not in the set. Note that
Word_Set must include the underscore character ‡106–107, otherwise a reserved word that is part
of an identifier like My_Type would be incorrectly emphasized.

104 procedure Emphasize_Keywords(S: in out Bounded_String) is
105 use Maps;
106 Word_Set: constant Character_Set :=
107 Constants.Alphanumeric_Set or To_Set(’_’);
108 First, Last: Natural;
109 Pos: Natural := 0;
110 begin
111 loop
112 exit when Pos >= Length(S);
113 Find_Token(Tail(S, Length(S)-Pos), Word_Set, Inside, First, Last);

8.1 Characters and strings 132

114 exit when Last = 0;
115 First := First + Pos; Last := Last + Pos; Pos := Last + 1;
116 if Search(Slice(S, First, Last)) then
117 Replace_Slice(S, First, Last, Bold & Slice(S, First, Last) & ’}’);
118 Pos := Pos + Bold’Length + 1;
119 end if;
120 end loop;
121 end Emphasize_Keywords;

In the main subprogram ‡143–171, Ada.Command_Line §A.15 is used to obtain the input file
name from the command line ‡150, which is then used to create the name of the output file ‡151.
The files are opened and after writing LATEX preamble commands, Main_Loop is called ‡161 to
process the data. Upon completion, LATEX commands are written before closing the files.

The main loop is split off into a separate procedure ‡122–141. Input and output are not defined for
bounded strings; instead, ordinary Ada.Text_IO subprograms are used ‡128, 137 together with
conversions between fixed and bounded strings. Split_Comment is called ‡130 to divide the line
into a string with the source code and a string with the comment. Tabbing and reserved words
(called ‘keywords’ in the program) are processed in the source code only ‡132, 133, while escape
characters must also be processed in the comments ‡134, 136.

122 procedure Main_Loop(Input, Output: in out Ada.Text_IO.File_Type) is
123 Buffer: String(1..Line.Max_Length);
124 Last: Natural;
125 S, Source, Comment: Bounded_String;
126 begin
127 loop
128 Ada.Text_IO.Get_Line(Input, Buffer, Last);
129 S := To_Bounded_String(Buffer(1..Last));
130 Split_Comment(S, Source, Comment);
131 if Length(Source) > 0 then
132 Tabbing(Source);
133 Emphasize_Keywords(Source);
134 Insert_Escapes(Source);
135 end if;
136 Insert_Escapes(Comment);
137 Ada.Text_IO.Put_Line(Output, To_String(Source&Comment&EOL));
138 end loop;
139 exception
140 when Ada.Text_IO.End_Error => null;
141 end Main_Loop;
142

8.1 Characters and strings 133

143 begin
144 if Ada.Command_Line.Argument_Count /= 1 or else
145 Fixed.Index(Ada.Command_Line.Argument(1), ".") = 0 then
146 Ada.Text_IO.Put_Line("Usage: ToLaTex FileName (with extension)");
147 else
148 declare
149 use Fixed, Ada.Text_IO;
150 Input_Name: String := Ada.Command_Line.Argument(1);
151 Output_Name: String := Input_Name(1..Index(Input_Name, ".")) & "tex";
152 Input: File_Type;
153 Output: File_Type;
154 begin
155 Open(Input, In_File, Input_Name);
156 Create(Output, Out_File, Output_Name);
157 Put_Line(Output, "\documentstyle{article}");
158 Put_Line(Output, "\begin{document}");
159 Put_Line(Output, "\begin{tabbing}");
160 Put_Line(Output, 10*(Tab_Size*"x" & "\=") & "\kill");
161 Main_Loop(Input, Output);
162 Put_Line(Output, "\end{tabbing}");
163 Put_Line(Output, "\end{document}");
164 Close(Input);
165 Close(Output);
166 Put_Line("Created file "& Output_Name);
167 exception
168 when Name_Error => Put_Line("No such file");
169 end;
170 end if;
171 end ToLaTeX;

8.2 Discriminants 134

8.2 Discriminants

§3.71 A composite type (other than an array type) can have discriminants, which pa-
rameterize the type. A known_discriminant_part specifies the discriminants of a
composite type. A discriminant of an object is a component of the object, and is
either of a discrete type or an access type. An unknown_discriminant_part in the
declaration of a partial view of a type specifies that the discriminants of the type
are unknown for the given view; all subtypes of such a partial view are indefinite
subtypes.

2 discriminant_part ::=

unknown_discriminant_part | known_discriminant_part

3 unknown_discriminant_part ::= (<>)

4 known_discriminant_part ::=

(discriminant_specification {; discriminant_specification})

5 discriminant_specification ::=

defining_identifier_list : subtype_mark

[:= default_expression] |

defining_identifier_list : access_definition

[:= default_expression]

6 default_expression ::= expression

We have met known discriminants in the implementation of a queue by an array, and unknown
discriminants in generic formal parameters:

type Queue(Size: Positive) is
record
Data: Vector(0..Size);
Free: Natural := 0;

end record;

generic
type Item is (<>);

package Priority_Queue is . . .

Discriminants are primarily used to parameterize record types, but they can also parameterize tasks
and protected objects (Sections 13.2, 14.8). A discriminant in a record type declaration declares
a constant component of the record §3.3(18), §3.8(9). When an object of a discriminated type
is created, a value must be given for each discriminant either by a discriminant constraint §3.7.1
(as we did in the priority queue programs) or by an initial value. As with unconstrained arrays, a
formal parameter with a discriminant takes its constraint from an actual parameter.

Changing the value of a discriminant would break type checking:

Q: Queue := (Size => 10, Free => 0, Data => (others => 0));

Q.Size := 100; - - Error, otherwise . . .
Q.Data(62) := 35; - - . . . this would be legal

8.3 Variant records 135

While it is not possible to change the discriminant alone, the record itself can be assigned, subject
to a check that the discriminants match. Both the assignment statement and parameter passing are
defined in terms of type conversion §5.2(11), §6.4.1(10,11,14), which includes a constraint check
§4.6(51):

subtype Queue10 is Queue(10);
Q, R: Q10;
S: Queue(20);

Q := R; - - OK
Q := S; - - Raises Constraint_Error

procedure Unconstrained(A: in out Queue);
procedure Constrained(A: in out Queue10);

Constrained(R); - - OK
Constrained(S); - - Raises Constraint_Error
Unconstrained(S); - - OK

Within a record declaration, a discriminant can be used in a default expression for another compo-
nent, but if it is used to constrain a component, it must appear directly and not part of an expression
§3.8(12).

type Queue(Size: Positive) is
record
Data: Vector(0..Size+1); - - Error
Free: Natural := 0;

end record;

8.3 Variant records

Discriminants can be used to create variant records, where the existence of some of the record
components depends on §3.7(22) the discriminants. Programming with variants used to be ex-
tremely important, but in many cases it is better to use type extension. The problem with variants
is that you typically need large case statements to select the computation that is appropriate for the
components that exist for each variant. These case statements are elegant if you are just changing
or adding operations because the source code for all variants is located in a single place. How-
ever, if you expect to modify or add variants, the program will be difficult to maintain because all
these case statements will need to be changed. It is much easier to use type extension, since most
subprograms can be inherited and only a few will need to be modified or added.

Furthermore, all components of a record must have distinct identifiers §3.8(9); if you want to
factor out common components, you will have to use nested variants and nested case statements.
Factoring is trivial to do using repeated extensions in a class of derived types: first you extend with
the common fields and then extend again for each ‘variant’.

8.3 Variant records 136

An important use for variant records is to convert unstructured data to a structured record. For
example, a buffer of bytes from a communications link or an operating system service can be
converted to any one of a set of structures depending upon a discriminant that functions as an
explicit tag.

Case study: message conversion

The following program shows how to use variant records for structuring a sequence of bytes.5 Type
Structured_Message ‡17–28, is a variant record whose discriminant is an enumerated type Codes
‡14, while type Raw_Message ‡33 is just an array of bytes. The record has four common com-
ponents: the discriminant Code and the components Addressee, Sender and Sequence_Number;
the other components depend on the discriminant Code.

- - File: MESSAGE1 - -
2 - - Message representation conversion with variant records
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
6 with System; with Unchecked_Conversion;
7 procedure Message is
8

9 type Byte is mod 2**System.Storage_Unit;
10 for Byte’Size use System.Storage_Unit;
11 package Byte_IO is new Ada.Text_IO.Modular_IO(Byte);
12 use Byte_IO;
13

14 type Codes is (M0, M1, M2, M3);
15 for Codes’Size use System.Storage_Unit;
16

17 type Structured_Message(Code: Codes) is
18 record
19 Addressee: Byte;
20 Sender: Byte;
21 Sequence_Number: Byte;
22 case Code is
23 when M0 => null;
24 when M1 => A: Integer;
25 when M2 => B: Character;
26 when M3 => C: Integer; D: Integer;
27 end case;
28 end record;
29 pragma Pack(Structured_Message);
30

5Modular types are discussed in Section 10.4 and representation items such as Size and Pack in Section 8.4.

8.3 Variant records 137

31 Max_Bytes: constant Integer :=
32 Structured_Message’Size/System.Storage_Unit;
33 type Raw_Message is array(1..Max_Bytes) of Byte;
34 pragma Pack(Raw_Message);

The function Send_Message converts a message to an array of bytes. The procedure Process_-

Message converts a raw message to a variant record and ‘processes’ it according to its code. These
conversions are done using the functions To_Raw ‡35–36 and To_Structured ‡38–39 obtained
by instantiating the generic function Unchecked_Conversion §13.9. This violates type checking,
so we must carefully check that the conversions are meaningful. The size of Raw_Message is
computed ‡31–32 from the size of Structured_Message, so that we are not in danger of smearing
memory, but there is no assurance that the value of the byte for the message code corresponds to
the value of the discriminant for the message structure.

35 function To_Raw is new Unchecked_Conversion(
36 Source => Structured_Message, Target => Raw_Message);
37

38 function To_Structured is new Unchecked_Conversion(
39 Source => Raw_Message, Target => Structured_Message);
40

41 function Send_Message(S: Structured_Message) return Raw_Message is
42 begin
43 return To_Raw(S);
44 end Send_Message;
45

46 procedure Process_Message(R: Raw_Message) is
47 S: Structured_Message := To_Structured(R);
48 begin
49 Put("Message number "); Put(S.Sequence_Number);
50 Put(" of type " & Codes’Image(S.Code) & " ");
51 Put(" sent by "); Put(S.Sender);
52 Put(" to "); Put(S.Addressee); New_Line;
53 Put("Text of message is ");
54 case S.Code is
55 when M0 => null;
56 when M1 => Put(S.A);
57 when M2 => Put(S.B);
58 when M3 => Put(S.C); Put(S.D);
59 end case;
60 New_Line; New_Line;
61 end Process_Message;

To test the program, aggregates for message are created, sent and then processed. In an aggre-
gate, the discriminant is just another component, with the restriction that it must be static since it
determines which components are needed §4.3.1(17).

8.4 Representation items 138

62 begin
63 Process_Message(Send_Message((M1, 11, 32, 1, 54)));
64 Process_Message(Send_Message((M2, 32, 11, 2, ’X’)));
65 Process_Message(Send_Message((M3, 32, 11, 3, 45, 68)));
66 end Message;

Note that the addition of a code, or modification of the components for a code, will require changes
to the case-statement. A better approach would be to use tagged types and dispatching. Streams
(Section 11.3) can be used for input–output of the tagged types.

8.4 Representation items

Ideally, an Ada program will be completely portable and will execute without modification on any
computer. In practice, computer hardware varies so much that perfect portability is impossible,
especially if you are writing an embedded system that needs to access hardware interfaces.

The Ada solution to the conflicting requirements of portability and hardware interfacing is to have
the language standard specify the syntactic and semantic framework for the hardware interface,
but to leave the implementation details to each compiler. This framework is discussed in §13
‘Representation Issues’. The section is full of paragraphs entitled ‘Implementation Advice’ and
‘Implementation Permissions’, indicating that even a validated compiler need not fully support
the specifications. Before choosing an Ada compiler for an embedded system, you must carefully
study the compiler’s documentation to see it satisfies your requirements. Since the constructs are
standardized, it is easy to study and compare different implementations.

We now survey representation issues, using the program in the previous section as an example.

Basic information about the implementation is given in package System §13.7; the most important
is the constant Storage_Unit ‡9–10, which gives the numbers of bits in the smallest addressable
Storage_Element, usually (but not necessarily) an 8-bit ‘byte’. The package also defines the type
Address used for representing machine addresses as opposed to language-defined access values.
Storage_Element itself is defined in System.Storage_Elements §13.7.1 together with operations
for address arithmetic. You can obtain the address of an object or subprogram by using the attribute
Address §13.3(10–12). Conversion between access values and machine addressed is supported by
package System.Address_To_Access_Conversions §13.7.2.

Most representation characteristics are given as attributes §13.3. Thus Structured_Message’Size

‡32 gives the number of bits required to store a value of this type. Attribute definition clauses
§13.3(2) can be used to specify these characteristics. The values of the enumeration type Codes

‡14 might be stored by default in a 32-bit word, but the attribute definition clause ‡15 specifies
that it should be stored in a single storage unit. Of course, if there are more values in the type than
there is space in a storage unit (256 for an 8-bit byte), the clause would be illegal §13.1(12) and
the program would not compile.

Pragma Pack §13.2 is a representation pragma used to specify that storage for Structured_Message

‡29 and Raw_Message ‡34 should be minimized. The meaning of ‘minimized’ is implementation-
defined, so this pragma is less portable than other representation items such as record layout

8.5 Deeper into discriminants 139

clauses §13.5 discussed in Section 8.6.

An enumeration representation clause §13.4 can be used to specify the representation of enumera-
tion literals in place of the default representation—the position numbers §13.4(8). The following
clause specifies that each message code is assigned a separate bit:

for Codes use
(M1 => 2#0001#, M2 => 2#0010#,
M3 => 2#0100#, M4 => 2#1000#);

8.5 Deeper into discriminants

Unconstrained variables

§3.7.21 If a discriminated type has default_expressions for its discriminants, then uncon-
strained variables of the type are permitted, and the discriminants of such a variable
can be changed by assignment to the variable. . . .

The default expression serves two purposes: it gives the initial value of the discriminant and it is
a syntactic marker that unconstrained records of this type can be created. Unconstrained records
can be used to implement bounded strings (Ada.Strings.Bounded §A.4.4).

subtype Index is Natural range 0..255;
type Bounded_String(Length: Index := 80) is

record
S: String(1..Length);

end record;

B1: Bounded_String(90) := (90, (others => ’ ’));
B2: Bounded_String(50) := (50, (others => ’ ’));
B3: Bounded_String;

B1 and B2 are declared as constrained variables; assignment of B1 to B2 or conversely will always
raise Constraint_Error. B3 is an unconstrained variable whose discriminant is 80 as specified
by the default expression. (Note that aliased §3.10(9) and allocated §4.8(4) objects cannot be
unconstrained.) Either of the other variables can be assigned to B3. Note that it is still illegal to
assign to the discriminant alone; by assigning to the entire record, we ensure the consistency of
the discriminant with the components that depend upon it.

There is no difficulty in understanding how B2 with 50 characters can be assigned to B3, which has
room for 80 characters. But how, you will certainly ask, can we assign B1, which contains a string
of 90 characters, to B3. There are two answers. The first is simply that the assignment is legal
in the Ada language and must be implemented by whatever means available, even if this requires
implicit allocation of new memory for the modified variable B3. The second answer is that you
can implement an unconstrained record by allocating the maximum amount of memory needed to
contain any value of the type (Figure 8.2). The discriminant exists solely for the purposes of type-
checking the value of Length against the size of the string. Note the importance of the default

8.5 Deeper into discriminants 140

expression for the discriminant: this ensures that unconstrained records such as B3 are created
with some discriminant. Implicit allocation and deallocation of memory is difficult to implement,
so most—if not all—Ada implementations allocate the maximum amount of memory needed for
any value.

80 A X W R ? ?· · · · · ·

Length 1 2 3 80 81 255

Figure 8.2: Unconstrained record

Sharp-eyed readers will have noted that we defined the subtype of the discriminant to be Index,
which is constrained to 256 values, rather than, say, Positive. Declaring the discriminant subtype
to be Positive would not be a good idea, because your implementation will probably try to allocate
Positive’Last bytes to each unconstrained variable of this type, raising Storage_Error!

Discriminants of private types*

§7.39 If the declaration of a partial view includes a known_discriminant_part, then the
full_type_declaration shall have a fully conforming (explicit) known_discrimi-

nant_part (see 6.3.1, “Conformance Rules”). . . .
11 If a partial view has unknown discriminants, then the full_type_declaration may

define a definite or an indefinite subtype, with or without discriminants.
12 If a partial view has neither known nor unknown discriminants, then the

full_type_declaration shall define a definite subtype.

§7.3(9) is demonstrated by our priority queue package. Since the client can constrain an object of
the private type, the full type must be fully conformant.

package Priority_Queue is
type Queue(Size: Positive) is private;

private
type Vector is array(Natural range <>) of Integer;
type Queue(Size: Positive) is
record
Data: Vector(0..Size);
Free: Natural := 0;

end record;
end Priority_Queue;

If there was no discriminant, the client could obviously create an object of the type, so the full
type must be definite, as required by §7.3(12).

8.5 Deeper into discriminants 141

package Priority_Queue is
type Queue is private;

private
type Vector is array(Natural range <>) of Integer;
Max: constant := 1000;
type Queue is
record
Data: Vector(0..Max);
Free: Natural := 0;

end record;
end Priority_Queue;

Alternatively, we could have declared the partial view to have unknown discriminants. This means
that the type is indefinite §3.3(23), so the client cannot declare uninitialized objects of this type.
In this case, there need be no restrictions on the full type, as noted in §7.3(11). You can use this
form to force the client to call an explicit initialization function.

package Priority_Queue is
type Queue(<>) is private;
function Init return Queue;

private
type Queue is array(Natural range <>) of Integer;

end Priority_Queue;

Q1: Priority_Queue.Queue; - - Error
Q2: Priority_Queue.Queue := Init; - - OK

Inheriting discriminants**

§3.718 For a type defined by a derived_type_definition, each discriminant of the parent
type is either inherited, constrained to equal some new discriminant of the derived
type, or constrained to the value of an expression. . . .

The discriminants are replaced if the derived type has a known discriminant part; otherwise, they
are inherited §3.4(10–11).

Case study: simulation with discriminants**

In this version of the simulation, each object of type Event can represent multiple real events,
where the number of events is given by the discriminant Number ‡6. Additional data is associated
with the i ’th event of the object; for simplicity, the data is just the i ’th character within a string
‡9. Examples of the three alternatives of §3.7(18) are given: Engine_Event has replaced the
discriminants ‡12, one of which is used to constrain the parent type ‡13; Steering_Event inherits
the the discriminant Number ‡18; Telemetry_Event has no discriminants, because it constrains
the parent with an expression ‡24.

8.6 Untagged derived types* 142

- - File: ROCKETD1 - -
2 - - Discrete event simulation of a rocket.
3 - - Inherited discriminants.
4 - -
5 package Event_Package is
6 type Event(Number: Positive) is abstract tagged
7 record
8 Time: Simulation_Time;
9 Name: String(1..Number);

10 end record;
11

12 type Engine_Event(Count: Positive; Engines: Positive) is
13 new Event(Count) with
14 record
15 Fuel, Oxygen: Natural;
16 end record;
17

18 type Steering_Event is new Event with
19 record
20 Command: Commands;
21 Degree: Degrees;
22 end record;
23

24 type Telemetry_Event is new Event(2) with
25 record
26 ID: Subsystems;
27 Status: States;
28 end record;
29 end Event_Package;
30

The following declaration is illegal §3.7(13), because there is no way to know how much memory
to allocate for the components of the parent type Event:

type Engine_Event(Count: Positive) is new Event with . . .

8.6 Untagged derived types*

A new type can be derived from any type, not just from a tagged type. The concepts of primitive
operations, inheritance and overriding are the same; however, untagged types cannot be extended,
class-wide types cannot be declared, and there is no dynamic polymorphism.

Derived types are used to define numeric types, as we shall see in Chapter 10. Derived types
can also be used to declare a new type with the same structure as an existing type. Consider the
definition of the type Queue in the tree implementation of a priority queue:

8.6 Untagged derived types* 143

type Queue is
record
Root: Link;

end record;

The purpose of the definition is to ensure that Queue and Link are different types, even though
Queue is implemented as a single Link. This improves type checking and makes it possible to
overload a subprogram name on both types. The same effect could have been achieved by deriving
Queue from Link:

type Queue is new Link;

It is always possible to convert within a derivation class §4.6(21,24):

procedure Get(I: out Integer; Q: in out Queue) is
begin
if Q = null then raise Underflow; end if;
Get(I, Link(Queue)); - - Convert Queue to Link

end Get;

Case study: representation conversion

Another application of derived types is to convert between two different representations for a type
§13.6. Given a record type, you can derived a new type and give a representation clause for
the derived type. Type conversion between the two records will convert the representation. In the
following example, an 8-bit instruction ‡5–11 is composed of two components: Op_Code of three
bits and Operand of five bits. It will be more efficient to work with the unpacked representation
and use the packed representation only for input–output.

- - File: REP1 - -
2 - - Derived type for change of representation.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Rep is
6 type Operators is (Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7);
7 type Byte is mod 256;
8 type Instruction is
9 record

10 Op_Code: Operators;
11 Operand: Byte range 0..31;
12 end record;
13

14 type Packed_Instruction is new Instruction;
15 for Packed_Instruction use
16 record
17 Op_Code at 0 range 0..2;
18 Operand at 0 range 3..7;
19 end record;

8.6 Untagged derived types* 144

20 for Packed_Instruction’Size use 8;
21

22 PI: Packed_Instruction := (Op3, 26);
23 I: Instruction := Instruction(PI);
24 begin
25 Put(Operators’Image(PI.Op_Code));
26 Put(Byte’Image(PI.Operand));
27 Put(Operators’Image(I.Op_Code));
28 Put(Byte’Image(I.Operand));
29 end Rep;

Type Instruction uses the default representation, which will probably allocate a full word for each
component, while the derived type Packed_Instruction ‡13 has a record representation clause
‡14–18 §13.5.1 that specifies the byte offset and bit positions of each component. The Size at-
tribute definition clause ‡19 specifies that the entire record be packed into 8 bits.

The rules for untagged derived types are often different from those for tagged types. One such
difference is discussed in the following subsection; others are left for the quizzes.

Derived types and discriminants**

Since no components can be added upon derivation of an untagged type, new discriminants must
use the same memory allocated to the old discriminants.

§3.712 For a type defined by a derived_type_definition,
if a known_discriminant_part is provided in its declaration, then:

13 The parent subtype shall be constrained;
14 If the parent type is not a tagged type, then each discriminant of the derived type

shall be used in the constraint defining the parent subtype;

If the event hierarchy were untagged, we could not declare Main_Engine_Event as shown below,
because there is nowhere to store the new discriminant Engines. The other derivations are legal.

type Event(Number: Positive) is
record
Time: Integer;
Name: String(1..Number);

end record;

type Main_Engine_Event(Count: Positive; Engines: Positive) is
new Event(Count); - - Error!

type Aux_Engine_Event(Count: Positive) is new Event(Count);
type Steering_Event is new Event;
type Telemetry_Event is new Event(2);

9 Access Types

9.1 General access types

The access types we have been using are called pool-specific access types, because every access
value points to a designated object that is allocated in a storage pool on the ‘heap’. General access
types §3.10(8) can be used to create pointers to declared objects, in addition to objects created by
allocators:

type Ptr is access all Integer;
P1: Ptr := new Integer;

N: aliased Integer;
P2: Ptr := N’Access;

The reserved word all indicates that Ptr is a general access-to-variable type. P1 contains a pointer
to an object allocated in a pool, while P2 contains a pointer to a declared object N. The pointer is
created by applying the attribute Access1 §3.10.2(24) to the object.

A general access type can be an access-to-constant type §3.10(10). Such types cannot be used to
modify the designated type.

type Ptr is access constant Integer;
N: aliased Integer := 4;
P3: Ptr := N’Access;

P3.all := 5; - - Error !

Aliasing

The attribute Access can only be used on objects which are aliased, meaning that the object might
have more than one access path: N and P2.all. In most cases, you explicitly declare an object to
be aliased §3.3.1(2) as shown above. The explicit declaration is important, both as a warning to
the programmer and as an indication to the compiler that optimization techniques such as storing
a value in a register may not be appropriate for this object.

The exact rules for determining if an object is aliased (and hence if you can apply the Access

attribute to it) are contained in §3.10(9). The dereference of an access-to-object value is aliased,
so if X is a parameter of an access type or an access parameter (Section 9.5) X.all’Access is legal.
Note that a formal parameter of any tagged type is aliased.

1Do not confuse this attribute with Address (Section 8.4), which obtains the actual address for hardware interface.

145

9.2 Access-to-subprogram types 146

9.2 Access-to-subprogram types

An access-to-subprogram type §3.10(11) specifies the profile of a designated subprogram. An
object of this type can be assigned an access value obtained by applying the attribute Access to
any subtype-conformant subprogram §3.10.2(32):

type Func_Ptr is access function(L, R: Float) return Boolean;
function Compare(Left, Right: Float) return Boolean is . . .
F: Func_Ptr := Compare’Access;

For applications of these types see the case study below and the one in Section 10.6.

9.3 Case study: callback

The following program demonstrates two applications of general access types: ragged arrays
and callbacks. A ragged array is an array whose components are of different sizes. A callback
is a programming technique used in event-driven software such as graphical user interfaces. A
subprogram is associated with an object such as a ‘button’, and when the button is activated by a
mouse click the subprogram is called.

Recall that you cannot create an array of strings, because the component of an array or record must
be definite:

String_Array: constant array(Positive range <>) of String :=
("Hello", "World"); - - Error

To create an array of strings of arbitrary length, you would have to declare an array of pointers to
strings:

type String_Ptr is access String;
String_Array: constant array(Positive range <>) of String_Ptr :=

(new String’("Hello"), new String’("World"));

But now every string would be stored twice: once as constant data and once on the heap when the
aggregate is created.2 This is unacceptable in embedded systems for two reasons: there may not
be enough memory, and copying the strings from ROM to the heap may take too much time upon
start or restart of the program.

In the following program, clicking is simulated by typing the names of the mouse button and the
screen button. The event is processed by simply echoing the click data and displaying a message.
Enumeration types are used for the screen buttons ‡7 and the mouse clicks ‡11 so that instantiations
of Ada.Text_IO.Enumeration_IO can be used to read simulated clicks from the keyboard. Type
Message_Ptr ‡15 is a access-to-constant general access type. Type Procedure_Ptr ‡16–17 is
an access-to-subprogram type whose designated profile is a procedure that takes two parameters:
one of type Clicks and the other of type String. These general access types are definite and can
be components of the record type Callbacks ‡19–23, which contains the data structure associated
with each callback.

2Implementations are encouraged to be more efficient in this case (Section 9.6).

9.3 Case study: callback 147

- - File: CALLB1 - -
2 - - General access types for ragged arrays and callbacks.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure CallB is
6

7 type Buttons is (OK, Apply, Help, Cancel);
8 package Buttons_IO is new Enumeration_IO(Buttons);
9 use Buttons_IO;

10

11 type Clicks is (Left, Middle, Right);
12 package Clicks_IO is new Enumeration_IO(Clicks);
13 use Clicks_IO;
14

15 type Message_Ptr is access constant String;
16 type Procedure_Ptr is
17 access procedure(C: in Clicks; S: in String);
18

19 type Callbacks is
20 record
21 Message: Message_Ptr;
22 Action: Procedure_Ptr;
23 end record;
24

We declare the string of each message as an aliased constant ‡25–28, which can be stored in ROM
if need be. (Even if the strings themselves were not declared constant, the Access attribute could
still be applied, yielding a constant view §3.10.2(25) of the string variables.) Next we declare a
generic procedure Proc ‡30–38 and instantiate it for each screen button ‡40–43. Accesses to these
strings and procedures are stored in the table Callback ‡45–49.

25 M_OK: aliased constant String := "You have won the lottery.";
26 M_Apply: aliased constant String := "Spread on evenly and rub in.";
27 M_Help: aliased constant String := "Please help yourself.";
28 M_Cancel: aliased constant String := "Your credit card is cancelled.";
29

30 generic
31 B: in Buttons;
32 procedure Proc(C: in Clicks; S: in String);
33 procedure Proc(C: in Clicks; S: in String) is
34 begin
35 Put("Clicked " & Clicks’Image(C) & " on ");
36 Put(B); New_Line;
37 Put_Line(S);
38 end Proc;
39

9.4 Accessibility rules 148

40 procedure Proc_OK is new Proc(OK);
41 procedure Proc_Apply is new Proc(Apply);
42 procedure Proc_Help is new Proc(Help);
43 procedure Proc_Cancel is new Proc(Cancel);
44

45 Callback: constant array(Buttons) of Callbacks := (
46 (M_OK’Access, Proc_OK’Access),
47 (M_Apply’Access, Proc_Apply’Access),
48 (M_Help’Access, Proc_Help’Access),
49 (M_Cancel’Access, Proc_Cancel’Access));

When a button is entered ‡57, it is used as an index to select an action to be called ‡59. The mouse
click C ‡56 and the string associated with the button are the actual parameters in the call.3

50 begin
51 loop
52 declare
53 B: Buttons;
54 C: Clicks;
55 begin
56 Put("Click mouse: "); Get(C);
57 Put("on button: "); Get(B);
58 Skip_Line;
59 Callback(B).Action(C, Callback(B).Message.all);
60 exception
61 when Data_Error => Put_Line("Invalid button pressed");
62 when End_Error => exit;
63 end;
64 end loop;
65 end CallB;

9.4 Accessibility rules

If you create a pointer to a non-heap object, you risk creating a ‘dangling pointer’:

- - File: LEVEL1 procedure Level is
2 type Ptr is access all Integer;
3 function F return Ptr is
4 N: aliased Integer;
5 begin
6 return N’Access; - - Error!
7 end F;
8 P: Ptr := F;

3To call a parameterless subprogram pointed to by an access value, explicit dereferencing with all must be used.

9.4 Accessibility rules 149

9 begin
10 null;
11 end Level;

The variable N is deallocated at the end of the function, but can still be accessed as P.all within
the program, seriously compromising type-checking.

§3.10.23 The accessibility rules, which prevent dangling references, are written in terms of
accessibility levels, which reflect the run-time nesting of masters. . . . a master is
the execution of a . . . block_statement, a subprogram_body An accessibility
level is deeper than another if it is more deeply nested at run-time. For example, an
object declared local to a called subprogram has a deeper accessibility level than an
object declared local to the calling subprogram. The accessibility rules for access
types require that the accessibility level of an object designated by an access value
be no deeper than that of the access type. This ensures that the object will live at
least as long as the access type, which in turn ensures that the access value cannot
later designate an object that no longer exists. The attribute Unchecked_Access

may be used to circumvent the accessibility rules.

(Unchecked_Access is defined in §13.10.)

In the above program, the main subprogram is a master and the access type Ptr is declared at its
level. The called function F is at a deeper accessibility level. Therefore, there is a compilation
error at ‡6 because the level of the object N is deeper than that of the type.

§3.10.2 goes on to define the accessibility level of each construct. The general principle is that a
level represents a change of lifetime at run-time, not a compile-time change such as embedding
within a package or renaming. Violations of the accessibility rules can generally be determined at
compile-time §3.10.2(4). In a few cases (generics and access parameters), the check is made at
run-time and a violation will cause the exception Program_Error to be raised §3.10.2(29).

A value of any access-to-type-T can be converted to any general access-to-type-T. (The con-
verse is not possible: you cannot convert to a pool-specific access type.) The rules are given in
§4.6(13–17): the designated type must be convertible to the target type, and accessibility levels
and constantness must be respected.

9.5 Access parameters* 150

9.5 Access parameters*

Formal access parameters allow a subprogram to be called with actual parameters of more than
one access type.

§6.1
15 parameter_specification ::=

defining_identifier_list : mode subtype_mark

[:= default_expression]

| defining_identifier_list : access_definition

[:= default_expression]

§6.4.16 The type of the actual parameter associated with an access parameter shall be con-
vertible (see 4.6) to its anonymous access type.

Case study: simulation with access parameter

The following version of the simulation uses access parameters to pass the queue to the Empty, Put
and Get subprograms ‡7–9 of the priority queue package. The queue itself need not be dynamically
allocated; as long as it is aliased ‡18, the attribute Access can be used to create an access value to
pass to the subprograms ‡21–26, 29–30. Of course, an access parameter is also allowed to have
an allocated object as its formal parameter. The advantage of using an access parameter in this
program is that the function Get can modify its parameter without using explicit pointers.

- - File: ROCKETA1 - -
2 - - Discrete event simulation of a rocket.
3 - - Access parameters used in priority queue.
4 - -
5 package Event_Queue is
6 type Queue is limited private;
7 function Empty(Q: access Queue) return Boolean;
8 procedure Put(E: in Event’Class; Q: access Queue);
9 function Get(Q: access Queue) return Event’Class;

10 private
11 . . .
12 end Event_Queue;
13

14 with Event_Queue;
15 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
16 use Root_Event;

9.5 Access parameters* 151

17 procedure RocketA is
18 Q: aliased Event_Queue.Queue;
19 begin
20 for I in 1..15 loop
21 Event_Queue.Put(
22 Engine.Main_Engine_Event’(Engine.Create), Q’Access);
23 Event_Queue.Put(
24 Engine.Aux_Engine_Event’(Engine.Create), Q’Access);
25 Event_Queue.Put(Telemetry.Create, Q’Access);
26 Event_Queue.Put(Steering.Create, Q’Access);
27 end loop;
28

29 while not Event_Queue.Empty(Q’Access) loop
30 Root_Event.Simulate(Event_Queue.Get(Q’Access));
31 end loop;
32 end RocketA;

Be sure to distinguish between an access parameter and a parameter that just happens to be of
an access type. Access parameters have special characteristics not shared with parameters of an
access type:

• An access parameter is of an anonymous access-to-variable type §6.1(24). Since it is of an
anonymous type you cannot create new objects of the type. However, since it is of an access-
to-variable type, you can dereference it and get an (aliased) designated object, just like the
dereference of a parameter of an access type.

• An access parameter cannot be assigned a null value §4.6(49). Once you have successfully
called the subprogram, checks for null no longer have to be done.

• The accessibility level is passed along with the access parameter §3.10.2(7) and dynamically
checked.

• You can dispatch on an access parameter §6.1(24). In the following declarations, Proc1, but not
Proc2, is a primitive subprogram for the tagged type Parent and is overridden by the declaration
for Derived. If the actual parameter is any access to a type in Parent’Class, dispatching will be
done. Proc2 for Derived simply overloads Proc2 for Parent.

type Parent tagged null record;
type Parent_Ptr is access Parent;
procedure Proc1(X: access Parent);
procedure Proc2(X: in Parent_Ptr);

type Derived is new Parent with null record;
type Derived_Ptr is access Derived;
procedure Proc1(X: access Derived);
procedure Proc2(X: in Derived_Ptr);

9.6 Storage pools* 152

9.6 Storage pools*

Allocation of dynamic memory need not be done from a single heap.

§13.111 Each access-to-object type has an associated storage pool. The storage allocated
by an allocator comes from the pool; instances of Unchecked_Deallocation return
storage to the pool. Several access types can share the same pool.

The ability to define multiple storage pools is important in embedded systems where the amount
of storage is limited. For each access type, the attribute Storage_Size §13.11(14) enables you
to define the size of the pool for objects of the designated type. Package System.Storage_Pools

§13.11(5–10) defines an abstract type Root_Storage_Pool that you can override to define your
own storage allocation scheme. The attribute Storage_Pool §13.11(13) can then be used to assign
different storage pools to different types. Note that a derived access type shares the same storage
pool as its parent access type §3.4(31).

§13.1124 A default (implementation-provided) storage pool for an access-to-constant type
should not have overhead to support deallocation of individual objects.

If the implementation follows this advice, then the example in Section 9.3 will not have run-time
overhead, provided that String_Ptr is declared as access-to-constant.

9.7 Controlled types*

§7.61 Three kinds of actions are fundamental to the manipulation of objects: initializa-
tion, finalization, and assignment. Every object is initialized, either explicitly or
by default, after being created (for example, by an object_declaration or alloca-
tor). Every object is finalized before being destroyed (for example, by leaving a
subprogram_body containing an object_declaration, or by a call to an instance
of Unchecked_Deallocation). An assignment operation is used as part of assign-

ment_statements, explicit initialization, parameter passing, and other operations.
2 Default definitions for these three fundamental operations are provided by the lan-

guage, but a controlled type gives the user additional control over parts of these
operations. In particular, the user can define, for a controlled type, an Initialize
procedure which is invoked immediately after the normal default initialization of a
controlled object, a Finalize procedure which is invoked immediately before final-
ization of any of the components of a controlled object, and an Adjust procedure
which is invoked as the last step of an assignment to a (nonlimited) controlled ob-
ject.

These operations are primitive operations of the abstract tagged type Controlled defined in package
Ada.Finalization §7.6(4–8). You can derive from this type and override one or more of these
operations. There is also a type Limited_Controlled without the Adjust operation, since limited
types cannot be assigned.

9.7 Controlled types* 153

Case study: priority queue with controlled type

The following version of the priority queue package demonstrates the use of controlled types.
Type Node is derived from Controlled ‡15–19, and Initialize, Adjust and Finalize are overridden
‡20–22, 35–50 to print messages when they are invoked.

The queue itself is also controlled. We have made the type Queue limited by deriving it from
Limited_Controlled ‡24–28. Only Finalize is overridden ‡29, 64–70 to recursively free all the
nodes in the tree ‡52–62.

- - File: PQTCT1 - -
2 - - Priority queue abstract data type implemented as a tree.
3 - - Nodes are controlled
4 - -
5 with Ada.Finalization;
6 package Priority_Queue is
7 type Queue(Size: Positive) is limited private;
8 function Empty(Q: in Queue) return Boolean;
9 procedure Put(I: in Integer; Q: in out Queue);

10 procedure Get(I: out Integer; Q: in out Queue);
11 Overflow, Underflow: exception;
12 private
13 type Node;
14 type Link is access Node;
15 type Node is new Ada.Finalization.Controlled with
16 record
17 Data: Integer;
18 Left, Right: Link;
19 end record;
20 procedure Initialize(Object: in out Node);
21 procedure Adjust(Object: in out Node);
22 procedure Finalize(Object: in out Node);
23

24 type Queue(Size: Positive) is
25 new Ada.Finalization.Limited_Controlled with
26 record
27 Root: Link;
28 end record;
29 procedure Finalize(Object: in out Queue);
30 end Priority_Queue;

To create an aggregate of type Node ‡81, an extension aggregate must be used with a subtype mark
for the ancestor part §4.3.2(3): since Controlled is abstract §7.6(5), no values exist which can be
extended. Initialize is not called for the allocated object, because it is explicitly initialized with the
aggregate §7.6(10). However, when the aggregate is assigned to the designated object created by
the allocator, the value will be adjusted §7.6(15), in this case converting the Data component to
an even number ‡43. Finalize is then called for the aggregate object which is no longer needed.

9.7 Controlled types* 154

Unchecked_Deallocation is instantiated ‡33 to create a subprogram Free_Node, which is called
when removing a node from the tree ‡61, 103. When the node is deallocated, Finalize is called.

31 with Ada.Text_IO; use Ada.Text_IO; with Ada.Unchecked_Deallocation;
32 package body Priority_Queue is
33 procedure Free_Node is new Ada.Unchecked_Deallocation(Node, Link);
34

35 procedure Initialize(Object: in out Node) is
36 begin
37 Object.Data := Object.Data + 1;
38 Put_Line("Initialize->" & Integer’Image(Object.Data));
39 end Initialize;
40

41 procedure Adjust(Object: in out Node) is
42 begin
43 Object.Data := (Object.Data / 2) * 2;
44 Put_Line("Adjust->" & Integer’Image(Object.Data));
45 end Adjust;
46

47 procedure Finalize(Object: in out Node) is
48 begin
49 Put_Line("Finalize->" & Integer’Image(Object.Data));
50 end Finalize;
51

52 procedure Free_All_Nodes(Node_Ptr: in out Link) is
53 begin
54 if Node_Ptr.Left /= null then
55 Free_All_Nodes(Node_Ptr.Left);
56 end if;
57 if Node_Ptr.Right /= null then
58 Free_All_Nodes(Node_Ptr.Right);
59 end if;
60 Put_Line("Freeing " & Integer’Image(Node_Ptr.Data));
61 Free_Node(Node_Ptr); - - Finalize node
62 end Free_All_Nodes;
63

64 procedure Finalize(Object: in out Queue) is
65 begin
66 Put_Line("Finalize Queue");
67 if Object.Root /= null then
68 Free_All_Nodes(Object.Root);
69 end if;
70 end Finalize;
71

9.7 Controlled types* 155

72 function Empty(Q: in Queue) return Boolean is
73 begin
74 return Q.Root = null;
75 end Empty;
76

77 procedure Put(I: in Integer; Node_Ptr: in out Link) is
78 begin
79 if Node_Ptr = null then
80 Node_Ptr :=
81 new Node’(Ada.Finalization.Controlled with I, null, null);
82 - - Adjust designated object, then Finalize aggregate
83 elsif I < Node_Ptr.Data then
84 Put(I, Node_Ptr.Left);
85 else
86 Put(I, Node_Ptr.Right);
87 end if;
88 end Put;
89

90 procedure Put(I: in Integer; Q: in out Queue) is
91 begin
92 Put(I, Q.Root);
93 exception
94 when Storage_Error => raise Overflow;
95 end Put;
96

97 procedure Get(I: out Integer; Node_Ptr: in out Link) is
98 Save: Link := Node_Ptr;
99 begin

100 if Node_Ptr.Left = null then
101 I := Node_Ptr.Data;
102 Node_Ptr := Node_Ptr.Right;
103 Free_Node(Save); - - Finalize node
104 else
105 Get(I, Node_Ptr.Left);
106 end if;
107 end Get;
108

109 procedure Get(I: out Integer; Q: in out Queue) is
110 begin
111 if Q.Root = null then
112 raise Underflow;
113 end if;
114 Get(I, Q.Root);
115 end Get;
116 end Priority_Queue;

9.7 Controlled types* 156

The main subprogram inserts four elements in the queue and then retrieves them:

117 with Priority_Queue;
118 with Ada.Text_IO; use Ada.Text_IO;
119 procedure PQTCT is
120 Q: Priority_Queue.Queue(10);
121 I: Integer;
122 Test_Data: array(Positive range <>) of Integer := (10, 5, 25, 15);
123 begin
124 for N in Test_Data’Range loop
125 Put_Line("Put->" & Integer’Image(Test_Data(N)));
126 Priority_Queue.Put(Test_Data(N), Q);
127 end loop;
128 while not Priority_Queue.Empty(Q) loop
129 Priority_Queue.Get(I, Q);
130 Put_Line("Get->" & Integer’Image(I));
131 end loop;
132 exception
133 when Priority_Queue.Underflow => Put_Line("Underflow from queue");
134 when Priority_Queue.Overflow => Put_Line("Overflow from queue");
135 end PQTCT;

The following output (reformatted) will be displayed:

Put-> 10 Adjust-> 10 Finalize-> 10

Put-> 5 Adjust-> 4 Finalize-> 5

Put-> 25 Adjust-> 24 Finalize-> 25

Put-> 15 Adjust-> 14 Finalize-> 15

Finalize-> 4 Get-> 4

Finalize-> 10 Get-> 10

Finalize-> 14 Get-> 14

Finalize-> 24 Get-> 24

Finalize Queue

Finalize is called when Q is deallocated at the completion of the subprogram, but since the queue
is empty, only the message is printed. If you remove the loop that gets elements from the queue
‡128–131, the following output will be displayed instead:

Finalize Queue

Freeing 4 Finalize-> 4

Freeing 14 Finalize-> 14

Freeing 24 Finalize-> 24

Freeing 10 Finalize-> 10

9.8 Access discriminants** 157

9.8 Access discriminants**

The discriminants previously discussed were of discrete type and were used to constrain indices
and to control variants. Discriminants can also be of a named access type or they can be anony-
mous access discriminants:

type Rec(D: access String) is limited null record;

Access discriminants can only be given for limited types §3.7(10). In Section 14.9, we will demon-
strate the use of access discriminants to pass configuration data to a task. In this section, we show
how access discriminants can be used to implement a self-referential data structure. In the ab-
sence of multiple inheritance in Ada, this technique can be used to create multiple views of a data
structure; see Section 4.6.3 of the Rationale.

Case study: simulation with access discriminant

Event ‡17–21 is declared with a component ‡19 of type Node ‡11–14 that has an access discrimi-
nant pointing to the enclosing record (Figure 9.1).

Extensions

Time

Left Right

E

-

Figure 9.1: Event with embedded Node

The use of the name Event in Event’Access ‡19 refers to the current instance §8.6(17) of the type,
not the type itself. Thus, when an event object is allocated, the discriminant is set to point to the
object itself, as shown in the figure.

- - File: ROCKETAD1 - -
2 - - Discrete event simulation of a rocket.
3 - - Self-referential nodes using access discriminants.
4 - -
5 package Root_Event is
6 type Event;
7 type Event_Ptr is access Event;
8

9 type Node;
10 type Link is access all Node;

9.8 Access discriminants** 158

11 type Node(E: access Event’Class) is limited
12 record
13 Left, Right: Link;
14 end record;
15

16 subtype Simulation_Time is Integer range 0..10_000;
17 type Event is abstract tagged limited
18 record
19 Inner: aliased Node(Event’Access);
20 Time: Simulation_Time;
21 end record;
22

23 function Create return Event_Ptr is abstract;
24 procedure Simulate(E: in Event) is abstract;
25 function "<"(Left, Right: Event’Class) return Boolean;
26 end Root_Event;

Node must be limited since it has an access discriminant, and Event must be limited since it
has a limited component. Appropriate modifications must be made to the simulations, because
aggregates cannot be used for limited types.

The queue package links the events by linking the contained nodes. Given a (pointer to a) node,
we can access the enclosing event using the discriminant, as shown in the right operand of "<"

‡33. Similarly, when a search of the tree returns the smallest node, the discriminant is used to
return the enclosing event ‡46.

27 package body Event_Queue is
28

29 procedure Put(E: access Event’Class; Node_Ptr: in out Link) is
30 begin
31 if Node_Ptr = null then
32 Node_Ptr := E.Inner’Access;
33 elsif E.all < Node_Ptr.E.all then
34 Put(E, Node_Ptr.Left);
35 else
36 Put(E, Node_Ptr.Right);
37 end if;
38 end Put;
39

40 . . .
41

9.8 Access discriminants** 159

42 function Get(Q: access Queue) return Event’Class is
43 Found: Link;
44 begin
45 Get(Q.Root, Found);
46 return Found.E.all;
47 end Get;
48

49 end Event_Queue;

10 Numeric Types

In most programming languages, numeric types are not portable: the type Integer may denote a
16-bit number in one implementation and a 64-bit number in another. In Ada, you can declare
the intended precision of a numeric type; when the program is compiled, the implementation will
choose a representation that is appropriate for the machine. For example, a type declared as an
integer type with a range of 1 to 100,000 will be represented as a double word on a 16-bit machine
and as a single word on a 32-bit machine.

10.1 Principles of numeric types

Universal types

The numeric types in Ada form derivation hierarchies, similar to classes of tagged types (Fig-
ure 10.1). The classes are called universal types §3.4.1(6–7) and the specific types at the roots of

universal_integer

Integer
Long_
Integer

My_
Integer

root_
integer

¨¨¨¨

HHHH

universal_real universal_fixed

Float
My_
Float

My_Ord_
Fixed

My_Dec_
Fixed

root_
real

¸¸¸¸¸¸¸¸

@

@

XXXXXXXX

Figure 10.1: Numeric types

the derivation trees are called root types §3.4.1(8). These types are conceptual; you cannot explic-
itly declare an object or parameter to be of type root_integer or universal_integer. Some specific

160

10.1 Principles of numeric types 161

types like Integer and Float are predefined, and you can declare new integer, float, ordinary fixed
and decimal fixed types as indicated by the dashed boxes in the figure.

§3.4.16 . . . a value of a universal type (including an integer or real numeric_literal) is “uni-
versal” in that it is acceptable where some particular type in the class is expected
(see 8.6).

§4.28 An integer literal is of type universal_integer. A real literal is of type univer-
sal_real.

N+27 is legal for N of any integer type, because the literal 27 of type universal_integer is con-
verted in context to the type of N. Note that some attributes have parameters of universal type; for
example, Pos returns a value of type universal_integer and Val takes a parameter of type univer-
sal_integer §3.5.5. Character’Pos(C) for a variable C is an example of an expression that is of
universal type but not static.

Type conversion

Ada does not usually allow implicit conversion between numeric types. Not only would this
defeat type checking, but the rules for implicit type conversion can be very difficult, especially
in the presence of overloading. For example, given that N is of type Integer, is Put(N) a call
to the procedure Put with a parameter of type Integer, or is it an implicit conversion of N to
Long_Integer, followed by a call to the procedure Put with a parameter of type Long_Integer?

Explicit conversion between two numeric types is always allowed §4.6(6), and is not restricted to
conversion within a universal class as the analogy with derivation classes would imply.

Named numbers

§3.3.21 A number_declaration declares a named number.
2 number_declaration ::=

defining_identifier_list : constant := static_expression;

5 The named number denotes a value of type universal_integer if the type of the
static_expression is an integer type. The named number denotes a value of type
universal_real if the type of the static_expression is a real type.

The following declaration is taken from Ada.Numerics §A.5(3) !

Pi : constant :=
3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;

The value of a named number is given by a static expression:

Two_Pi: constant := 2.0*Ada.Numerics.Pi;
Bits_per_Word: constant := 16;
Values_per_Word: constant := 2**Bits_per_Word;

10.2 Integer types 162

Be careful not to confuse named numbers with constant objects:
Two_Pi: constant := 2.0*Ada.Numerics.Pi;
Float_Two_Pi: constant Float := 2.0*Ada.Numerics.Pi;

Two_Pi is of type universal_real and will be converted to a specific type in each context in which
it appears. Float_Two_Pi is a constant object of type Float; the initial value 2.0*Ada.Numerics.Pi

of type root_real will be converted to type Float—losing precision—when the object is elaborated.

10.2 Integer types

§3.5.41 An integer_type_definition defines an integer type; it defines either a signed inte-
ger type, or a modular integer type. . . .

2 integer_type_definition ::=

signed_integer_type_definition |

modular_type_definition

3 signed_integer_type_definition ::=

range static_simple_expression ..

static_simple_expression

9 A signed_integer_type_definition defines an integer type whose base range in-
cludes at least the values of the simple_expressions and is symmetric about zero,
excepting possibly an extra negative value. . . .

11 There is a predefined signed integer subtype named Integer, declared in the visible
part of package Standard. It is constrained to the base range of its type.

12 Integer has two predefined subtypes, declared in the visible part of package Stan-
dard:

13 subtype Natural is Integer range 0 .. Integer’Last;

subtype Positive is Integer range 1 .. Integer’Last;

(Base range is discussed in Section 10.8 and can be ignored for now.)

Given the declaration:
type Altitude is range 0 .. 100_000;

the compiler can allocate a single word on a 32-bit machine and a double word on a 16-bit machine.
There is no need to modify the source code when porting.

The range of predefined type Integer and its subtypes Natural and Positive is implementation-
defined, and programs using them are not strictly portable. There is no reason not to use Integer

for array indices because their ranges almost invariably fall within the minimum range (16-bits)
of Integer §3.4.5(21), but for integer computation you should define your own types. An imple-
mentation is permitted §3.5.4(25) to provide additional predefined integer types with names like
Long_Integer, Short_Integer and Long_Long_Integer, though they need not be implemented
with different precisions. Needless to say, such types are not portable.

10.3 Types versus subtypes 163

10.3 Types versus subtypes

Recall that type is a compile-time concept, while subtype is a run-time concept. Given the follow-
ing declarations:

type Altitude is range 0 .. 100_000;
Num: Integer := 1000;
Alt: Altitude := 50_000;

Alt of type Altitude cannot be assigned to Num of type Integer because the types are different.
The type conversions Num:=Integer(Alt) and Alt:=Altitude(Num) are legal.

Subtypes, however, can always be mixed; at worst, Constraint_Error will be raised. Note the dif-
ference between the two assignments to High below: in the first, the exception Constraint_Error

will be raised when trying to convert 2000 of type Integer (the result of the addition) to the sub-
type High_Altitude, while in the second, the type conversion to Altitude will succeed but the
assignment to High will raise the exception.

subtype Low_Altitude is Altitude range 0 .. 35_000;
subtypeHigh_Altitude is Altitude
range Low_Altitude’Last+1 .. Altitude’Last;

Num: Integer := 1000;
Low: Low_Altitude := 1000;
High: High_Altitude := 50_000;

High := High_Altitude(Num + Integer(Low));
High := Altitude(Num + Integer(Low));

Newcomers to Ada have a tendency to overuse integer types, resulting in arithmetical expressions
that are difficult to understand because they are filled with type conversions. If you are planning
to do extensive computation with integer values, subtypes are probably more appropriate, whereas
types are more often used for indices, keys or handles that are unlikely to be involved in arithmeti-
cal expressions.

10.4 Modular types

§3.5.4
4 modular_type_definition ::= mod static_expression

10 A modular_type_definition defines a modular type whose base range is from zero
to one less than the given modulus. . . .

19 For a modular type, if the result of the execution of a predefined operator (see 4.5)
is outside the base range of the type, the result is reduced modulo the modulus of
the type to a value that is within the base range of the type.

If the modulus is a power of two, the modular type is usually called an unsigned integer type.

10.4 Modular types 164

Case study: checksum

The following program computes the checksum of an array of bytes. (Interfaces.Unsigned_8

§B.2 could be used instead of Byte.) The addition ‡16 is automatically reduced modulo 256.

- - File: CHECK1 - -
2 - - Modular types for checksum.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Check is
6

7 type Byte is mod 2**8; - - 2**8 = 256
8 for Byte’Size use 8;
9 type Byte_Array is array(Natural range <>) of Byte;

10 pragma Pack(Byte_Array);
11

12 function Checksum(A: Byte_Array) return Byte is
13 C: Byte := 0;
14 begin
15 for I in A’Range loop
16 C := C + A(I);
17 end loop;
18 return C;
19 end Checksum;
20

21 Message: Byte_Array := (134, 56, 121, 38, 206, 117);
22 begin
23 Put_Line(Byte’Image(Checksum(Message))); - - Prints 160
24 end Check;

Note that Constraint_Error will never be raised when computing with a modular type, though
it may be raised if you try to convert another type to the modular type. For example, if B is of
type Byte, then B:=260 will raise Constraint_Error during the conversion of the literal of type
universal_integer.

The logical operators and, or, xor and not can also be used on modular types §4.5.1(2).

Finally, note that the modulus need not be a power of two. A prime modulus can be used as the
index of an array implementing a hash table.

10.5 Real types 165

10.5 Real types

§3.5.61 Real types provide approximations to the real numbers, with relative bounds on
errors for floating point types, and with absolute bounds for fixed point types.

2 real_type_definition ::=

floating_point_definition | fixed_point_definition

3 A type defined by a real_type_definition is implicitly derived from root_real, an
anonymous predefined (specific) real type. Hence, all real types, whether floating
point or fixed point, are in the derivation class rooted at root_real.

4 Real literals are all of the type universal_real, the universal type (see 3.4.1) for the
class rooted at root_real, allowing their use with the operations of any real type.
Certain multiplying operators have a result type of universal_fixed (see 4.5.5), the
universal type for the class of fixed point types, allowing the result of the multipli-
cation or division to be used where any specific fixed point type is expected.

§3.5.71 For floating point types, the error bound is specified as a relative precision by giving
the required minimum number of significant decimal digits.

§3.5.91 A fixed point type is either an ordinary fixed point type, or a decimal fixed point
type. The error bound of a fixed point type is specified as an absolute value, called
the delta of the fixed point type.

Let us clarify these concepts by giving some examples. Suppose that the precision of a floating
point type is six digits. A one-digit error in the least significant digit of 123456.0E9 is an absolute
error of one billion, while the same error in 123456.0E1 is an absolute error of only ten. Though
the absolute error varies widely, in both cases one digit represents a constant relative error of
%0.0001.

Consider now a six-digit fixed point type with a delta of 0.01 and a range of 0.00 to 9999.99. A
one-digit error causes an absolute error of 0.01 which is independent of the value of the number.
The drawback of fixed point types is that the range of values is limited.

Floating point types are usually used in scientific computation, where we may want to compute
the thrust of a rocket to an accuracy of, say, 0.01%. Fixed point types are used in financial calcu-
lations, where the absolute error must be limited to 0.01 or 0.0001 of the currency unit. The range
limitation is not a problem, since even the largest government debt can be expressed in 12 or 18
digits!

Fixed point types are further divided into ordinary fixed point types whose delta is usually a power
of two, and decimal fixed point types whose delta is a power of ten. The former are used for
hardware interfacing and the latter for financial calculations.

10.6 Floating point types 166

10.6 Floating point types

§3.5.7
2 floating_point_definition ::=

digits static_expression [real_range_specification]

3 real_range_specification ::=

range static_simple_expression .. static_simple_expression

12 There is a predefined, unconstrained, floating point subtype named Float, declared
in the visible part of package Standard.

A floating point type declaration declares a new type that is represented in the machine with
at least the precision requested. The type is explicitly convertible to all other numeric types,
including integer types. There is one predefined type Float, though the implementation may define
others such as Long_Float. For serious computational tasks, you should avoid the non-portable
predefined types and define your own.

Case study: Euler’s method

The following program computes a solution to an elementary differential equation using Euler’s
method. It solves an equation:

dy

dx
= f (y)

by dividing the range into steps and then starting from an initial value, computing each successive
point by extending the tangent of the previous one. The example used is dy/dx = y on the interval
0.0 to 1.0; given an initial condition of 1.0, the answer is y = ex.

The procedure Euler is generic in the floating point type, an array type for returning the result and
an access type for passing the function. The computation in the body of the generic procedure
‡13–20 uses attributes to get the indices of Result, whose type is the unconstrained generic formal
array type. F is implicitly dereferenced it is called with a parameter ‡18.

- - File: DIFF1 - -
2 - - Solving a differential equation.
3 - - Demonstrates generic floating point type.
4 - -
5 generic
6 type Float_Type is digits <>;
7 type Vector is array(Integer range <>) of Float_Type;
8 type Function_Ptr is
9 access function (X: Float_Type) return Float_Type;

10 procedure Euler(
11 F: in Function_Ptr; Init, H: in Float_Type; Result: out Vector);
12

10.6 Floating point types 167

13 procedure Euler(
14 F: in Function_Ptr; Init, H: in Float_Type; Result: out Vector) is
15 begin
16 Result(Result’First) := Init;
17 for N in Result’First+1..Result’Last loop
18 Result(N) := Result(N-1) + H * F(Result(N-1));
19 end loop;
20 end Euler;

The procedure is tested with a 6-digit floating point type Real ‡25. After declaring appropriate
types for the array and function pointer ‡26-27, the generic procedure is instantiated ‡29, and can
then be called ‡42 for any function such as Ident ‡31–34 that matches the profile of the access
type.

21 with Ada.Text_IO;
22 with Euler;
23 procedure Diff is
24

25 type Real is digits 6;
26 type Vector is array(Integer range <>) of Real;
27 type Ptr is access function (X: Real) return Real;
28

29 procedure Solve is new Euler(Real, Vector, Ptr);
30

31 function Ident(X: Real) return Real is
32 begin
33 return X;
34 end Ident;
35

36 package Real_IO is new Ada.Text_IO.Float_IO(Real);
37 use Real_IO;
38

39 Answer: Vector(1..21);
40

41 begin
42 Solve(Ident’Access, 1.0, 0.05, Answer);
43 for N in Answer’Range loop
44 Put(0.05 * Real(N-1), Exp => 0);
45 Put(Answer(N), Exp => 0);
46 Ada.Text_IO.New_Line;
47 end loop;
48 end Diff;

Generic units with formal parameters of floating point type can be used to create numerical li-
braries. Not only can you change the precision of the type without otherwise modifying the pro-
gram, but you can also instantiate a library for multiple precisions and use the instantiations in the

10.7 Fixed point types 168

same program.

Elementary functions such as the trigonometric functions are predefined in the generic package
Ada.Numerics.Generic_Elementary_Functions §A.5.1, which can be instantiated with any float-
ing point type. Ada.Numerics.Elementary_Functions is a predefined instantiation for Float. A
package generating random numbers of type Float is defined in §A.5.2.1

Annex §G ‘Numerics’ has two sections. The first defines packages for complex numbers, including
elementary functions and IO. The second ‘Numeric Performance Requirements’ gives a detailed
model of computation with real types. The annex is briefly discussed in Section 10.8.

10.7 Fixed point types

Decimal fixed point types

§3.5.9
2 fixed_point_definition ::=

ordinary_fixed_point_definition |

decimal_fixed_point_definition

4 decimal_fixed_point_definition ::=

delta static_expression digits static_expression

[real_range_specification]

8 The set of values of a fixed point type comprise the integral multiples of a number
called the small of the type. . . .

9 For a decimal fixed point type, the small equals the delta; the delta shall be a power
of 10. . . .

The values of the following type are in the range ±9,999,999.99:

type Money is delta 0.01 digits 9;

There is a limit on the precision that can be specified: eventually, the implementation will run out
of digits to store values of the requested range. In general, the smaller the delta, the smaller the
range that can be specified.

Decimal fixed point types can be implemented using binary coded decimal (BCD), which is sup-
ported in hardware on some computers. Four bits (a ‘nibble’) are sufficient to encode the ten
values of a single digit, so two digits can be stored in a single byte. Alternatively, the multiple of
the delta can be stored as a normal integer and the value scaled with the delta as needed.

Multiplication and division are problematical for fixed point types. Suppose that M1 and M2 are
two variables of type Money that both contain the value 0.25. What is the type of M1*M2 which
equals 0.0625? This answer is that the type must be given by the context; if the expression M1*M2

is assigned to another variable of type Money, the value will be truncated to 0.06. The rules are
given in §4.5.5 and will be demonstrated in the next case study.

1There is also a generic package for random numbers that can be instantiated with a discrete type; we used this
package in the rocket simulation.

10.7 Fixed point types 169

Annex F Information Systems

Historically, there has been a large gap between the world of scientific and systems programming,
and business programming, where COBOL has been the language of choice. Of course, most of
the requirements for a language for business programming are not different from those of other
fields: reliability, efficiency, system interfaces and support for software engineering. The primary
extension needed is in the area of decimal types.

The decimal fixed point types in Ada provide this basic functionality, though an implementation
need not support such types §3.5.9(21). Implementations conforming to Annex §F ‘Information
Systems’ are required to implement decimal fixed point types, as well as three packages: Ada.-

Decimal, which contains named numbers specifying properties of the decimal types and a generic
procedure for arbitrary decimal fixed point division, and Ada.Text_IO.Editing and Ada.Wide_-

Text_IO.Editing for formatted input–output.

Case study: currency conversion

The following program reads a currency and an amount, and writes the equivalent value in the
other eight currencies. A table copied from my daily newspaper gives the conversion rates—to
four digits after the decimal point—between the currencies.

Currencies ‡13 is an enumeration type used internally; Signs ‡16–25 is an array of bounded strings
for display of the currency symbols. Package Ada.Characters.Latin_1 §A.3.3 contains characters
for the British Pound and the Japanese Yen. My computer cannot display them, but the program
is still portable.

- - File: CONVERT1 - -
2 - - Currency conversion using decimal fixed types.
3 - -
4 with Ada.Strings.Bounded;
5 package BS is new Ada.Strings.Bounded.Generic_Bounded_Length(10);
6

7 with BS;
8 with Ada.Characters.Latin_1;
9 with Ada.Text_IO.Editing;

10 use Ada.Text_IO;
11 procedure Convert is
12

13 type Currencies is (US, UK, DM, Y, SF, FF, fl, LIT, BF);
14 package Currency_IO is new Enumeration_IO(Currencies);
15

16 Signs: constant array(Currencies) of BS.Bounded_String := (
17 BS.To_Bounded_String("$"),
18 BS.To_Bounded_String((1=>Ada.Characters.Latin_1.Pound_Sign)),
19 BS.To_Bounded_String("DM"),
20 BS.To_Bounded_String((1=>Ada.Characters.Latin_1.Yen_Sign)),
21 BS.To_Bounded_String("SF"),

10.7 Fixed point types 170

22 BS.To_Bounded_String("FF"),
23 BS.To_Bounded_String("fl"),
24 BS.To_Bounded_String("LIT"),
25 BS.To_Bounded_String("BF"));

Money ‡26 is a decimal fixed point type with two digits after the decimal point. To read a currency
and an amount, Ada.Text_IO.Enumeration_IO §A.10.10 is instantiated ‡14 with type Curren-

cies, and Ada.Text_IO.Decimal_IO §A.10.9 is instantiated ‡27 with type Money.

26 type Money is delta 0.01 digits 9;
27 package Money_IO is new Decimal_IO(Money);
28

Conversion ‡31–40 is a table of the exchange rates; the component type Rates ‡29 has four digits.
Since the denominations of currencies vary, a table Factors ‡42–44 provides additional scaling;
for example, one US dollar is worth 1.8399 thousand Italian Lira, or conversely, one thousand
Lira is worth $0.5435.

29 type Rates is delta 0.0001 digits 6;
30

31 Conversion: constant array(Currencies, Currencies) of Rates :=
32 ((1.0, 0.6265, 1.8807, 1.1877, 1.5315, 6.3741, 2.1191, 1.8399, 3.8840),
33 (1.5961, 1.0, 3.0018, 1.8957, 2.4443, 10.1304, 3.3823, 2.9367, 6.1991),
34 (0.5317, 0.3331, 1.0, 0.6315, 0.8143, 3.3748, 1.1268, 0.9783, 2.0652),
35 (0.8419, 0.5275, 1.5835, 1.0, 1.2894, 5.3439, 1.7842, 1.5491, 3.2701),
36 (0.6530, 0.4091, 1.2280, 0.7755, 1.0, 4.1444, 1.3837, 1.2014, 2.5361),
37 (0.1576, 0.0987, 0.2963, 0.1871, 0.2413, 1.0, 0.3339, 0.2899, 0.6119),
38 (0.4719, 0.2957, 0.8875, 0.5605, 0.7227, 2.9951, 1.0, 0.8682, 1.8328),
39 (0.5435, 0.3405, 1.0222, 0.6455, 0.8324, 3.4496, 1.1517, 1.0, 2.1109),
40 (0.2575, 0.1613, 0.4824, 0.3058, 0.3943, 1.6342, 0.5456, 0.4737, 1.0));
41

42 Factors: constant array(Currencies) of Integer :=
43 (US => 1, UK => 1, DM => 1, Y => 100, SF => 1, FF => 1,
44 FL => 1, LIT => 1000, BF => 10);

Function Get_Value ‡45–51 performs the conversion. The expression we want to compute is
(M/F1) ·R · F2, where M is the amount of money, R is the conversion rate, and F1 and F2 are
the factors for the original currency and the new one.

45 function Get_Value(M: Money; From, To: Currencies) return Money is
46 type Intermediate is delta 0.000001 digits 13;
47 begin
48 return Money(
49 (Intermediate(M) / Factors(From)) *
50 (Intermediate(Conversion(From, To)) * Factors(To)));
51 end Get_Value;

10.7 Fixed point types 171

The operators we have at our disposal are:

§4.5.513 The following multiplication and division operators, with an operand of the prede-
fined type Integer, are predefined for every specific fixed point type T:

14 function "*"(Left : T ; Right : Integer) return T

function "*"(Left : Integer; Right : T) return T

function "/"(Left : T ; Right : Integer) return T

§4.5.518 Multiplication and division between any two fixed point types are provided by the
following two predefined operators:

19 function "*"(Left, Right : universal_fixed)

return universal_fixed

function "/"(Left, Right : universal_fixed)

return universal_fixed

The division M/F1 has a fixed point dividend and an integer divisor and returns a fixed point
quotient of the same type as the dividend. If we divide 999.99 Italian Lira by 1000, the result will
be 0.99 after truncation to two fractional digits. To maintain precision, we have declared a new
type Intermediate ‡46 with six fractional digits. The amount of money is converted to this type
before division by the factor.

The expression can be computed in one of two orders: ((M/F1) · R) · F2 or (M/F1) · (R ·
F2). We have chosen the second order: the result of R · F2 is also converted to a value of type
Intermediate and the final multiplication between the two fixed point values returns a result of
type universal_fixed, which is converted to the type Money.

Writing the converted amounts is done using Ada.Text_IO.Editing.Decimal_Output §F.3.3 in-
stantiated with type Money ‡52. This package supplies a private type Picture that is used for
format control. A value of type Picture is created by calling To_Picture with a string of format
control characters ‡53.

52 package Edit is new Editing.Decimal_Output(Money);
53 Money_Picture: Editing.Picture := Editing.To_Picture("###*_***_**9.99");

The syntax and semantics of formatting are specified in §F.3.1 and §F.3.2; you can also consult a
COBOL textbook, since picture formatting is almost identical in the two languages. The picture
we use is "###*_***_**9.99", where the meaning of each character is as follows:

• ’9’ - Decimal digit.

• ’.’ - Radix mark (‘decimal point’).

• ’_’ - Separator character.

• ’*’ - Fill character.

• ’#’ - Currency string.

10.7 Fixed point types 172

The amount 4156.34 French Francs will be written as FF***4,156.34.

Fill characters are used instead of blanks to prevent forgery. The picture characters are fixed in the
language, but the displayed characters are parameters of the procedure Put and can be changed for
localization. Alternatively, new default values can be specified when Decimal_IO is instantiated.2

The main subprogram performs the interactive dialog and calls Get_Value ‡74 for each target
currency. The dialog is in a loop containing a block ‡56–86 with exception handlers ‡81–85.
Entering an invalid code for a currency will raise Data_Error §A.13(6). If the value is too large,
either Constraint_Error will be raised during the computation or Picture_Error §F.3.3(9) will be
raised during formatting. After the exception is handled, the block is left and the next iteration of
loop gives the user a chance to fix the error. If End_Error §A.13(12) occurs, the loop is exited.

54 begin
55 loop
56 declare
57 Source: Currencies;
58 Amount: Money;
59 begin
60 Put("Currency (");
61 for C in Currencies loop
62 Currency_IO.Put(C);
63 if C /= Currencies’Last then Put(", "); end if;
64 end loop;
65 Put(") and amount: ");
66 Currency_IO.Get(Source);
67 Money_IO.Get(Amount);
68 Skip_Line;
69 Edit.Put(Amount, Money_Picture, BS.To_String(Signs(Source)));
70 Put_Line(" is worth ");
71 for Target in Currencies loop
72 if Source /= Target then
73 Edit.Put(
74 Get_Value(Amount, Source, Target),
75 Money_Picture, BS.To_String(Signs(Target)));
76 New_Line;
77 end if;
78 end loop;
79 New_Line;
80 exception
81 when Data_Error =>
82 Skip_Line; Put_Line("Illegal input");
83 when Editing.Picture_Error | Constraint_Error =>
84 Put_Line("Amount too large");

2These localization features are not found in COBOL. Furthermore, COBOL does not have the ’#’ currency string,
which allows a fixed-width currency field unlike ’$’.

10.7 Fixed point types 173

85 when End_Error => exit;
86 end;
87 end loop;
88 end Convert;

Ordinary fixed point types

§3.5.98 The set of values of a fixed point type comprise the integral multiples of
a number called the small of the type. For a type defined by an ordi-

nary_fixed_point_definition (an ordinary fixed point type), the small may be
specified by an attribute_definition_clause (see 13.3); if so specified, it shall be
no greater than the delta of the type. If not specified, the small of an ordinary fixed
point type is an implementation-defined power of two less than or equal to the delta.

Ordinary fixed point types are similar to decimal fixed point types, except that their small can
be any number. The small is usually a power of two so that values of the type can be exactly
represented in binary. Ordinary fixed point types are extremely useful for programming embedded
systems for two reasons: (a) small computers may not have floating point hardware, and (b)
external peripherals transfer binary numbers that represent physical quantities.

The following program shows how a 16-bit word received from a sensor ‡7 can be easily converted
to an ordinary fixed point value. The assumed representation is that the least significant bit repre-
sents 1/16 of a degree of temperature ‡10–12. First a fixed point type Temperature is declared,
followed by representation attributes that specify that 16 bits should be used for objects of the type
and that the least significant (binary) digit represent 1/16. After the conversion ‡14–15,17, fixed
point operators could be used for further computation, though we just print the value.

- - File: TEMP1 - -
2 - - Hardware interface using ordinary fixed point types.
3 - -
4 with Interfaces; with Unchecked_Conversion;
5 with Ada.Text_IO; use Ada.Text_IO;
6 procedure Temp is
7 Sensor: Interfaces.Integer_16 := 2#0_001_0001_0001_1100#;
8 - - 256 + 16 + 1 + 1/2 + 1/4 = 273.75
9

10 type Temperatures is delta 2.0**(-4) range -2048.0..2048.0;
11 for Temperatures’Size use 16;
12 for Temperatures’Small use 2.0**(-4);
13

14 function To_Temp is new Unchecked_Conversion(
15 Source => Interfaces.Integer_16, Target => Temperatures);
16 begin
17 Put_Line(Temperatures’Image(To_Temp(Sensor)));
18 end Temp;

10.8 Advanced concepts* 174

10.8 Advanced concepts*

Base range

Clearly, a computer will not support different hardware formats for each floating point type such as
digits 6, digits 7, digits 8. The implementation will represent values of each type in a hardware
format that can contain at least the values of the type, but possibly more. Similarly, an enumeration
or integer type will be stored in a hardware format whose range of values may be significantly more
than the minimum required.

§3.56 The base range of a scalar type is the range of finite values of the type that can be
represented in every unconstrained object of the type; it is also the range supported
at a minimum for intermediate values during the evaluation of expressions involving
predefined operators of the type.

15 S’Base—S’Base denotes an unconstrained subtype of the type of S. This uncon-
strained subtype is called the base subtype of the type.

Of course the base range is implementation-dependent, so S’Base should not normally be used in
writing Ada programs. Base ranges are important in defining the language and in optimizing ma-
chine code. Predefined arithmetical operators are defined §A.1(15–18) for the unconstrained type
Integer’Base, not for the constrained type Integer. Range checks never apply to an unconstrained
type. Consider:

N1, N2: Integer := 15_000;
N3: Integer := (N1 + N2) / 2;

Suppose the implementation defines type Integer to have a 16-bit range, but Integer’Base is defined
to have a 32-bit range because all computation is performed in 32-bit registers. If "+" were
defined on parameters of type Integer, the addition would be required to raise Constraint_Error.
However, since the addition is performed on the unconstrained type Integer’Base, no range check
need be done until the assignment to N3 and Constraint_Error will not be raised. You can also
declare variables of the unconstrained type to explicitly hold intermediate values of a computation.

Note that predefined Integer is constrained §3.5.4(11) to its base range while Float is uncon-
strained §3.5.7(12).

10.8 Advanced concepts* 175

Complex numbers

Annex §G ‘Numerics’ defines support for complex arithmetic including elementary functions and
IO.

§G.1.1
2 generic

type Real is digits <>;

package Ada.Numerics.Generic_Complex_Types is
pragma Pure(Generic_Complex_Types);

3 type Complex is
record
Re, Im : Real’Base;

end record;
4 type Imaginary is private;
5 i : constant Imaginary;

j : constant Imaginary;

22 private
type Imaginary is new Real’Base;

23 i : constant Imaginary := 1.0;

j : constant Imaginary := 1.0;

24 end Ada.Numerics.Generic_Complex_Types;

The reason Imaginary is declared as a separate type is to allow expressions of the form R1 + I1*i.
Since the type Complex is visible, you can create values of the type using ordinary aggregates
such as (5.0, 6.3). The arithmetical operators are overloaded for all combinations of parameters
of types Real’Base, Complex and Imaginary.

Ada.Numerics.Complex_Types is a predefined instantiation of the generic package for predefined
Float.

§G.1.2 declares a generic package for complex elementary functions and §G.1.3 declares a generic
package for IO. These packages have a single generic formal parameter, which is the package
Ada.Numerics.Generic_Complex_Types; the actual parameter can be any instantiation of the
package obtained by supplying a floating point type for the formal parameter Real.

Case study: complex vectors

Here is the outline of a package for complex vectors that is generic in the complex type package
‡8–9 and the complex elementary function package ‡10–11. For simplicity, the package contains
only one subprogram.

- - File: COMPLEX1 - -
2 - - Complex vectors using generic package parameters.
3 - -
4 with Ada.Numerics.Generic_Complex_Types;
5 with Ada.Numerics.Generic_Complex_Elementary_Functions;

10.8 Advanced concepts* 176

6 generic
7 use Ada.Numerics;
8 with package Complex_Types is
9 new Generic_Complex_Types (<>);

10 with package Complex_Functions is
11 new Generic_Complex_Elementary_Functions(Complex_Types);
12 package Generic_Complex_Vectors is
13 type Vector(<>) is private;
14 function Distance(Left, Right: Vector) return Complex_Types.Real’Base;
15 private
16 type Vector is array(Integer range <>) of Complex_Types.Complex;
17 end Generic_Complex_Vectors;
18

19 package body Generic_Complex_Vectors is
20 use Complex_Types;
21 function Distance(Left, Right: Vector) return Real is
22 Sum: Complex := Compose_From_Cartesian(0.0);
23 begin
24 for N in Left’Range loop
25 Sum := Sum + Left(N) * Right(N);
26 end loop;
27 return abs(Complex_Functions.Sqrt(Sum));
28 end Distance;
29 end Generic_Complex_Vectors;

The actual parameters of the instantiation ‡36–37 Complex_Vectors are the predefined packages
for Float, which are considered to be equivalent to instantiations of the generic packages.

30 with Ada.Numerics.Complex_Types;
31 with Ada.Numerics.Complex_Elementary_Functions;
32 with Generic_Complex_Vectors;
33 package Complex_Vectors is new
34 Generic_Complex_Vectors(
35 Ada.Numerics.Complex_Types,
36 Ada.Numerics.Complex_Elementary_Functions);

Alternatively, if we have defined our own floating point type, we can instantiate in sequence the
generic packages for complex types, complex elementary functions and complex vectors.

37 package Signals is
38 type Real is digits 12;
39 end Signals;
40

41 with Signals;
42 with Ada.Numerics.Generic_Complex_Types;
43 package Signals_Complex is
44 new Ada.Numerics.Generic_Complex_Types(Signals.Real);

10.8 Advanced concepts* 177

45

46 with Signals;
47 with Signals_Complex;
48 with Ada.Numerics.Generic_Complex_Elementary_Functions;
49 package Signals_Complex_EF is new
50 Ada.Numerics.Generic_Complex_Elementary_Functions(Signals_Complex);
51

52 with Signals_Complex;
53 with Signals_Complex_EF;
54 with Generic_Complex_Vectors;
55 package Signals_Complex_Vectors is new
56 Generic_Complex_Vectors(Signals_Complex, Signals_Complex_EF);

In Section 7.10 we noted that a generic package can have a generic child. The following pack-
age extends the complex vector abstraction by creating an abstraction of a pair of vectors that is
implemented ‡63–66 using the full view of the type Vector that is visible to a child package. Sig-
nals_Complex_Vectors.Pair is created by instantiating ‡71–72 the generic child Generic_Pair of
the instance Signals_Complex_Vectors.

57 generic
58 package Generic_Complex_Vectors.Generic_Pair is
59 type Pair is private;
60 private
61 subtype Max is Integer range 0..100;
62 type Pair(Size: Max := 10) is
63 record
64 First, Second: Vector(1..Size);
65 end record;
66 end Generic_Complex_Vectors.Generic_Pair;
67

68 with Signals_Complex_Vectors;
69 with Generic_Complex_Vectors.Generic_Pair;
70 package Signals_Complex_Vectors.Pair is
71 new Signals_Complex_Vectors.Generic_Pair;

Preference for root types**

What is the type of N in the following loop statement?

for N in 1..100 loop

Since the literals are of type universal_integer, the type should be ambiguous, because there is no
context that can be used to convert the range to a specific type. The following rules are used to
resolve the ambiguity:

§8.629 There is a preference for the primitive operators (and ranges) of the root numeric
types root_integer and root_real.

10.8 Advanced concepts* 178

§3.618 If the type of the range resolves to root_integer, then the dis-

crete_subtype_definition defines a subtype of the predefined type Integer
with bounds given by a conversion to Integer of the bounds of the range;

1..100 is resolved by preference to root_integer and defines a subtype of type Integer.

For another example, consider the following program, which prints "OK" because of the prefer-
ence for root numeric types, even though "<" could refer to the ‘strange’ operator that we have
defined for predefined Integer!

- - File: PREF1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Pref is
3 function "<"(Left, Right: Integer) return Boolean is
4 begin
5 return Left >= Right;
6 end "<";
7 begin
8 if 5 < 4 then Put("Strange"); else Put("OK"); end if;
9 end Pref;

Model numbers**

§3.5.78 The set of values for a floating point type is the (infinite) set of rational numbers.
The machine numbers of a floating point type are the values of the type that can be
represented exactly in every unconstrained variable of the type. . . .

The accuracy of floating point computation is defined in Annex §G, using an idealization of ma-
chine numbers called model numbers. Some values of floating point type, such as 0.510 = 0.12, are
equal to model numbers; others, such as 0.210 = 0.00110011 . . .2 that do not equal model num-
bers are represented by the model interval between the model numbers closest to the value.3 An
arithmetical operation between two model intervals yields another model interval. These concepts
are used to define the accuracy of computation with real types.

An implementation may find some accuracy requirements difficult to achieve efficiently. In addi-
tion to the required strict mode of computation that fully conforms with the standard, an imple-
mentation may offer a relaxed mode of computation §G.2(1–3).

If you are interested in numeric computation, you will want to read Annex §G of the Rationale,
which explains both complex arithmetic and model numbers in detail.

3This sentence assumes a binary machine; on a decimal machine, both values would be model numbers.

11 Input–output

11.1 Libraries for input–output

Sections §A.6 through §A.14 of Annex §A describe the input–output facilities of Ada. So far we
have used Ada.Text_IO §A.10 for input and output of characters and numerals. There is a pack-
age Ada.Wide_Text_IO §A.11 of identical functionality for Wide_Character. Subprograms for
input–output of characters and strings are declared directly within Ada.Text_IO. For other scalar
types, a generic package must be instantiated. These packages are Integer_IO, Modular_IO,
Float_IO, Fixed_IO, Decimal_IO and Enumeration_IO. If you are going to use these packages
frequently in your system, it is more efficient at compile-time if you instantiate them once as
library packages:

package P is
type Countries is (US, UK, France, Germany, Japan, Korea);

end P;

with P; with Ada.Text_IO;
package Countries_IO is new Ada.Text_IO.Enumeration_IO(P.Countries);

For each predefined integer type §A.10.8(20–22) and predefined floating point type §A.10.9(32–
34), nongeneric packages are predefined which are equivalent to instantiations with these types.
For example, Ada.Integer_Text_IO is predefined for type Integer.

Here is an overview of some of the features of Ada.Text_IO:

• Most subprograms are overloaded: one version with an explicit file parameter of type File_Type

§A.10.1(3) and the other using a default file. The default files are usually the keyboard and
screen, but this can be changed using the subprograms described in §A.10.3.

• Text files are considered to be composed of logical pages, lines and columns §A.10(7–11).
Subprograms that query and modify the logical structure of the file are described in §A.10.4 and
§A.10.5. For example, function End_Of_File §A.10.5(24) checks if the end of an input file
has been reached, and procedure New_Page §A.10.5(15) causes a ‘page terminator’ (however
that is implemented on your system) to be written to an output file. Input–output may be done
to internal strings as well as to external files §A.10(3).

• While many languages use a special syntax to specify the format of the text (field width, number
base, and so on), Ada uses ordinary parameters to specify format information. A simple subpro-
gram call like Put(N) uses default values for format parameters. Named parameter association
can be used to change just one of these values: Put(N, Base=>16).

179

11.2 Package Exceptions* 180

• There is no special syntax (as in Pascal or C) that allows input or output of more than one value
in a single subprogram call.

‘Binary’ input–output can be done using Ada.Sequential_IO §A.8.1, in which the values are
accessed in sequential order, and Ada.Direct_IO §A.8.4, in which you can access a value at any
position in the file. Both packages take a generic private parameter which specifies the type of the
file elements.

Other sections of Annex §A pertaining to input–output are:

• §A.7 defines the terminology used for files and §A.8.2 describes subprograms that perform file
management such as opening and closing a file.

• Package Ada.Storage_IO §A.9 implements input–output to and from a memory buffer rather
than an external file. It can be used to create your own input–output package, since it translates
from an internal representation which includes dope vectors and tags to a flat buffer of storage
elements.

• Exceptions that may be raised upon input–output are declared in Ada.IO_Exceptions §A.13.
Other packages rename the exceptions so you won’t have to ‘with’ this package directly.

• §A.14 discusses what happens if an external file is associated with more than one internal file
object.

• Stream input–output §A.12 is discussed in Section 11.3.

11.2 Package Exceptions*

Package Ada.Exceptions §11.4.1 declares two types: Exception_ID and Exception_Occurrence,
each of which can be converted to and from a string. There is a value of type Exception_ID for
each distinct exception—both predefined and declared. E’Identity returns the identity associated
with exception E. Raising an exception creates a value of type Exception_Occurrence. Obviously,
many occurrences of a single exception may be created.

Ada.Exceptions gives you additional control over exception handling. ProcedureRaise_Exception

associates a string with a specific occurrence. The subprograms Save_Occurrence and Reraise_-

Occurrence can be used to create data structures of exception occurrences.

Case study: saving exceptions

In the following program, three subprograms P1, P2, P3 are called, but we save all the exception
occurrences in a priority queue (surprise!). The queue elements are of type Exception_Record

‡9–13, which includes a ‘priority’ and an access to the exception occurrence §11.4.1(3). Function
"<" ‡15–18 compares exceptions, and is used by default in the instantiation ‡20 of the generic
priority queue. When the execution of a procedure raises an exception ‡29,36,52, the exception
occurrence is placed on the queue ‡31,38,45, and the procedure terminates.

11.2 Package Exceptions* 181

- - File: EXCEP1 - -
2 - - Saving and reraising exception occurrences.
3 - -
4 with Priority_Queue;
5 with Ada.Text_IO; use Ada.Text_IO;
6 with Ada.Exceptions; use Ada.Exceptions;
7 procedure Excep is
8

9 type Exception_Record is
10 record
11 Priority: Positive;
12 Occurrence: Exception_Occurrence_Access;
13 end record;
14

15 function "<"(Left, Right: Exception_Record) return Boolean is
16 begin
17 return Left.Priority < Right.Priority;
18 end "<";
19

20 package Exception_Queue is new Priority_Queue(Exception_Record);
21 use Exception_Queue;
22

23 Q: aliased Queue;
24

25 Ex1, Ex2, Ex3, Ex4: exception;
26

27 procedure P1 is
28 begin
29 Raise_Exception(Ex1’Identity, "P1 " & Integer’Image(13));
30 exception
31 when E: others => Put((13, Save_Occurrence(E)), Q);
32 end P1;
33

34 procedure P2 is
35 begin
36 Raise_Exception(Ex1’Identity, "P2 " & Integer’Image(6));
37 exception
38 when E: others => Put((6, Save_Occurrence(E)), Q);
39 end P2;
40

41 procedure P3 is
42 begin
43 Raise_Exception(Ex4’Identity, "P3 " & Integer’Image(8));
44 exception
45 when E: others => Put((8, Save_Occurrence(E)), Q);
46 end P3;

11.3 Streams** 182

Note that the message associated with each occurrence need not be static as shown, but could be
computed dynamically. Upon completion of the execution of the subprograms ‡49, the exception
occurrences are retrieved in order of priority and reraised ‡51.

47 begin
48 P1; P2; P3;
49 while not Empty(Q) loop
50 begin
51 Reraise_Occurrence(Get(Q’Access).Occurrence.all);
52 exception
53 when E: others => Put_Line(Exception_Information(E));
54 end;
55 end loop;
56 end Excep;

Each reraised exception is handled ‡53 within the block of the main program by printing the
implementation-defined string §11.4.1(13) associated with the occurrence:

EXCEP.EX1 P2 6

EXCEP.EX4 P3 8

EXCEP.EX1 P1 13

11.3 Streams**

Ada.Sequential_IO performs input–output on values of a single type. Streams are used for input–
output of values of more than one type to a single file. The basic idea is that a value of any type is
output as a sequence of bytes which will be reconstructed into a value of the same type upon input.
A stream file is much more portable than a binary file: while the encoding of elementary types
is implementation-dependent, there is a canonical order defined for encoding composite types
§13.13.2(9). Streams are used not only to create files, but also to pass data between the partitions
of a distributed system (Section 16.5).

Package Ada.Streams §13.13.1 declares type Root_Stream_Type as an abstract tagged type
from which all streams are derived. A stream is composed of a sequence of values of the modular
type Stream_Element. Figure 11.1 shows how streams work. Two operations are involved in
writing to a stream: the attribute S’Write transforms values of a subtype S into stream elements;
then the subprogram Write writes the elements onto the stream. Reading does these steps in the
opposite direction.

11.3 Streams** 183

S Stream
Elements Stream

S Stream
Elements Stream- -

S’Write Write

» »
S’Read Read

Figure 11.1: Streams

§13.13.21 The Write, Read, Output, and Input attributes convert values to a stream of elements
and reconstruct values from a stream.

2 For every subtype S of a specific type T, the following attributes are defined.
3 S’Write—S’Write denotes a procedure with the following specification:
4 procedure S’Write(

Stream : access Ada.Streams.Root_Stream_Type’Class;

Item : in T)

5 S’Write writes the value of Item to Stream.
6 S’Read—S’Read denotes a procedure with the following specification:
7 procedure S’Read(

Stream : access Ada.Streams.Root_Stream_Type’Class;

Item : out T)
8 S’Read reads the value of Item from Stream.

The subprograms Write and Read are not explicitly called; instead, the attributes call them auto-
matically §13.13.1(1). You can override the abstract subprograms Write and Read §13.13.1(5–6)
when you define a stream for a new type, and you can supply an attribute definition clause to
specify the attributes §13.13.2(36).

The following case study shows how you can use streams without a detailed knowledge of package
Ada.Streams. To create a stream file, you do not need to explicitly declare a stream. Instead,
you can declare a file of type File_Type from package Ada.Streams.Stream_IO §A.12.1. This
package declares a function that returns an access to the stream associated with the file; this access
is then used as a parameter of the Read and Write attributes.

§A.12.1
4 type Stream_Access is access all Root_Stream_Type’Class;

13 function Stream (File : in File_Type) return Stream_Access;

- - Return stream access

- - for use with T’Input and T’Output

§A.12.129 The Stream function returns a Stream_Access result from a File_Type object, thus
allowing the stream-oriented attributes Read, Write, Input, and Output to be used
on the same file for multiple types.

11.3 Streams** 184

Case study: simulation with streams

This version of the discrete event simulation creates and writes events on a file. The file can then be
repeatedly read to rerun the same simulation scenario. (The attributes Input and Output are used
instead of Read and Write for reasons explained below.) File management of stream files is no
different from that of any other file. The essential difference is the declaration of the variable S ‡12

of type Stream_Access and the assignment to S of the stream obtained from the file ‡15,28. S is
then used as a parameter of the attributes Event’Class’Input ‡30 and Event’Class’Output ‡18–23.

- - File: ROCKETST1 - -
2 - - Discrete event simulation of a rocket.
3 - - Write events to a stream file and read back.
4 - -
5 with Event_Queue;
6 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;
7 use Root_Event;
8 with Ada.Streams.Stream_IO; use Ada.Streams.Stream_IO;
9 procedure RocketST is

10 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;
11 Event_File: File_Type;
12 S: Stream_Access;
13 begin
14 Create(Event_File, Name=>"Event.Str");
15 S := Stream(Event_File);
16

17 for I in 1..15 loop
18 Event’Class’Output(S,
19 Event’Class(Engine.Main_Engine_Event’(Engine.Create)));
20 Event’Class’Output(S,
21 Event’Class(Engine.Aux_Engine_Event’(Engine.Create)));
22 Event’Class’Output(S, Event’Class(Telemetry.Create));
23 Event’Class’Output(S, Event’Class(Steering.Create));
24 end loop;
25 Close(Event_File);
26

27 Open(Event_File, In_File, Name=>"Event.Str");
28 S := Stream(Event_File);
29 for I in 1..45 loop
30 Event_Queue.Put(Event’Class’Input(S), Q.all);
31 end loop;
32 Close(Event_File);
33

34 while not Event_Queue.Empty(Q.all) loop
35 Root_Event.Simulate(Event_Queue.Get(Q));
36 end loop;
37 end RocketST;

11.3 Streams** 185

The following rule describes how values are transformed into storage elements by Read and Write:

§13.13.29 For elementary types, the representation in terms of stream elements is implemen-
tation defined. For composite types, the Write or Read attribute for each component
is called in a canonical order. The canonical order of components is last dimension
varying fastest for an array, and positional aggregate order for a record. Bounds
are not included in the stream if T is an array type. If T is a discriminated type,
discriminants are included only if they have defaults. If T is a tagged type, the tag
is not included.

Thus given:

subtype Line is String(1..120);

Line’Write will write 120 stream elements (probably bytes), and you must be careful to read it only
with the corresponding subprogram Line’Read, which will read the same 120 stream elements.
Consider now the following procedure:

procedure Write_String(S: in Stream_Access; Str: in String) is
begin
String’Write(S, Str);

end Write_String;

Each call to the procedure will write the stream elements that represent the current value of Str.
You would need to explicitly write additional information on the stream in order to read it correctly.
This can be done automatically by using the attribute Output §13.13.2(19–21), which is the same
as Write except that array bounds and discriminants, if any, are automatically written to the stream.
Similarly, Input §13.13.2(22–24) is like Read, except that it can use this information to determine
how much data to read and how to arrange it in an object.

For class-wide types, S’Class’Write and S’Class’Read §13.13.2(10–16) dispatch to the Write and
Read attributes according to the specific type of the actual parameter. S’Class’Output and S’Class’-

Input §13.13.2(28–34) are similar except that a representation of the tag is written to the stream
and used upon input to reconstruct a value of the corresponding specific type. This is clearly what
is needed in the example: the tag of each event is written and restored upon reading. Fortunately,
S’Input and S’Class’Input are functions, rather than procedures, so we can use the result to give
an initial value to an indefinite type, or as an actual parameter to a subprogram with a formal
parameter of indefinite type ‡30. Note the type conversions to Event’Class ‡18–23: the attributes
expect a value of class-wide type, while the Create functions return values of one of the specific
types in the class.

Finally, package Ada.Text_IO.Text_Streams §A.12.2 enables you to obtain a stream associated
with a text file. This can be used to include ‘binary’ data within the file.

12 Program Structure

12.1 Compilation and execution

This section discusses topics from §10 ‘Program Structure and Compilation Issues’. The basic
definitions are given in §10.1:

§10.11 A program unit is either a package, a task unit, a protected unit, a protected entry, a
generic unit, or an explicitly declared subprogram other than an enumeration literal.
Certain kinds of program units can be separately compiled. Alternatively, they can
appear physically nested within other program units.

2 The text of a program can be submitted to the compiler in one or more compilations.
Each compilation is a succession of compilation_units. A compilation_unit con-
tains either the declaration, the body, or a renaming of a program unit. The repre-
sentation for a compilation is implementation-defined.

3 A library unit is a separately compiled program unit, and is always a subprogram,
or generic unit. Library units may have other (logically nested) library units as
children, and may have other program units physically nested within them. A root
library unit, together with its children and grandchildren and so on, form a subsys-
tem.

4 An implementation may impose implementation-defined restrictions on compila-
tions that contain multiple compilation_units.

Note that a context clause is associated with a single compilation_unit §10.1.1(3), §10.1.2; if
several units ‘with’ing the same package are contained in one compilation, each unit must have a
context clause for the package.

Semantic dependencies §10.1.1(23–26) are used to determine both visibility and the order of com-
pilation. Before a unit can be compiled, consistent versions of all units upon which the unit de-
pends semantically must have been previously compiled §10.1.4(5). For example, if the program
depends on two packages P1 and P2 which both ‘with’ Q, they must have been compiled in the
context of the same version of Q.

Previously compiled units are stored in a conceptual ‘program library’ called an environment
§10.1.4(1). The rules concerning the environment are intentionally left vague to allow any im-
plementation that can satisfy the requirements of dependency and consistency.

The GNAT compiler exploits the permission given in §10.1(4) and forbids multiple compilation
units in a compilation; instead, a tool is provided for ‘chopping’ a file containing several units into

186

12.2 Subunits 187

files with one unit apiece. The environment is simply the operating system’s file system that stores
source files; compiling a unit causes compilation of all other units (usually, specifications) that the
unit depends on.

Inline subprograms

Pragma Inline §6.3.2 is a recommendation §6.3.2(6) to the compiler that the code for a subprogram
be expanded inline at the point of a call to save the overhead of a jump to and return from the
subprogram. This trades space for time. Pragma Inline should be used sparingly, or at least its use
should be deferred until late in the development of a program. The reason is that recompilation
of a package body containing an inlined subprogram may require recompilation of every unit that
depends on the package specification, even if the subprogram body was not modified §10.1.4(7).

12.2 Subunits

If a unit becomes very large, it is possible to ‘break off’ enclosed bodies into subunits §10.1.3,
creating stubs in place of the bodies and then creating additional compilation_units for the bodies.
In the following example, the bodies of Proc1 and Inner have been replaced by stubs and moved
into subunits.

- - File: SUBUNIT1 package P is
2 procedure Proc1;
3 end P;
4

5 package body P is
6 S: String := "Global variable";
7 package Inner is
8 procedure Proc2;
9 end Inner;

10 procedure Proc1 is separate; - - Body stub
11 package body Inner is separate; - - Body stub
12 - - Body of Inner is illegal here
13 end P;
14

15 with Ada.Text_IO; use Ada.Text_IO; - - Additional context clauses
16 separate(P) - - Subunit
17 procedure Proc1 is
18 begin
19 Put_Line(S & " visible from Proc1");
20 Inner.Proc2;
21 end Proc1;
22

12.2 Subunits 188

23 separate(P) - - Subunit
24 package body Inner is
25 procedure Proc2 is separate; - - Body stub
26 end Inner;
27

28 with Ada.Text_IO; use Ada.Text_IO; - - Additional context clauses
29 separate(P.Inner) - - Subunit
30 procedure Proc2 is
31 begin
32 Put_Line(S & " visible from Proc2");
33 end Proc2;
34

35 with P;
36 procedure Subunit is
37 begin
38 P.Proc1;
39 end Subunit;

Subunits are transparent in terms of visibility §10.1.3(16–17). The variable S ‡6 is visible within
Proc1 ‡19 and Proc2 ‡32, and Inner.Proc2 is visible within Proc1 ‡20, as if the subunits had
textually replaced the stubs. Subunit may have their own context clauses ‡15,28 §10.1.1(3), so
they can be used to reduce dependencies of a unit. The body of Inner cannot be placed within P

‡12, because it also contains a stub, and stubs must appear immediately within a compilation unit
body §10.1.3(13). A subunit depends semantically on its parent §10.1.1(26), so any change in the
parent requires recompilation of all subunits.

To summarize, there are four ways of organizing packages:

• Library packages

• Nested packages

• Child packages

• Subunits

A nested package can be used to reduce name-space clutter by encapsulating declarations, but the
package is still part of the unit’s compilation. A library package achieves maximum compilation
independence, but it can no longer access declarations within the parent unit body. A child package
can access declarations in the package specification but not in the body. The compilation of a
child is relatively independent from that of its parent, because it only depends on its parent’s
specification, not its body. A subunit can access its parent’s body, but it is tightly coupled to the
parent because any change in the parent requires recompilation of the subunit.

12.3 Pragmas* 189

12.3 Pragmas*

Pragmas are directives to the compiler §2.8. (A list of language-defined pragmas can be found
in §L.) Special rules §10.1.5 apply to the placement of certain pragmas. Configuration pragmas
apply to an entire program, and the pragma declaration itself is a compilation unit §10.1.5(8–
9), which is normally the first unit that is compiled. For example, pragma Restrictions §13.12
is a configuration pragma used to inform the compiler that you intend to restrict the use of the
language, perhaps by avoiding allocators. Use of an allocator anywhere within the program would
then be diagnosed as an error.

Other pragmas are classified as program unit pragmas §10.1.5(2–6) (or library unit pragmas if
they apply only to library units). Such pragmas can be placed either within the unit they apply to,
or after the unit. If the pragma is the first entity within a unit, you can sometimes omit the name
of the unit. In the next subsection, you will see two possible placements of the library unit pragma
Elaborate_Body.

12.4 Elaboration*

Elaboration order

Elaboration §3.1(11) is the process by which a declaration has its run-time effect. For example,
a variable declared within a subprogram is elaborated as part of the execution of the subprogram
body §6.3(7). The question is now: When are library units elaborated?

The answer is that they are considered to be declared local to an environment task §10.2(8) whose
execution is initiated by the operating system. The units are elaborated in any order that is consis-
tent with their semantic dependencies §10.2(9). The environment task that elaborates all library
units and calls the main subprogram is usually constructed in a step called ‘binding’, which occurs
after compilation and before linking.

Occasionally, stronger control over the elaboration order is required. Consider the following pro-
gram, where Func ‡2, 6–9 contains a ‘complicated’ computation used to initialize a variable N

‡14 in a package specification:

- - File: ELAB1 package P is
2 function Func return Integer;
3 end P;
4

5 package body P is
6 function Func return Integer is
7 begin
8 return 10;
9 end Func;

10 end P;
11

12.4 Elaboration* 190

12 with P;
13 package Q is
14 N: Integer := P.Func;
15 end Q;
16

17 with Q;
18 with Ada.Text_IO;
19 procedure Elab is
20 begin
21 Ada.Text_IO.Put_Line(Integer’Image(Q.N));
22 end Elab;

The semantic dependencies require that the package specification of P be elaborated before the
package specification of Q, but the body of P may be elaborated either before or after the speci-
fication of Q. If the specification of Q is elaborated before the body of P, then the call to the ini-
tialization function Func will be a call to a subprogram that does not yet exist! If this elaboration
order is chosen, Elaboration_Check would fail and Program_Error will be raised §11.5(19–20).

A similar problem is shown in the following program, where the package specification contains a
translation table whose initial value is set in a ‘complicated’ computation in the initialization of
the package:

- - File: TABLE1 package Table is
2 Translate: array(1..10) of Character;
3 end Table;
4

5 package body Table is
6 begin
7 Translate := (others => ’X’);
8 end Table;

A library package is not allowed to have a body unless one is actually needed §7.2(4),1 usually to
contain the bodies of subprograms declared in the specification. In the example, the package body
containing the initialization would be illegal, because the package specification is legal without
the body.

To solve these problems, you can use elaboration pragmas. The most useful is Elaborate_Body

§10.2.1(19–26), which requires that the body of the package be elaborated immediately after the
specification. Elaborate_Body is a library unit pragma §10.2.1(24) so it can be placed either
within the package declaration or immediately following the declaration §10.1.5(4):

package P is
pragma Elaborate_Body;
function Func return Integer;

end P;

1This rule simplifies configuration management.

12.5 Renamings 191

package Table is
Translate: array(1..10) of Character;

end Table;
pragma Elaborate_Body(Table);

Alternatively, we could have used pragma Elaborate(P) in the context clause of package Q of the
first example to specify that P be completely elaborated before Q. Pragma Elaborate_All(P) is a
transitive version of Elaborate(P); all units upon which P depends would be elaborated before Q.

Note that elaboration checks can be very expensive because the code for the check would be
executed for every call of a subprogram declared in a package specification, even though it is only
relevant during the first call. If you are satisfied that you have solved every possible elaboration
problem (using elaboration pragmas, if necessary), you may want to suppress the check.

Elaboration control

There are pragmas to specify that a library unit be Pure §10.2.1(13–19) or Preelaborate §10.2.1(2–
12). All pure units are elaborated before all preelaborable units, that in turn are elaborated before
a unit to which neither of the pragmas applies §10.2(13–17). A pure unit is one which contains
no state such as a variable, only constants and subprograms; thus a pure unit can be replicated in a
distributed system (Section 16.5). A preelaborable unit contains no executable statements, so the
elaboration can be done as part of the construction of the executable program; in particular, the
implementation may be able to store the elaborated unit in ROM.

Package Ada §A.2 and some of its children are declared pure; some children are preelaborable,
while others, such as Ada.Text_IO, are neither.

12.5 Renamings

Objects, exceptions, packages, subprograms and generic units can be renamed §8.5. Renaming is
primarily used to declare an additional, shorter, name for an entity, especially if you do not want
to use ‘use’ clauses:

package LEF is new Ada.Numerics.Long_Elementary_Functions;

A ‘use’ clause for part of the hierarchy can often be helpful in shortening names without the
potential confusion caused by making everything directly visible. The main subprogram of the
simulation has ‘use’ clause for Root_Event so that the child packages such as Telemetry are
directly visible.

Object renamings can be used to improve readability and (depending on the optimizer) run-time
efficiency when accessing complex data structures:

12.5 Renamings 192

for N in A1’Range loop
declare
V: Integer renames A1[N].Field1.A2[N].Field2.all;

begin
V := (V + K1) * (V - K2) / 4*V;

end;
end loop;

Subprogram renamings §8.5.4 come in two flavors: renaming-as-declaration and renaming-as-
body. The former gives a new name (and new parameter names and default expressions if needed)
to a subprogram or entry. The latter completes the declaration of a subprogram with an existing
subprogram, so you don’t have to write a trivial subprogram to call it. Renaming-as-body makes it
easy to export a partial view of an abstraction. The following package exports Put and Put_Line

from Ada.Text_IO by renaming-as body. Put from Ada.Integer_Text_IO is exported by writing
a body that calls it, because we want to change the number of parameters, and renaming requires
subtype-conformant profiles §8.5.4(5).

- - File: RENAM1 package Renam is
2 procedure Writeln(S: in String);
3 procedure Write(S: in String);
4 procedure Write(I: in Integer);
5 end Renam;
6

7 with Ada.Text_IO; with Ada.Integer_Text_IO;
8 package body Renam is
9 procedure Writeln(S: in String) renames Ada.Text_IO.Put_Line;

10 procedure Write(S: in String) renames Ada.Text_IO.Put;
11 procedure Write(I: in Integer) is
12 begin
13 Ada.Integer_Text_IO.Put(I); - - Put has three parameters
14 end Write;
15 end Renam;

An instance of a generic package is a package and can be renamed. A generic unit can also be
renamed; for example, §J.1 renames children of package Ada for compatibility with Ada 83.

12.6 Use type clause 193

12.6 Use type clause

Is the following program legal?

- - File: QUESTION1 package P is
2 type T is (A, B, C, D);
3 end P;
4

5 with P;
6 procedure Question is
7 V: P.T;
8 begin
9 if V = P.A then null; else null; end if;

10 end Question;

The answer is no. The problem is with the expression in the condition of the if-statement. V and
P.A are both of type P.T, but the operator "=" for the type is not visible. A ‘use’-clause for the
package P would, of course, make it visible, but many Ada programmers prefer to minimize the
number of ‘use’-clauses. It would also be possible to use prefix notation: P."="(V,P.A), but this
syntax is unnatural. A better solution is furnished by the use type clause:

use type P.T;

The primitive operators of the type, but not other entities of the package, become visible §8.4(8).
(See Quiz 53.) More exactly, they become potentially use-visible, as described in the next section.

12.7 Visibility rules**

Visibility of entities in Ada has been informally discussed throughout the text. The rules in §8.1–
§8.4 are among the most difficult in the ARM, but fortunately you can usually write correct pro-
grams without understanding them in detail. Here we will survey the terminology used in case
you need to study the rules; in addition, we will point out a few details worth knowing.

A declarative region §8.1 is a portion of the program text that can contain other declarations. Most
declarative regions are declarations: packages, procedures, records and so on, but so is a for-loop
statement that declares its loop parameter. The declarative region of a package includes its body,
children and subunits.

The scope §8.2 of a declaration is the portion of a program text where it is legal to refer to the
declared entity. The scope includes the immediate scope, which extends from the declaration itself
until the end of the immediately enclosing declarative region. For example, the immediate scope of
a type declared in a package specification comprises the remainder of the package specification,
as well as the package’s body, children and subunits. The scope of the type includes its imme-
diate scope and extends to include the scope of the package itself §8.2(10) and of its semantic
dependents §8.2(3).

12.7 Visibility rules** 194

Certain parts of an entity are visible §8.2(5–9); for example, the visible part of a package specifi-
cation, the profile of a subprogram and the components of a record. Other parts of the entity are
private.

Within its immediate scope, a declaration is normally directly visible so it can be referred to by
using its simple (‘direct’) name alone. A declaration can be directly visible because it is immedi-
ately visible, or because it is use-visible. For example, a type declared in a package specification
is immediately visible within the package itself; outside the package, it is directly visible only if a
use clause has been given for the package. Within its scope but not its immediate scope, selector
syntax such as P.T must be used to access an entity.

A ‘use’ clause only makes the names in a package specification potentially use-visible §8.4(8).
Name conflicts—‘use’ of two packages that both declare the same name, or a local declaration
with the same name as one in a ‘use’d package—will prevent direct visibility, and you will have
to use selector syntax.

§8.38 Two declarations are homographs if they have the same defining name, and, if both
are overloadable, their profiles are type conformant. An inner declaration hides any
outer homograph from direct visibility.

9 Two homographs are not generally allowed immediately within the same declara-
tive region unless one overrides the other . . .

Are the following two declarations homographs?

procedure Proc(A: Integer);
procedure Proc(B: Positive);

The answer is yes because: (a) they have the same defining name Proc, (b) as procedures they are
overloadable and (c) they are type-conformant. Since they are homographs, they cannot appear in
the same declarative region. If Positive were changed to Float, the second declaration would no
longer be type-conformant, and the overloaded declarations could appear in the same declarative
region.

A declaration can be hidden by an inner homograph; in this case, it is hidden from direct visibility,
but not hidden from all visibility, and can be accessed using selector syntax:

procedure P is
X: Integer;
procedure Q is
X: Integer; - - Hides outer declaration

begin
X := 2; - - Local declaration directly visible
P.X := 3; - - Global declaration visible, but not directly

end Q;
begin
Q;

end P;

Some declarations are hidden from all visibility §8.3(4–20); in particular, once an inherited decla-
ration is overridden, there is no way to name it:

12.8 Overloading** 195

type T is (A, B, C, D);
procedure P(X: T);
type T1 is new T;
- - Inherited P is visible

procedure P(X: T1);
- - Inherited P is hidden from all visibility

There are special visibility rules for context clauses; see §10.1.6.

12.8 Overloading**

The rules for overloading are described in §8.6. As with the visibility rules, they are quite com-
plex, but you will rarely need to understand the details. At worst, the compiler will be unable to
disambiguate the use of a name, and you can supply additional syntax such as an expanded name
or a qualification.

Overloading resolution is done within each complete context §8.6(4–6) such as a declaration or a
statement. An interpretation of the context is determined by first using the syntax and visibility
rules to list possible interpretations. A possible interpretation is acceptable if it obeys the over-
loading rules, that is, if the interpretation fits the expected type or profile defined in the ‘Name
Resolution Rules’.

Consider the following program:

- - File: OVER1 procedure Over is
2

3 function F(A: Integer) return Boolean is
4 begin
5 return False;
6 end F;
7

8 function F(A: Integer) return Integer is
9 begin

10 return 1;
11 end F;
12

13 function F(A: Long_Integer) return Boolean is
14 begin
15 return False;
16 end F;
17

18 begin
19 if F(1) then null; else null; end if;
20 end Over;

The syntax rules of the if-statement require that the condition be an expression §5.3(3). So all
three functions are possible interpretations. However, the Name Resolution Rule §5.3(4) specifies
that the condition must be of a boolean type. So only the first and third functions are acceptable

12.8 Overloading** 196

interpretations. Since there must be only one acceptable interpretation §8.6(28, 31), the call to F is
ambiguous and the program illegal. If the third function were not declared, overloading resolution
would succeed, choosing the first function as the only acceptable interpretation. Alternatively, you
could write the parameter as a qualified expression F(Long_Integer’(1)) to disambiguate the call.

The concept of expected type must be extended to consider the cases of class-wide, universal and
access types; see §8.6(25) for details.

Overloading is also affected by the preference for root numeric types §8.6(29) as discussed in
Section 10.8.

13 Concurrency

A program contains one or more tasks1 that execute concurrently. We use concurrent in preference
to ‘parallel’ to emphasize that the parallelism is conceptual, not necessarily physical. A correct
multitasking Ada program will produce the same result, whether it is run on a multiprocessor
system or on a time-shared single processor, though the multiprocessor system will (hopefully) be
significantly faster.

For convenience, the material on concurrency is divided into two chapters, with more advanced
material in Chapter 14. Multitasking programs are frequently written for embedded computer
systems where hardware interface and program performance are critical. This chapter and the next
will present the logical aspects of concurrency, leaving the systems aspects to Chapters 15 and 16.

13.1 Concepts

In this section, we survey the basics concepts of concurrency. If you have never studied this topic
before, you may want to first read a textbook on the subject (see Appendix G).

A task is like a subprogram except that a thread of control is associated with a task. The thread is
represented by a data structure containing a pointer to the task’s current instruction and to some
local memory such as a stack segment. If each task is assigned a processor, the processors will
execute the instructions of the tasks simultaneously. If there are more tasks than processors—at
worst if there is only one processor and more than one task—a scheduler will assign processors to
tasks according to some algorithm.

Interleaving

To abstract away from these differences, we look at interleaved execution sequences. Given two
tasks T1 and T2, the simultaneous execution of the ‘next’ instruction of each of the tasks is con-
sidered to be equivalent to one of two cases: either T1 executes its next instruction before T2, or
conversely. It is as if a global scheduler decides at each step which task is allowed to execute an
instruction.

A concurrent program is correct if all interleaved execution sequences give the correct
result.

1Tasks are called processes or threads in other systems and languages.

197

13.1 Concepts 198

If we had to deal with overlapped execution of instructions in a continuous time frame, it would
be extremely difficult to reason about concurrent programs, but powerful mathematical tools exist
for reasoning about interleavings (Manna & Pnueli 1992).

It is impossible to ‘debug’ a concurrent program, if by debugging you mean running and rerunning
the program, tracing its execution and looking for an error. The number of possible interleavings
of even simple programs is astronomical; furthermore, in embedded systems with hardware inter-
faces, it is impossible to recreate a scenario at will. The only way to validate a concurrent program
is to prove (informally, if not formally) that there can be no incorrect scenarios.

Atomic instructions

If several tasks are totally independent of each other, then all interleaved executions will essentially
give identical results. Interleaving is significant only in the presence of shared resources that
require task synchronization, or for communications between tasks. For interleaving to be well-
defined, it is necessary to introduce the concept of atomic instruction.

Suppose that T1’s next instruction is X:=1 and that T2’s next instruction is X:=2, for some shared
variable X. It is conceivable that the simultaneous execution of the instructions will leave X holding
the value 3. If the store is done by clear’ing the memory cell and then or’ing the bits of the value,
simultaneous execution could cause both clear’s to be done before the or’s. This is know as a race
condition: a scenario specifying an interleaving that leads to an incorrect result.

On most computers, instructions that load values from memory into a register and store values
from a register to memory are atomic, and the above scenario will not occur. Nevertheless, sim-
ple race conditions still exist. Consider two tasks executing the assignment statement X:=X+1

on a shared variable X. The assignment statement is compiled into a sequence of machine code
instructions such as:

Load X
Add A,#1
Store X

Consider the following scenario, where the initial value of X is zero:

• Task 1 loads 0 from X into its accumulator

• Task 2 loads 0 from X into its accumulator

• Task 1 adds 1 to the value in its accumulator

• Task 2 adds 1 to the value in its accumulator

• Task 1 stores 1 from its accumulator into X

• Task 2 stores 1 from its accumulator into X

The assignment has been executed twice, but X contains the value 1!

13.2 Tasks and protected objects 199

Concurrency constructs in Ada

The essence of concurrent programming is to define atomic instructions and then to develop (and
prove!) algorithms that use these instructions to solve problems of synchronization and commu-
nication between tasks. In Ada, there are three constructs for concurrency:

• Load and store of shared variables. This is usually too low-level and will be treated in Sec-
tion 15.3.

• Protected objects for asynchronous sharing of resources.

• Rendezvous for direct task-to-task synchronous communication.

The term ‘asynchronous’ means that tasks need not access the protected object at the same time.
In fact, a task can insert data into a protected object and then terminate, while a second task
later extracts the data from the object. The rendezvous is ‘synchronous’ because both tasks must
participate in the rendezvous at the same time.

Protected objects are very efficient and are appropriate for solving simple synchronization prob-
lems. Rendezvous will be more appropriate when you wish to maximize potential concurrency.
In the next two sections, we will solve a simple problem, once using protected objects and once
using rendezvous, so that we can compare the constructs.

13.2 Tasks and protected objects

The problem that we will solve is called the producer–consumer problem. One or more tasks pro-
duce data elements which must be transferred to one or more consumer tasks. An example would
be a network interface that ‘produces’ data downloaded from the net, and a graphical browser pro-
gram that ‘consumes’ the data. A buffer is used for structure transformation and flow control. The
data elements may arrive in large blocks, which must be stored so that the browser can process
one element at a time. In addition, the browser must be blocked if no data elements are currently
available, and similarly, the interface must not download data elements if the storage area is full.

Case study: producer–consumer (protected object)

The following program solves the producer–consumer problem with integers as the data elements
for simplicity.

- - File: PROTECT1 - -
2 - - Producer-consumer using protected object.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure Protect is
6 type Index is mod 8;
7 type Buffer_Array is array(Index) of Integer;
8

13.2 Tasks and protected objects 200

9 protected Buffer is
10 entry Append(I: in Integer);
11 entry Take (I: out Integer);
12 private
13 B: Buffer_Array;
14 In_Ptr, Out_Ptr, Count: Index := 0;
15 end Buffer;
16

17 protected body Buffer is
18 entry Append(I: in Integer) when Count < Index’Last is
19 begin
20 B(In_Ptr) := I;
21 Count := Count + 1;
22 In_Ptr := In_Ptr + 1;
23 end Append;
24

25 entry Take(I: out Integer) when Count > 0 is
26 begin
27 I := B(Out_Ptr);
28 Count := Count - 1;
29 Out_Ptr := Out_Ptr + 1;
30 end Take;
31 end Buffer;
32

33 task Producer;
34 task body Producer is
35 begin
36 for N in 1..200 loop
37 Put_Line("Producing " & Integer’Image(N));
38 Buffer.Append(N);
39 end loop;
40 end Producer;
41

42 task type Consumer(ID: Integer);
43 task body Consumer is
44 N: Integer;
45 begin
46 loop
47 Buffer.Take(N);
48 Put_Line(Integer’Image(ID) & " consuming " & Integer’Image(N));
49 end loop;
50 end Consumer;
51

52 C1: Consumer(1);
53 C2: Consumer(2);

13.2 Tasks and protected objects 201

54

55 begin
56 null;
57 end Protect;

There is one Producer task object ‡33 and two tasks C1 and C2 ‡52–53, which are declared to be
of task type Consumer ‡42. The task declarations in this program must be present even though
they are empty §9.1(8). The task declaration for Consumer contains a discriminant §9.1(2,16),
which is used for configuring a task with an identification number. A task body is syntactically
like a procedure body §9.1(6).

The producer creates two hundred data elements, which are appended to the buffer ‡36–39; each
consumer is in an infinite loop, taking and ‘consuming’ the elements ‡46–49. Note that the main
subprogram ‡55–57 is empty! The tasks are activated just after the begin of the main subprogram,
which must wait until the tasks have terminated. The producer will clearly terminate, but the con-
sumer tasks will not. Make sure that you know how to break the execution of an Ada program on
your computer (usually CTRL-C) before running this example. Section 14.1 will discuss activation
and termination of tasks in detail.

Buffer ‡9–31 is a protected object. Syntactically, a protected unit (which can be either a single
object, or a type that can be used to declare objects §9.4(1)) is like a package with a declaration—
divided into a visible part and a private part—and a body §9.4(2–9). A protected unit cannot
contain type declarations, so the data types used to implement the buffer ‡6–7 have been declared
in the enclosing procedure. The visible part of the protected object contains the declaration of two
entries Append and Take ‡10–11. The private part contains the declaration of components ‡13–14
belonging to the protected object. Components can only be declared in the private part, while
operations such as entries can be declared anywhere in the protected unit declaration §9.4(4–6).

Buffer.Append(N) ‡38 and Buffer.Take(N) ‡47 are entry calls §9.5.3. An entry call is syntacti-
cally a procedure call and causes the body of the entry to be executed, passing parameters to and
from the body.

Note that task units and protected units are not compilation units; they must be declared within a
compilation unit such as a subprogram or a package. However, a task or protected body can be
separately compiled as a subunit §10.1.3(10).

Protected actions

How is a protected unit different from a package? The subprograms of a package can be called
concurrently §6.1(35) from multiple tasks, possibly leading to race conditions. The operations of
a protected unit are mutually exclusive, meaning that only one will be executed at a time.

§9.5.14 A new protected action is not started on a protected object while another protected
action on the same protected object is underway, . . . This rule is expressible in
terms of the execution resource associated with the protected object:

13.2 Tasks and protected objects 202

§9.5.15 Starting a protected action on a protected object corresponds to acquiring the ex-
ecution resource associated with the protected object . . . for exclusive read–write
access . . .

6 Completing the protected action corresponds to releasing the associated execution
resource.

For example, the producer call to Append and a consumer call to Take may try to update Count

simultaneously, but no race condition occurs because one of the tasks will acquire the lock (‘exe-
cution resource’) and complete the entry body before the other task is allowed to begin the call.

The protected object Buffer also provides flow control, using entry queues §9.4(17) and barriers
§9.5.2(5,7). We must prevent the producer from calling Append if the buffer is full and a consumer
from calling Take if the buffer is empty.

§9.5.37 An entry of a protected object is open if the condition of the entry_barrier of the
corresponding entry_body evaluates to True; otherwise it is closed. . . .

8 For the execution of an entry_call_statement, evaluation of the name and of the
parameter associations is as for a subprogram call (see 6.4). The entry call is then
issued: For a call on an entry of a protected object, a new protected action is started
on the object (see 9.5.1). The named entry is checked to see if it is open; if open, the
entry call is said to be selected immediately, and the execution of the call proceeds
as follows:

10 For a call on an open entry of a protected object, the corresponding entry_body is
executed (see 9.5.2) as part of the protected action.

12 If the named entry is closed, the entry call is added to an entry queue (as part of the
protected action, for a call on a protected entry), and the call remains queued until
it is selected or cancelled; there is a separate (logical) entry queue for each entry of
a given task or protected object (including each entry of an entry family).

The barrier when Count > 0 ‡25 closes the Take entry when the buffer is empty. A consumer
calling Take will be enqueued on the entry queue for Take. Similarly, the barrier when Count <

Index’Last ‡18 closes the Append entry when the buffer is full.

Suppose the buffer is empty and that one or more calls from consumer tasks are enqueued on
the queue for Take. In this state, only the producer will now succeed in passing its barrier and
commencing the execution of its protected action Append. During the execution of the entry
body, the value of Count will be incremented ‡21.

§9.5.313 When a queued call is selected, it is removed from its entry queue. Selecting a
queued call from a particular entry queue is called servicing the entry queue. An
entry with queued calls can be serviced under the following circumstances:

15 If after performing, as part of a protected action on the associated protected object,
an operation on the object, . . . the entry is checked and found to be open.

The completion of a protected operation that could potentially change the value of the barrier
causes the system to reevaluate the barrier. When Append is completed Count>0 is now true, the
entry queue is serviced and the Take operation is executed on behalf of a call from a consumer

13.2 Tasks and protected objects 203

task. When Take is completed, the barrier is again reevaluated, but now Count>0 is false because
Take decremented the variable ‡28. Additional calls from consumer tasks that are on the queue
remain blocked. The protected action is now completed.

Preference for servicing queues

Consider the following scenario, where we assume that there are multiple producer tasks:

• A consumer attempts to take an element from an empty buffer and blocks on the entry queue.

• Several producers attempt to append elements to the buffer. One will be allowed to execute the
entry, appending its element to the buffer.

• When the entry is completed, there are two ways to continue:

1. Another producer can be allowed into the entry body to append its element.

2. The queue can be serviced so that a call from the enqueued consumer can take the newly
appended element.

The language design could specify either of these possibilities or it could leave the choice unspec-
ified.

§9.5.318 For a protected object, the above servicing of entry queues continues until there are
no open entries with queued calls, at which point the protected action completes.

A new entry call (here from a producer) will not begin a protected operation until the ongoing
protected action is completed; in other words, there is a preference for servicing calls already
enqueued on an entry queue.

Figure 13.1 shows how protected objects should be viewed: an outer shell protecting access to the
resources, and an inner set of operations and entry queues.

Buffer

Take

Append

-

-

-

-

-

-

-

Figure 13.1: Protected object

13.3 Rendezvous 204

Entry calls, represented by parallelograms with arrows, may be in one of three places: (i) executing
an entry body (Append), (ii) blocked in an entry queue (Take), and (iii) attempting to enter the
protected object. Calls that have already passed the outer shell are considered part of the ‘club’
and have preference over calls that have not yet been accepted.

There are two reasons for specifying this behavior, called immediate resumption of blocked tasks:

• If one task modifies a variable that will open a barrier for a blocked task, the awakened task can
assume that no third task will intervene and change the state.

• Blocked tasks will not be starved by a stream of tasks entering from outside the protected object.

Note that there is no queue associated with the mutual exclusion on the protected object. (See
Section 16.2 on the implementation of protected objects using ceiling priorities.) This will not be
a problem if protected entries and subprograms are kept very short so that calls are either quickly
processed or quickly enqueued awaiting an event; in either case the mutual exclusion is released.

13.3 Rendezvous

Let us examine more closely the entry body for Append:

entry Append(I: in Integer) when Count < Index’Last is
begin
B(In_Ptr) := I;
Count := Count + 1;
In_Ptr := In_Ptr + 1;

end Append;

The barrier performs flow control for the calling task, and the entry parameter and the assignment
to B are used to communicate—to pass data—between the task and the protected object. But
incrementing Count and In_Ptr are solely concerned with updating the internal data structure of
the protected object. Nevertheless, the calling task is responsible for executing these statements.2

Suppose that instead of using an array, the buffer was stored in a data structure or file system
that required significant internal processing between insertions and extractions. We would like to
overlap this processing with the execution of the producers and consumers. This can be done by
making the buffer itself an additional task. Synchronization and communication is done directly
with the buffer task, rather than through an intermediate structure (Figure 13.2). The producer and
consumer both initiate calls on entries of the buffer task, but in the case of the consumer, the data
flow (small arrow) is opposite the direction of the call.

 Producer Buffer Consumer

Append Take- »

c- c-
Figure 13.2: Active buffer

2See the subsection at the end of this section for a more detailed explanation.

13.3 Rendezvous 205

Case study: producer–consumer (rendezvous)

- - File: TASKPC1 - -
2 - - Producer-consumer using a buffer task.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 procedure TaskPC is
6 type Index is mod 128;
7 type Buffer_Array is array(Index) of Integer;
8

9 task Buffer is
10 entry Append(I: in Integer);
11 entry Take (I: out Integer);
12 end Buffer;
13

14 task body Buffer is
15 B: Buffer_Array;
16 In_Ptr, Out_Ptr, Count: Index := 0;
17 begin
18 loop
19 select
20 when Count < Index’Last =>
21 accept Append(I: in Integer) do
22 B(In_Ptr) := I;
23 end Append;
24 Count := Count + 1;
25 In_Ptr := In_Ptr + 1;
26 or
27 when Count > 0 =>
28 accept Take(I: out Integer) do
29 I := B(Out_Ptr);
30 end Take;
31 Count := Count - 1;
32 Out_Ptr := Out_Ptr + 1;
33 end select;
34 end loop;
35 end Buffer;
36

37 task Producer;
38 task body Producer is
39 begin
40 for N in 1..200 loop
41 Put_Line("Producing " & Integer’Image(N));
42 Buffer.Append(N);
43 end loop;
44 end Producer;

13.3 Rendezvous 206

45

46 task type Consumer(ID: Integer);
47 task body Consumer is
48 N: Integer;
49 begin
50 loop
51 Buffer.Take(N);
52 Put_Line(Integer’Image(ID) & " consuming " & Integer’Image(N));
53 end loop;
54 end Consumer;
55

56 C1: Consumer(1);
57 C2: Consumer(2);
58

59 begin
60 null;
61 end TaskPC;

The producer and consumer tasks are unchanged from the previous solution. The declaration of the
buffer task ‡9–12 contains the declaration of two entries. Unlike protected units, the declaration
of a task can contain only entries and representation clauses §13.1(2), even in the private part
§9.1(4–5). Synchronization and communication with the buffer task are done using a selective
accept statement.

Accept statements

The task Producer calls the entry Append of Buffer; the entry call causes an accept statement to
be executed in the called task.3

§9.5.2
3 accept_statement ::=

accept entry_direct_name [(entry_index)]

parameter_profile [do
handled_sequence_of_statements

end [entry_identifier]];

24 . . . execution of the accept_statement is then blocked until a caller
of the corresponding entry is selected (see 9.5.3), whereupon the han-

dled_sequence_of_statements, if any, of the accept_statement is executed, with
the formal parameters associated with the corresponding actual parameters of the
selected entry call. Upon completion of the handled_sequence_of_statements,
the accept_statement completes and is left. . . .

25 The above interaction between a calling task and an accepting task is called a ren-
dezvous. After a rendezvous, the two tasks continue their execution independently.

3The reserved word do is used in Ada only in this context! The reserved word is would be more consistent with
other constructs in the language.

13.3 Rendezvous 207

The calling task and the called task must execute a rendezvous. The basic principle of a rendezvous
is that the first party to reach the rendezvous point must wait until the second party arrives. The
semantics of a rendezvous are illustrated by the time lines in Figures 13.3 and 13.4. Solid lines
indicate intervals during which the process is ready or executing; dashed lines indicate intervals
when the process is blocked on the statement written within parentheses.

Buffer - - -
(accept Append) accept Append

Producer - -
(Buffer.Append)

Figure 13.3: Rendezvous: blocking on an accept statement

In Figure 13.3, the buffer task executes until it reaches the accept statement ‡21, at which point it is
blocked. The producer is allowed to continue until it executes the entry call Buffer.Append. Now
the producer is blocked and the buffer executes the the sequence of statements within the accept
statement. When the rendezvous is completed, both tasks are made ready; in a single-processor
system the scheduler will have to choose one of them.

Figure 13.4 shows another possibility. Here the producer task blocks when it calls the entry be-
cause the buffer task has not yet reached the accept statement. The producer task is made ready
again only when the accept statement has been completed.

Buffer - - -
accept Append

Producer - -
(Buffer.Append)

Figure 13.4: Rendezvous: blocking on an entry call

Before commencing the rendezvous, in and in out parameters are transferred to the accepting
task; upon completion, out and in out parameters are transferred back to the calling task. Thus
data transfer is bidirectional even though the entry call is unidirectional. Furthermore, the call is
asymmetrical, because the calling task knows the name of the accepting task but not conversely.4

When the rendezvous is complete, both tasks can proceed independently so the producer is not
blocked while the internal data structure is updated ‡24–25. The increased concurrency has been
obtained at the price of additional overhead associated with the extra task, and additional context
switches to block the caller and then resume it. Since protected objects can be implemented very
efficiently on a single processor (Section 16.2), they are to be preferred unless the additional
concurrency is actually needed.

4See Ben-Ari (1990) for a comparison of the Ada rendezvous with the more symmetrical synchronization constructs
in occam and Linda.

13.3 Rendezvous 208

Selective accept

The buffer task provides two services: Append for producers and Take for consumers. Suppose
that the task Buffer arrives at the rendezvous, but neither producers nor consumers have yet issued
a call. We would like Buffer to serve the first task that calls one of its entries; however, a task body
is just a sequence of statements that have to be executed one after another. If we write:

loop
accept Append do . . .
accept Take do . . .

end loop

the Buffer would block pending a call from a producer even if there were waiting consumers and
data in the buffer.

The selective accept statement ‡19–33 enables task to wait simultaneously for calls from multiple
entries.

§9.7.1
2 selective_accept ::=

select
[guard] select_alternative

{ or
[guard] select_alternative }

[else
sequence_of_statements]

end select;
3 guard ::= when condition =>

4 select_alternative ::=

accept_alternative | delay_alternative | terminate_alternative

5 accept_alternative ::=

accept_statement [sequence_of_statements]

(Delay and terminate alternatives and the else-part are discussed in Section 14.3.) The semantics
of the selective statement are as follows:

13.3 Rendezvous 209

§9.7.114 A select_alternative is said to be open if it is not immediately preceded by a guard,
or if the condition of its guard evaluates to True. It is said to be closed otherwise.

15 For the execution of a selective_accept, any guard conditions are evaluated; open
alternatives are thus determined. . . . Selection and execution of one open alterna-
tive, . . . then completes the execution of the selective_accept; the rules for this
selection are described below.

16 Open accept_alternatives are first considered. Selection of one such alterna-
tive takes place immediately if the corresponding entry already has queued calls.
If several alternatives can thus be selected, one of them is selected . . . When
such an alternative is selected, the selected call is removed from its entry queue
and the handled_sequence_of_statements (if any) of the corresponding ac-

cept_statement is executed; after the rendezvous completes any subsequent se-
quence_of_statements of the alternative is executed. If no selection is immedi-
ately possible (in the above sense) . . . , the task blocks until an open alternative can
be selected.

The Append entry is guarded ‡20 to ensure that a producer does not insert an element into a full
buffer, and a guard also exists for Take ‡27. If the buffer is neither full nor empty, both guards are
open; the Buffer task will select one of the alternatives with enqueued calls, if any, and perform a
rendezvous. If there are no enqueued calls it will block, waiting for either a producer or a consumer
to call an entry.

If one alternative is closed (say the buffer is full so that the Append alternative is closed), the
Buffer task will rendezvous with a task blocked on the queue for the open alternative Take, if
any, or Buffer will be blocked pending an entry call on the open alternative Take. A new call
by a producer will be ignored. It is impossible for both alternatives in this example to be closed.
(Prove!)

§9.7.121 The exception Program_Error is raised if all alternatives are closed

Implementation of entry calls**

§9.5.3(13) (quoted on page 202) talks about servicing a queued entry call, not a queued task. A
protected object is just a passive set of components and operations, which is not associated with
any particular task.

§9.5.322 An implementation may perform the sequence of steps of a protected action using
any thread of control; it need not be that of the task that started the protected action.

This is illustrated in Figure 13.5. Assume that the producer (in the program using protected ob-
jects) attempts to append an item to a full buffer. The entry call Buffer.Append will be enqueued,
the producer task will be blocked and a consumer task will be allowed to execute. Eventually, the
consumer task will take an item from the buffer. Upon completion of the body of Take, servicing
of the entry queue can be done by the consumer task. In effect, appending an item is executed by

13.4 Case study: the CEO problem 210

the consumer on behalf of the producer. Upon completion of the entry call, both tasks become
ready.

Consumer - - - -
Buffer.Take Buffer.Append

Producer - -
(Buffer.Append)

Figure 13.5: Implementation of protected entry call

In contrast, a rendezvous normally requires context switches as shown in Figure 13.6. Assume that
the buffer task is blocked on the selective accept statement and that the alternative for Append is
closed because the buffer is full. The producer task blocks on the entry call Buffer.Append. When
the consumer task executes calls Buffer.Take, the rendezvous take place, removing an item from
the buffer. When the selective accept is executed again, the alternative is now open and the entry
call Buffer.Append can be accepted. Two extra context switches are needed (vertical arrows): one
for the buffer task to execute its accept statement and another to switch either to the producer or to
the consumer task.

Consumer -

6

-
(Buffer.Take)

Buffer - - - -

6
(select) accept Take accept Append

Producer - -
(Buffer.Append)

Figure 13.6: Implementation of task entry call

Protected objects are designed to be extremely efficient when implemented on a single processor.
On a multiprocessor, rendezvous provides more parallelism that can be utilized. In the figure,
you can see that the consumer can continue its execution immediately upon completion of its
rendezvous with the buffer task, performing useful computation in parallel with the subsequent
rendezvous between the producer and the buffer.

13.4 Case study: the CEO problem

The concurrent program presented in this section (see Ben-Ari (1998a)) employs both rendezvous
and protected actions for synchronization. The case study will be used to study important con-
structs in Ada tasking: entry families, the requeue statement and the abort statement. The problem
is to implement a synchronization scheme described by the following story:

A CEO (Chief Executive Officer) of a company likes to play golf. He does not allow
himself to be interrupted by single employees with problems; instead, they must form

13.4 Case study: the CEO problem 211

themselves into groups before coming to consult him. The size of the group depends
on the department to which the employee belongs: engineering, marketing, finance.
A waiting group from finance has precedence over a group from marketing, which
(obviously!) has precedence over an engineering group.

Let us look first at the structure of the program (Figure 13.7). There will be one task for the
CEO and one task for each employee: engineers, salespersons in the marketing department, and
accountants in the finance department. These are declared as task types, and the tasks themselves
are dynamically allocated in the main subprogram. Protected objects of type Room are used to
synchronize the groups.

Accountants Salespersons Engineers

Room Room Room

 CEO

Wake(G)

Invite_In(G)

Show_Out(G)

Figure 13.7: The CEO program

Because of the length and complexity of the program, we will present the source code of the
program in this section together with a general description of its components. Details will be
given in the following sections as we study each new construct.

The global types and constants are an enumeration type Departments naming the three depart-
ments, ID_Numbers for each employee in a group, and the Group_Size that defines for each
department the size of the group that the CEO is willing to see.

- - File: CEOT1 - -
2 - - CEO case study.
3 - -
4 pragma Queuing_Policy(Priority_Queuing);
5 with Ada.Text_IO; use Ada.Text_IO;
6 procedure CEOT is
7

8 type Departments is (Engineering, Finance, Marketing);
9 type ID_Numbers is range 0..10;

10 Group_Size: constant array(Departments) of ID_Numbers := (
11 Engineering => 5, Finance => 3, Marketing => 2);

The declaration of the CEO task contains three entries: Wake to awaken the CEO task, Invite_In,
which each employee task calls to enter the CEO’s office, and Show_Out, which will block em-
ployee tasks until the consultation is finished. The declaration appears at the beginning of the
program because its Wake entry will be called from within the protected type Room.

13.4 Case study: the CEO problem 212

12 task CEO is
13 entry Wake(Departments);
14 entry Invite_In(Departments)(ID: ID_Numbers);
15 entry Show_Out(Departments)(ID: ID_Numbers);
16 end CEO;

Groups are synchronized in a waiting room implemented by a protected type. Entry Register is
called by an employee task wishing to join a group. Once the correct number of employees for a
group of this department is in the room, the entrance is closed and the group waits for the CEO to
receive them. Procedure Open_Door is called by the CEO to allow a new group to register.

The protected type has a private entry Wait_for_Last_Member that is used to block registering
tasks until the last member of the group has arrived. Private components are a count of waiting
employee tasks, and the doors for entering and exiting the room. The protected body will be
explained in the following sections.

17 type Door_State is (Open, Closed);
18

19 protected type Room(Department: Departments; Size: ID_Numbers) is
20 entry Register;
21 procedure Open_Door;
22 private
23 entry Wait_for_Last_Member;
24 Waiting: ID_Numbers := 0;
25 Entrance: Door_State := Open;
26 Exit_Door: Door_State := Closed;
27 end Room;
28

29 protected body Room is
30 entry Register when Entrance = Open is
31 begin
32 if Size = 1 then
33 Entrance := Closed;
34 requeue CEO.Wake(Department) with abort;
35 end if;
36 Waiting := Waiting + 1;
37 if Waiting < Size then
38 requeue Wait_for_Last_Member with abort;
39 else
40 Waiting := Waiting - 1;
41 Entrance := Closed;
42 Exit_Door := Open;
43 end if;
44 end Register;
45

13.4 Case study: the CEO problem 213

46 entry Wait_for_Last_Member when Exit_Door = Open is
47 begin
48 Waiting := Waiting - 1;
49 if Waiting = 0 then
50 Exit_Door := Closed;
51 requeue CEO.Wake(Department) with abort;
52 end if;
53 end Wait_for_Last_Member;
54

55 procedure Open_Door is
56 begin
57 Entrance := Open;
58 end Open_Door;
59 end Room;

There is one room for each department which is obtained by declaring an object of the protected
type Room. The protected type has two discriminants ‡19, which are used to specify the depart-
ment and the size of the group.

60 Engineering_Room: Room(Engineering, Group_Size(Engineering));
61 Finance_Room: Room(Finance, Group_Size(Finance));
62 Marketing_Room: Room(Marketing, Group_Size(Marketing));

The task body for the CEO is straightforward, consisting of a selective accept with an alternative
for each of the three departments. The syntax of the selective accept statement is such that a (pos-
sibly guarded) accept statement must immediately follow the select and each or, but an arbitrary
sequence of statements may be included in the alternative following the accept §9.7.1(5–6). The
body of the accept statement for Wake is empty because it serves simply as a synchronization
point. The sequence of statements following the accept statement implements the CEO’s algo-
rithm: the employees are invited in, allowed to consult with the CEO and are then shown out.

63 task body CEO is
64 I: ID_Numbers;
65 begin
66 loop
67 Put_Line("CEO is playing golf");
68 select
69 accept Wake(Finance);
70 for N in 1..Group_Size(Finance) loop
71 accept Invite_In(Finance)(ID: ID_Numbers) do
72 I := ID;
73 end Invite_In;
74 Put_Line("Accountant "&ID_Numbers’Image(I)&" in office");
75 end loop;
76 Put_Line("CEO is talking");

13.4 Case study: the CEO problem 214

77 for N in 1..Group_Size(Finance) loop
78 accept Show_Out(Finance)(ID: ID_Numbers) do
79 I := ID;
80 end Show_Out;
81 Put_Line("Accountant "&ID_Numbers’Image(I)&" left office");
82 end loop;
83 Finance_Room.Open_Door;
84 or
85 when Wake(Finance)’Count = 0 =>
86 accept Wake(Marketing);
87 for N in 1..Group_Size(Marketing) loop
88 accept Invite_In(Marketing)(ID: ID_Numbers) do
89 I := ID;
90 end Invite_In;
91 Put_Line("Salesperson "&ID_Numbers’Image(I)&" in office");
92 end loop;
93 Put_Line("CEO is shouting");
94 for N in 1..Group_Size(Marketing) loop
95 accept Show_Out(Marketing)(ID: ID_Numbers) do
96 I := ID;
97 end Show_Out;
98 Put_Line("Salesperson "&ID_Numbers’Image(I)&" left office");
99 end loop;

100 Marketing_Room.Open_Door;
101 or
102 when Wake(Finance)’Count = 0 and
103 Wake(Marketing)’Count = 0 =>
104 accept Wake(Engineering);
105 for N in 1..Group_Size(Engineering) loop
106 accept Invite_In(Engineering)(ID: ID_Numbers) do
107 I := ID;
108 end Invite_In;
109 Put_Line("Engineer "&ID_Numbers’Image(I)&" in office");
110 end loop;
111 Put_Line("CEO is screaming");
112 for N in 1..Group_Size(Engineering) loop
113 accept Show_Out(Engineering)(ID: ID_Numbers) do
114 I := ID;
115 end Show_Out;
116 Put_Line("Engineer "&ID_Numbers’Image(I)&" left office");
117 end loop;
118 Engineering_Room.Open_Door;

13.4 Case study: the CEO problem 215

119 or
120 terminate;
121 end select;
122 end loop;
123 end CEO;

The employee task types are very simple: an employee who needs to consult with the CEO regis-
ters at the department waiting room, waits until invited in and then receives orders from the CEO
until shown out. Note that each task declaration has a discriminant that is used to give the task its
ID number. The delay statements are used to introduce some asymmetry in the execution of the
program.

124 task type Engineer_Task(ID: ID_Numbers);
125 task body Engineer_Task is
126 begin
127 loop
128 Put_Line("Engineer "&ID_Numbers’Image(ID)&" debugging");
129 delay 1.0;
130 Engineering_Room.Register;
131 CEO.Invite_In(Engineering)(ID);
132 Put_Line("Engineer "&ID_Numbers’Image(ID)&" receiving orders");
133 CEO.Show_Out(Engineering)(ID);
134 end loop;
135 end Engineer_Task;
136

137 task type Finance_Task(ID: ID_Numbers);
138 task body Finance_Task is
139 begin
140 loop
141 Put_Line("Accountant "&ID_Numbers’Image(ID)&" calculating");
142 delay 4.0;
143 Finance_Room.Register;
144 CEO.Invite_In(Finance)(ID);
145 Put_Line("Accountant "&ID_Numbers’Image(ID)&" receiving orders");
146 CEO.Show_Out(Finance)(ID);
147 end loop;
148 end Finance_Task;
149

150 task type Marketing_Task(ID: ID_Numbers);
151 task body Marketing_Task is
152 begin
153 loop
154 Put_Line("Salesperson "&ID_Numbers’Image(ID)&" talking");
155 delay 2.0;
156 Marketing_Room.Register;

13.4 Case study: the CEO problem 216

157 CEO.Invite_In(Marketing)(ID);
158 Put_Line("Salesperson "&ID_Numbers’Image(ID)&" receiving orders");
159 CEO.Show_Out(Marketing)(ID);
160 end loop;
161 end Marketing_Task;

The tasks are allocated dynamically in loops so that each employee receives a distinct ID as a
discriminant constraint in the allocator ‡172,175,178. Accesses to the tasks are stored in arrays so
that the employees can be fired by using the abort statement. The CEO task will terminate because
it has a terminate alternative ‡120. These constructs are explained in Section 14.1.

162 type Engineer_Ptr is access Engineer_Task;
163 type Finance_Ptr is access Finance_Task;
164 type Marketing_Ptr is access Marketing_Task;
165

166 Engineers: array(1..7) of Engineer_Ptr;
167 Accountants: array(1..5) of Finance_Ptr;
168 Salespersons: array(1..8) of Marketing_Ptr;
169

170 begin
171 for I in Engineers’Range loop
172 Engineers(I) := new Engineer_Task(ID_Numbers(I));
173 end loop;
174 for I in Accountants’Range loop
175 Accountants(I) := new Finance_Task(ID_Numbers(I));
176 end loop;
177 for I in Salespersons’Range loop
178 Salespersons(I) := new Marketing_Task(ID_Numbers(I));
179 end loop;
180

181 delay 15.0;
182 Put_Line("The company is bankrupt, fire everyone");
183

184 for I in Engineers’Range loop
185 abort Engineers(I).all;
186 end loop;
187 for I in Accountants’Range loop
188 abort Accountants(I).all;
189 end loop;
190 for I in Salespersons’Range loop
191 abort Salespersons(I).all;
192 end loop;
193 end CEOT;

13.5 Entry families 217

13.5 Entry families

There are separate doors to the waiting rooms of each department and separate ‘doorbells’ to
awake the the CEO from his golf practice. Rather than declare a single entry for each department,
task CEO is declared with entry families Wake, Invite_In and Show_Out ‡13–15.

§9.5.2
2 entry_declaration ::=

entry defining_identifier

[(discrete_subtype_definition)] parameter_profile;

§9.5.220 An entry_declaration with a discrete_subtype_definition (see 3.6) declares a
family of distinct entries having the same profile, with one such entry for each value
of the entry index subtype defined by the discrete_subtype_definition. A name for
an entry of a family takes the form of an indexed_component, where the prefix de-
notes the entry_declaration for the family, and the index value identifies the entry
within the family. The term single entry is used to refer to any entry other than an
entry of an entry family.

According to §9.5.2(20), each entry of the family is a distinct entry with its own queue. Entry
families are somewhat like arrays of entries: calls and accept statements for an entry of a family
use indexed notation as shown in ‡106,131, etc. The index need not be constant, but it is not
possible to write an accept statement that will wait simultaneously on all entries of a family. If D
is a variable, accept Wake(D) waits for an entry call on the queue corresponding to the current
value of D. This construct was used to perform a rendezvous sequentially with each member of
the family. Of course you would only use this construct if you knew that each entry would actually
be called; otherwise, the program could deadlock. See Section 14.3 for other polling techniques,
and Section 13.8 for the rules for entry families of protected objects.

The guards ‡85 and ‡102–103 in the selective accept statement of the CEO task use the Count

attribute: E’Count gives the number of tasks currently waiting in the queue for entry E §9.9(4–
5). This is used to implement the precedence requirement: if the CEO returns from the golf
course and finds that more than one group is attempting to wake him, he will rendezvous with
Marketing_Group only if there are no tasks waiting in the queue for Wake(Finance_Group). The
guard for Engineering_Group is correspondingly more complex. Obviously, this programming
paradigm for precedence is inconvenient and inefficient if the size of the entry family is large.

The solution still does not satisfy the precedence requirement because of a subtle race condition.
See the discussion of pragma Queuing_policy ‡4 in Section 16.1.

13.6 Protected subprograms

The CEO task calls the protected procedure Open_Door ‡55–58 to indicate that the waiting room
for this group can be re-opened.

13.7 The requeue statement 218

§9.5.11 A protected subprogram is a subprogram declared immediately within a pro-

tected_definition. Protected procedures provide exclusive read–write access to the
data of a protected object; protected functions provide concurrent read-only access
to the data.

2 Within the body of a protected function (or a function declared immediately within
a protected_body), the current instance of the enclosing protected unit is defined
to be a constant (that is, its subcomponents may be read but not updated). Within
the body of a protected procedure (or a procedure declared immediately within a
protected_body), and within an entry_body, the current instance is defined to be
a variable (updating is permitted).

Unlike entries, protected procedures have no queues associated with them and a call is not blocked
once it passes the outer exclusion ‘shell’ of the protected object.

Several tasks can execute protected functions concurrently provided that no other task is executing
a protected procedure or entry §9.5.1(4–5). §9.5.1(2) prevents functions from modifying com-
ponents of the protected object, so no race conditions can result from this weakening of mutual
exclusion. Protected functions are usually used to return values of the private components:

function Crowded return Boolean is
begin
return Waiting >= Group_Size / 2;

end Crowded;

You can declare an access to a protected subprogram §3.10(11). This can be useful in the imple-
mentation of callbacks, as shown in Section 9.3.

13.7 The requeue statement

The implementation of the protected type Room is based on the concept of cascaded wakeup.
As employee tasks enter the room to register, the calls will be enqueued upon the private entry
Wait_for_Last_Member. Its barrier is closed, so the tasks will be blocked until the last task of
the group has registered and opened the barrier. Re-evaluation of the barrier will cause one of the
waiting tasks to become unblocked. Since there is nothing more to do in the body of the entry,
the protected action for the unblocked task will complete, causing re-evaluation of the barrier and
unblocking of another waiting task. This cascade of awakened tasks will continue until all tasks
enqueued on Wait_for_Last_Member are released and their protected actions completed. The
last released task will awaken the CEO.

13.7 The requeue statement 219

The requeue statement is used to implement this algorithm.

§9.5.41 A requeue_statement can be used to complete an accept_statement or en-

try_body, while redirecting the corresponding entry call to a new (or the same)
entry queue. . . .

2 requeue_statement ::= requeue entry_name [with abort];
8 For the execution of a requeue on an entry of a target task, after leaving the en-

closing callable construct, the named entry is checked to see if it is open and the
requeued call is either selected immediately or queued, as for a normal entry call
(see 9.5.3).

9 For the execution of a requeue on an entry of a target protected object, after leaving
the enclosing callable construct:

10 if the requeue is an internal requeue (that is, the requeue is back on an entry of the
same protected object—see 9.5), the call is added to the queue of the named entry
and the ongoing protected action continues (see 9.5.1);

Room contains examples of requeue on both task and protected entries. Let us start with the case
where employee tasks call Register.5 After incrementing Waiting ‡36, all but the last task in the
group will be requeued on the private entry Wait_for_Last_Member ‡38. The barrier of this
entry (Exit_Door=Open ‡46) is closed, so the calls will be enqueued §9.5.4(10). When the final
task executes Register, it will close the entrance door ‡41 and open the exit door ‡42.

Closing the entrance door closes the barrier Entrance=Open of entry Register ‡30 and prevents
other employees of the same type from overtaking the group that has been formed. Opening the
exit door opens the barrier of Wait_for_Last_Member ‡46; the protected action for the first
enqueued task will be executed and will decrement Waiting ‡48, leading to the cascade described
above. The last task will close the exit door ‡50 and requeue on the task entry CEO.Wake(De-

partment) ‡51 to awaken the CEO.

Requeue is essential if we want to avoid overtaking. Suppose that an group of accountants has
been formed, that is, the last task of the group has completed Wait_for_Last_Member. Without
requeue, the last accountant task would have to complete the protected action and then call the
entry CEO.Wake(Finance_Group) from within the sequence of statements of its task body:

Finance_Room.Register;
if I_am_Last_Member then CEO.Wake(Finance_Group); end if;
CEO.Invite_In(Finance)(ID);

This task could be preempted, so that it would be possible for a group of engineers to be formed and
enqueued on CEO.Wake(Engineering_Group) after the protected action Finance_Room.Register

completes, but before the call to CEO.Wake(Finance_Group) is issued. With requeue, the pro-
tected action of the last accountant task is not completed until the task entry call has been made and
immediately selected or enqueued. If it is enqueued, the guards on the accept statements prevent
overtaking.

5This explanation assumes that Group_Size is greater than one.

13.8 Rules for entries of protected types* 220

13.8 Rules for entries of protected types*

Formal parameters in barriers

§9.5.218 A name that denotes a formal parameter of an entry_body is not allowed within
the entry_barrier of the entry_body.

For example, in the protected object Buffer, we cannot refuse to append negative numbers by
writing:

entry Append(I: in Integer) when Count < Index’Last and I >= 0 is
- - Error, barrier cannot use formal parameter

The reason is that all calls on the queue for an entry are considered to be waiting for the same
event to occur. If you want calls to wait for distinct events, you should use different entries or
an entry family. Furthermore, allowing formal parameters in barrier would make it inefficient to
evaluate barriers, because the run-time system would have to scan the entry queue and re-evaluate
the barrier for each call. This way, the code executed for each barrier is fixed regardless of how
many calls are enqueued.

If blocking of a call really does depend on the formal parameters, you can call an entry with the
barrier True, examine the formal parameters within the body and requeue on other private entries.

Potentially blocking operations

A protected action is not allowed to invoke an operation that could result in blocking the calling
task within the protected action.

§9.5.18 During a protected action, it is a bounded error to invoke an operation that is poten-
tially blocking. . . .

Potentially blocking operations are listed in §9.5.1(9–16); in particular, calling an entry is poten-
tially blocking.

The bounded error need not be detected by the implementation §9.5.1(17)! Hopefully, you will get
an error or warning message from the compiler, but since the potentially blocking operation could
be invoked indirectly via a call on an arbitrary subprogram, it is impossible to catch all violations.
It is not too difficult to analyze your program for violations of this rule, because you normally
write very short protected operations which merely manipulate counters and state variables, rather
than invoking external subprograms or synchronization constructs.

13.8 Rules for entries of protected types* 221

Parameters of the requeue target

§9.5.43 The entry_name of a requeue_statement shall resolve to denote an entry (the
target entry) that either has no parameters, or that has a profile that is type con-
formant (see 6.3.1) with the profile of the innermost enclosing entry_body or ac-
cept_statement.

12 If the new entry named in the requeue_statement has formal parameters, then dur-
ing the execution of the accept_statement or entry_body corresponding to the
new entry, the formal parameters denote the same objects as did the correspond-
ing formal parameters of the callable construct completed by the requeue. In any
case, no parameters are specified in a requeue_statement; any parameter passing
is implicit.

The requeue efficiently continues the same protected action with no need to allocate or deallocate
local variables. In the case study, both requeues are to entries without parameters. The entry
family index in requeue CEO.Wake(Group) is not a parameter.

Internal and external requeues

A call or requeue can be to the same protected object—an internal call or requeue—or it can be
to a subprogram or entry of a different object—an external call or requeue §9.5(2–7). A call must
be to a subprogram, because a call to an entry is potentially blocking. An external call or requeue
uses the syntax of a selected component to distinguish it from an internal call or requeue: requeue
Wait_for_Last_Member is internal and legal, but requeue Room.Wait_for_Last_Member is
an external call to the same protected object and thus potentially blocking §9.5.1(15).

There is a minor difference in the semantics of internal and external requeues:

§9.5.410 if the requeue is an internal requeue (that is, the requeue is back on an entry of the
same protected object—see 9.5), the call is added to the queue of the named entry
and the ongoing protected action continues (see 9.5.1);

11 if the requeue is an external requeue (that is, the target protected object is not im-
plicitly the same as the current object—see 9.5), a protected action is started on the
target object and proceeds as for a normal entry call (see 9.5.3).

An external requeue will initiate a new protected action including an evaluation of the barrier; if
the barrier is true, the requeued task will immediately begin executing the entry body. An internal
requeue is merely enqueued on the the existing queue; then, as part of the completion of the
protected action, the barrier will be re-evaluated. The requeued task will receive no precedence
over tasks already enqueued on the entry.

Families of protected entries

An entry family can be declared in a protected unit; like an entry family for a task, it can be
considered as if it were an array of entries. The syntax of the entry body is different from the

13.8 Rules for entries of protected types* 222

syntax for accept statements. One entry body with an entry_index_specification defines the
common code for processing all entries in the family.

§9.5.2
5 entry_body ::=

entry defining_identifier entry_body_formal_part

entry_barrier is
declarative_part

begin
handled_sequence_of_statements

end [entry_identifier];

6 entry_body_formal_part ::=

[(entry_index_specification)] parameter_profile

7 entry_barrier ::= when condition

8 entry_index_specification ::=

for defining_identifier in discrete_subtype_definition

The following declaration of E1 declares a family of entries, each with one formal parameter.
There is a separate entry and queue for each member of the family. E2 declares a single entry with
two formal parameters.

entry E1(Departments)(I: in Integer);
entry E2(D: in Departments; I: in Integer);

The corresponding entry bodies are:

entry E1(for D in Departments)(I: in Integer) when Open is . . .
entry E2(D: in Departments; I: in Integer) when Open is . . .

The barrier of E1 can depend on its entry index D, though, as we have seen, the barrier of E2

cannot depend on its formal parameter D.

14 Advanced Concurrency

14.1 Activation and termination

§910 Over time, tasks proceed through various states. A task is initially inactive; upon
activation, and prior to its termination it is either blocked (as part of some task
interaction) or ready to run. While ready, a task competes for the available execution
resources that it requires to run.

Activation

It is important to distinguish between the elaboration of a task and its activation. Elaboration is
performed as part of the elaboration of the enclosing package, subprogram or task. Elaboration
of the task declaration can set its priority §D.1 and the amount of storage allocated for the task
§13.3(61); elaboration of the task body essentially does nothing §9.1(13). Activation creates the
task and allows it to begin execution, or at least to compete for the available execution resources.
The rules for task activation §9.2 can be summarized as follows:

• Task objects (such as the producer and consumer tasks) are activated before the enclosing unit
begins executing its statements §9.2(3). The enclosing unit does not begin executing until all
its tasks have been activated §9.2(5).

• Task created by allocators (such as the employee tasks in the CEO program) are activated as
part of the evaluation of the allocator §9.2(4).

The rationale for these rules is that during activation of a task, the elaboration of declarations in
the task body §9.2(1) may raise an exception; similarly, the enclosing unit may raise an exception
after elaborating the task §9.2(5–6). The rules ensure that the state of the tasks is well-defined.

Termination

Termination of tasks is defined in terms of a dependency tree. Each task depends on one or
more masters §9.3(1), which are enclosing dynamic constructs such as a subprograms or tasks
§7.6.1(3). The main subprogram is a task declared in an anonymous environment task §10.2(8).
Tasks declared in library packages are also considered to be dependent on this master. The pro-
ducer, consumer and buffer tasks were declared within the main subprogram and depend upon
it. Tasks created by allocators (such as the employee tasks) depend on the master containing the

223

14.1 Activation and termination 224

declaration of the access type §9.3(2). The reason is that the task can live as long as the type lives;
it can even become a garbage task:

E := new Engineer_Task(7);
E := null;

A task cannot terminate until all dependent tasks have terminated.

§9.35 A task is said to be completed when the execution of its corresponding task_body is
completed. A task is said to be terminated when any finalization of the task_body

has been performed (see 7.6.1). The first step of finalizing a master (including a
task_body) is to wait for the termination of any tasks dependent on the master.
The task executing the master is blocked until all the dependents have terminated.
Any remaining finalization is then performed and the master is left.

§9.3(5) explains why we could write a null body for the main subprogram of the producer–
consumer program. The main subprogram is a master, and the producer and consumer tasks
depend on it, so the main subprogram cannot terminate until they do. The producer completes
when it completes the statements of its task body. Since the consumer tasks never complete, the
main subprogram waits indefinitely, as does the environment task that contains it. The program is
deadlocked and the execution must be stopped by an operating system command such as CTRL-C.

How can server tasks such as Buffer and CEO be terminated. Almost by definition, a server task
does not know when it has finished serving all potential clients. One possibility is to declare a
special entry that can be used to signal the server:

loop
select
accept Append(I: in Integer) do . . .

or
accept Take(I: out Integer) do . . .

or
accept Stop;
exit;

end select;
end loop;

A better solution is to use the terminate alternative §9.7.1(7) on the selective accept statement. See
‡119–120 of the CEO program for an example. If every task that could possibly call the entries
of the server task is completed (or also waiting on a selective accept statement with a terminate
alternative), the server task becomes completed §9.3(6).

A protected object is not a task, so there is no question of its ‘terminating’. However, tasks can
be blocked on its entry queues, and these tasks cannot be completed until they complete the entry
call. Either you must explicitly program a protected operation that will free the tasks, or you must
abort the blocked tasks.

14.1 Activation and termination 225

Aborting a task

§9.81 An abort_statement causes one or more tasks to become abnormal, thus prevent-
ing any further interaction with such tasks. . . .

2 abort_statement ::= abort task_name {, task_name};

In the CEO program, we abort all the employee tasks because they contain infinite loops. Task
CEO need not be aborted, because it contains a selective accept statement with a terminate alter-
native. Once the employee tasks are terminated and the main subprogram is completed, there are
no longer any potential callers, so the CEO task can complete and terminate.

An abort statement is not a sledgehammer which blindly destroys tasks. The semantics of the
statement ensure—as far as practicable—that the overall consistency of the tasks in a program is
maintained even if one or more are aborted.

§9.85 When the execution of a construct is aborted (including that of a task_body or of
a sequence_of_statements), the execution of every construct included within the
aborted execution is also aborted, except for executions included within the exe-
cution of an abort-deferred operation; the execution of an abort-deferred operation
continues to completion without being affected by the abort; . . .

Abort-deferred operations are listed in §9.8(6–11). In particular, protected actions and rendezvous
are abort-deferred so that the state of the protected unit or accepting task remains consistent.

Furthermore, the implementation need not perform the abort immediately; instead, it can defer the
abort to places that actually affect the synchronization of the program.

§9.815 If the execution of an entry call is aborted, an immediate attempt is made to cancel
the entry call (see 9.5.3). If the execution of a construct is aborted at a time when
the execution is blocked, other than for an entry call, at a point that is outside
the execution of an abort-deferred operation, then the execution of the construct
completes immediately. . . . Other than for these immediate cases, the execution of a
construct that is aborted does not necessarily complete before the abort_statement

completes. However, the execution of the aborted construct completes no later than
its next abort completion point (if any) that occurs outside of an abort-deferred
operation; . . .

Abort completion points are listed in §9.8(16–19); examples are the start or end of an entry call or
accept statement.

A task that is in an entry queue is immediately aborted, because the task has yet to affect the
accepting task or protected object. The question now arises: What about a task that has executed
requeue? On one hand, the task has already started a protected action and should be allowed to
complete it. On the other hand, the task could be indefinitely blocked and presumably we had
a good reason to abort it. The language does not attempt to choose between these alternatives;
instead, when you write a requeue statement, you can choose whether to allow the abort to cancel
the call, or whether the call should be protected against cancellation §9.5.4(13–16). In the CEO

14.2 Exceptions 226

program, the abort statement is used ‡185,188,191 when all employees are being fired and the
company shut down, so we choose to allow cancellation by specifying with abort on the requeue
statement ‡34,38,51.

Task attributes

The attribute T’Callable §9.9(2) can be used to check if an entry of task T can be called, that is, if
the task is not completed or abnormal. Similarly, T’Terminated §9.9(3) checks if T is terminated
or not.

14.2 Exceptions

There are special rules for exceptions that occur in multitasking programs. An exception in a task
should not affect another task:

§11.43 When an exception occurrence is raised by the execution of a given construct, the
rest of the execution of that construct is abandoned; . . . Then:

4 If the construct is a task_body, the exception does not propagate further;

It is good practice to include an exception handler in every task body; otherwise, an exception will
cause the task to terminate silently while the rest of the program continues to execute.

If two tasks are engaged in a common action such as a rendezvous, both tasks should be allowed
to handle the exception:

§9.5.326 If an exception is raised during the execution of an entry_body, it is propagated to
the corresponding caller (see 11.4).

The predefined exception Tasking_Error is used to signal inconsistencies in the tasks of a pro-
gram; in particular, calling a task that has already completed or become abnormal raises Task-

ing_Error §9.5.3(21). The exception is also raised in case of problems during task activation; see
§9.2(5) for details. Certain catastrophic errors cause Program_Error to be raised: an exception in
the evaluation of a barrier §9.5.3(17), and a selective accept statement with no open alternatives
§9.7.1(21). You should keep barrier and guard expressions very simple so that you can prove that
these problems will not occur.

14.3 Time

So far we have discussed concurrency in terms of arbitrary interleaving of execution sequences.
Most real programs, of course, will have timing constraints. In this section, we present the core
concepts of time in Ada; extensions for real-time programming are discussed in Section 16.3.

There are two concepts that must be clearly distinguished: a point in time given by the private type
Time declared in package Ada.Calendar §9.6(8,10), and an interval between two points in time is

14.4 Periodic tasks 227

given by the predefined fixed point type Duration §10.1(43) and §9.6(7) (Figure 14.1). The func-
tion Clock §9.6(12,23) returns the current time, and package Ada.Calendar contains subprograms
§9.6(13–15, 24–25) for decomposing a value of type Time into year, month, day and seconds,
and conversely for creating a value of type Time from these values.

T1: Time T2: Time

D: Duration

D := T2 − T1;

T2 := T1 + D;

Figure 14.1: Time and Duration

The types Time and Duration are closely connected, in that appropriate arithmetical and relational
operations are defined on them §9.6(16–17). For example:

function "-"(Left: Time; RIght: Time) return Duration;

gives the interval between two points of time.

Values of types Time and Duration are used to specify delays.

§9.61 A delay_statement is used to block further execution until a specified expiration
time is reached. The expiration time can be specified either as a particular point
in time (in a delay_until_statement), or in seconds from the current time (in a
delay_relative_statement). . . .

2 delay_statement ::=

delay_until_statement | delay_relative_statement

3 delay_until_statement ::= delay until delay_expression;

4 delay_relative_statement ::= delay delay_expression;

21 The task executing a delay_statement is blocked until the expiration time is
reached, at which point it becomes ready again. If the expiration time has already
passed, the task is not blocked.

A task is unblocked upon expiration of the delay, but there is no guarantee that the task is scheduled
immediately. In other words, the delay is a lower bound on the interval that the task will not be
running. Even if the task is not blocked because the delay is zero or negative, the statement is
meaningful: it is an abort completion point §9.8(18), and it can cause a context switch. In fact,
delay 0.0 is a convenient way to call the scheduler.

14.4 Periodic tasks

Control algorithms are implemented by periodic tasks that use delay statements to execute sub-
programs at predetermined time intervals, rather than ‘as fast as possible’.

14.4 Periodic tasks 228

Case study: periodic task with delay

The following program prints ‘*’ every 0.2 seconds. Clock is called ‡12 to obtain the current time
and then the Interval of type Duration ‡11 is added to obtain the Time of the Next execution of
the periodic task. The program executes a delay_until_statement with this time; upon expiration
of the delay, the ‘algorithm’ is executed ‡17 and then the Next wakeup time is computed ‡18.

- - File: PERIOD1 - -
2 - - Periodic task.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Calendar; use Ada.Calendar;
6 procedure Period is
7 Start, Stop: Time;
8

9 task Periodic;
10 task body Periodic is
11 Interval: constant Duration := 0.2;
12 Next: Time := Clock + Interval;
13 begin
14 Start := Clock;
15 for N in 1..50 loop
16 delay until Next;
17 Put(’*’);
18 Next := Next + Interval;
19 end loop;
20 Stop := Clock;
21 end Periodic;
22

23 begin
24 loop
25 exit when Periodic’Terminated;
26 delay 0.0;
27 end loop;
28 New_Line;
29 Put_Line("Elapsed time = " & Duration’Image(Stop-Start));
30 end Period;

Additional tasks could be declared to run in the background while the periodic task is blocked. The
delay_until_statement ensures that the program is self-synchronizing, regardless of the variabil-
ity of the computation represented by the Put statement. Furthermore, even if the periodic task
is not immediately scheduled after the delay has expired, a shorter delay will be computed on the
next period.

You do not want to replace the delay_until_statement with the delay_relative_statement:

delay Interval;

14.4 Periodic tasks 229

The periodic task will then be executed once every Interval seconds plus the number of seconds
it takes to execute the computation plus the number of seconds that the task is ready but not
scheduled!

It is less obvious, but you also don’t want to write:

delay Next-Clock;

because a race condition could occur. Suppose that the task were preempted after evaluating Clock,
but before evaluating the subtraction. The interval during which the task was blocked would not
be taken into account in the computation of the delay.

Implementation of Time and Duration**

As with all fixed point types, there is a tradeoff between range and precision in the implementation
of Duration. The requirements are as follows:

§9.627 The implementation of the type Duration shall allow representation of time intervals
(both positive and negative) up to at least 86400 seconds (one day); Duration’Small
shall not be greater than twenty milliseconds. . . .

30 Whenever possible in an implementation, the value of Duration’Small should be no
greater than 100 microseconds.

Twenty milliseconds is achievable using the 50–60 Hz frequency of ordinary alternating-current
electricity. However, almost all computers have an electronic time base, so the 100 microsecond
precision should be easy to implement. Time can represent at least all dates between the years
1901 and 2099 §9.6(11) with a precision given in seconds by System.Tick §13.7(30).

There is an additional tradeoff between efficiency and the rate at which the clock is updated.

§9.623 The time base associated with the type Time of package Calendar is implementation
defined. The function Clock of package Calendar returns a value representing the
current time for this time base. The implementation-defined value of the named
number System.Tick (see 13.7) is an approximation of the length of the real-time
interval during which the value of Calendar.Clock remains constant.

35 There is no necessary relationship between System.Tick (the resolution of the clock
of package Calendar) and Duration’Small (the small of type Duration).

Duration might have enough precision to store time intervals down to single microseconds, but
for efficiency the clock may be ‘ticked’ only once every 50 microseconds.

A time base is monotonic if the value of Clock never decreases. Clock may not be if the computer
system clock is adjusted because the system is flown from one time zone to another or because of
daylight savings time.

§9.631 The time base for delay_relative_statements should be monotonic; it need not be
the same time base as used for Calendar.Clock.

14.5 Timed and conditional entry calls 230

Time and Duration have relatively large ranges with reasonable precision and are sufficient for
‘ordinary’ timing requirements, such as financial computations and tasks with periods in the tens
of milliseconds. More precise timing is available if your system supports Annex §D ‘Real-Time
Systems’ (Section 16.1).

14.5 Timed and conditional entry calls

Delays can be used to implement polling. In this programming technique, rather than having a task
block while waiting for an event to occur, the task periodically checks for the occurrence of the
event. The event that we can check for is to see if an entry call can be accepted either immediately,
or within a specified period of time; if not, the task performs some alternate computation. Be
careful not to confuse this construct with the selective accept statement, which has a similar syntax
(Sections 13.3 and 14.7). A timed or conditional entry call is used in the calling task, not the
accepting task; the calling task cannot block waiting for one of several calls to be accepted.

§9.7.2
2 timed_entry_call ::=

select
entry_call_alternative

or
delay_alternative

end select;

§9.7.2
3 entry_call_alternative ::=

entry_call_statement [sequence_of_statements]

4 For the execution of a timed_entry_call, the entry_name and the actual param-
eters are evaluated, as for a simple entry call (see 9.5.3). The expiration time
(see 9.6) for the call is determined by evaluating the delay_expression of the de-

lay_alternative; the entry call is then issued.
5 If the call is queued (including due to a requeue-with-abort), and not selected before

the expiration time is reached, an attempt to cancel the call is made. If the call
completes due to the cancellation, the optional sequence_of_statements of the
delay_alternative is executed; if the entry call completes normally, the optional
sequence_of_statements of the entry_call_alternative is executed.

By specifying a zero delay, the call is cancelled if it cannot be immediately accepted. There is a
special syntax for this case, called a conditional entry call that uses the reserved word else instead
of or.

Mixing a timed or conditional entry call with the entry attribute E’Count can be dangerous §9.9(7–
8). If you write a guard like when E’Count>0, it is possible that between the time that the
accepting task evaluates E’Count and the time it executes the accept statement, the task on the
queue was cancelled. This can lead to deadlock if the cancelled task was the only caller.

14.5 Timed and conditional entry calls 231

Case study: periodic task with conditional entry call

Polling is demonstrated in the following program, where task User represents a background com-
putation concurrent with the periodic task. The program prints ‘*’ every 0.2 seconds unless a key
is pressed.

- - File: COND1 - -
2 - - Conditional entry call.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Calendar; use Ada.Calendar;
6 procedure Cond is
7

8 task User is
9 entry Trigger;

10 end User;
11 task body User is
12 C: Character;
13 Available: Boolean;
14 begin
15 loop
16 Get_Immediate(C, Available);
17 if Available then
18 accept Trigger;
19 New_Line;
20 Put_Line("User trigger");
21 exit;
22 else
23 delay 0.0;
24 end if;
25 end loop;
26 end User;
27

28 Period: constant Duration := 0.2;
29 Next: Time := Clock + Period;
30 begin
31 for N in 1..50 loop
32 select
33 User.Trigger;
34 exit;
35 else
36 delay until Next;
37 Put(’*’);
38 Next := Next + Period;
39 end select;
40 end loop;

14.6 Asynchronous transfer of control* 232

41 if not User’Terminated then abort User; end if;
42 end Cond;

Before each iteration ‡31–40, the periodic task uses a conditional entry call ‡32–39 to check if task
User is willing to accept a call on the entry Trigger ‡9. The User task calls Get_Immediate ‡16, a
non-blocking input procedure §A.10.7(11–12). If you press a key, the body of the if-statement is
executed and the task blocks on the accept statement ‡18. A rendezvous with the conditional call
‡33 will take place during the next iteration of the periodic task. If you do not press a key, User
will execute indefinitely, so we abort it ‡41 when the periodic task completes. The delay statement
‡23 is used to ensure that the task reaches an abort completion point §9.8(15–19) so that the abort
can take effect.

14.6 Asynchronous transfer of control*

The problem with the example in Section 14.5 is that the periodic task must explicitly poll the
user task to check for the trigger. A preferable solution would be to have the user task interrupt
the execution of the periodic task when the triggering event occurs. This can be done with an
asynchronous transfer of control (ATC) §9.7.4.

Case study: periodic task with ATC

- - File: ASYNC1 - -
2 - - Asynchronous transfer of control.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Calendar; use Ada.Calendar;
6 procedure Async is
7

8 task User is
9 entry Trigger;

10 end User;
11 task body User is
12 C: Character;
13 Available: Boolean;
14 begin
15 loop
16 Get_Immediate(C, Available);
17 if Available then
18 accept Trigger;
19 New_Line;
20 Put_Line("User trigger");
21 exit;

14.7 Alternatives for selective accept 233

22 else
23 delay 0.0;
24 end if;
25 end loop;
26 end User;
27

28 Period: constant Duration := 0.2;
29 Next: Time := Clock + Period;
30 begin
31 select
32 User.Trigger;
33 Put_Line("Triggering alternative taken");
34 then abort
35 for N in 1..50 loop
36 delay until Next;
37 Put(’*’);
38 Next := Next + Period;
39 end loop;
40 abort User;
41 end select;
42 end Async;

The ATC construct is composed of two parts: the abortable part ‡35–40 and the triggering alter-
native ‡32–33. If the triggering alternative, (here an entry call) completes normally, the abortable
part is aborted. This will happen if you press a key so that the call User.Trigger ‡32 is accepted
‡18. Otherwise, the abortable part is executed to completion.

The triggering alternative can also be a delay statement; when the delay expires, the abortable part
is aborted. The precise semantics of this construct are explored in Quiz 66.

Asynchronous transfer of control has many uses. It can be used to interrupt a computation when
an external event occurs, or to implement a ‘watchdog’ that terminates a computation that is appar-
ently non-terminating. In a real-time system, it can be used to allow as much time as is available
to perform a difficult computation, while using a partial result when a time interval expires or an
event occurs.

14.7 Alternatives for selective accept

We have seen that a selective accept statement may have a terminate alternative. It may also
have a delay alternative or an else-part, which can be used to implement timeouts or polling in
an accepting task §9.7.1(10–11). For example, we could modify the CEO task to include a delay
alternative:

14.8 Case study: concurrent simulation 234

- - File: CEOD1 select
2 accept Wake(Finance_Group);
3 . . .
4 or
5 when Wake(Finance_Group)’Count = 0 =>
6 accept Wake(Marketing_Group);
7 . . .
8 or
9 when Wake(Finance_Group)’Count = 0 and

10 Wake(Marketing_Group)’Count = 0 =>
11 accept Wake(Engineering_Group);
12 . . .
13 or
14 delay 1.0;
15 Put_Line("Flying to new golf course");
16 end select;

If no group calls one of the Wake entries within one second, the CEO flies away to a try a new
golf course. Alternatively, delay-until could be used to have the CEO wait until three o’clock and
then fly away.

A real application of this technique would be an alarm system that receives periodic messages
from a sensor. If no message is received within a given time interval, the system can assume that
the line has been cut and can raise an alarm.

An else-part can be used to allow the accepting task to perform a computation if there are no
calling tasks that can be immediately accepted. If all alternatives are closed and there is an else-
part, Program_Error will not be raised §9.7.1(21). A terminate alternative, one or more delay
alternatives and an else-part are mutually exclusive §9.7.1(12). You will want to read §9.7.1
carefully if you plan to use these constructs.

14.8 Case study: concurrent simulation

This section presents a concurrent version of the discrete event simulation. Instead of creating all
the events before running the simulation, the two parts of the program will run concurrently. In
fact, each subsystem will create events concurrently. The program will be sufficiently general so
that several independent simulations could be run within the same program.

Figure 14.2 shows the simulation framework. As before, package Root_Event provides the ab-
stract tagged type Event and the abstract procedure Simulate. A ‘simulation’ is defined by a child
package Root_Event.Simulation that declares a Producer type. This type contains the data asso-
ciated with a single simulation: a Queue (with a protected component Lock to synchronize access
by the event creators and the task doing the simulation), a random number Generator and an indi-
cation of the Latest simulated time already used, so that a monotonic sequence of events can be
created. The interface to the queue is through subprograms Put and Get that take parameters of
type Producer, rather than of the encapsulated Queue.

14.8 Case study: concurrent simulation 235

type Event

procedure Simulate

type Producer
Queue
Lock

Generator
Latest

procedure Put
function Get

type X_Event

procedure Simulate

task type Create
(P: access Producer)

Root_Event
Root_Event.
Simulation

Root_Event.
Simulation.X

Root_Event.
Simulation.X.Creator

Figure 14.2: Concurrent simulation framework

For each subsystem X to be simulated, a child package Root_Event.Simulation.X is declared
containing the derived events and the overridden Simulate procedure. A further child package
declares a type for a task that Create’s events. This task takes an access discriminant to the
Producer object of this simulation so that it knows where to enqueue the event.

We now specialize the simulation framework for the rocket. The usual derived types and simu-
lation subprograms are declared, followed by package Rocket_Simulation (Figure 14.3). This
package contains a Producer object and Create objects (tasks) for each derived type. The tasks
create objects concurrently and enqueue them.

Rocket_Simulation

R: Producer

Steering_
Create

Engine_
Create

Telemetry_
Create

6 6 6

Rocket

loop
Simulate(Get(R’Access));

end loop;

-

Figure 14.3: Concurrent rocket simulation

The main subprogram Rocket contains the standard simulation loop. It removes events one-by-
one from the producer R and dispatches to the appropriate Simulate procedure. The creators are
‘free-running’, using delay statements to regulate the rate of event creations; the simulation loop
runs continuously, blocking on the queue’s Lock if the queue is empty.

To generalize to more than one simultaneous simulation, you can declare another simulation pack-
age with a Producer object. Instead of a single loop directly within the main subprogram (which
is in fact a task), you would place each simulation loop in a separate task.

We now present the essential part of the source code for the concurrent rocket simulation. The
most important package is Root_Event.Simulation.

14.8 Case study: concurrent simulation 236

- - File: ROCKETT1 - -
2 - - Discrete event simulation of a rocket.
3 - - Creation of events concurrently with simulation.
4 - -
5 with Heterogeneous_Priority_Queue;
6 with Ada.Numerics.Discrete_Random;
7 package Root_Event.Simulation is
8 type Producer is limited private;
9

10 procedure Put(E: in Event’Class; P: in out Producer);
11 function Get(P: access Producer) return Event’Class;
12 private
13 package Event_Queue is new
14 Heterogeneous_Priority_Queue(Event’Class);
15 package Random_Time is new
16 Ada.Numerics.Discrete_Random(Natural);
17

18 type Producer is
19 record
20 Queue: aliased Event_Queue.Queue;
21 Generator: Random_Time.Generator;
22 Latest: Simulation_Time := Simulation_Time’First;
23 end record;
24

25 function Random(P: Producer) return Natural;
26 function Random_Update(P: access Producer) return Simulation_Time;
27 - - Return a random time greater than Latest and update Latest
28 end Root_Event.Simulation;

The package exports only the type Producer ‡8 and its two subprograms Put and Get ‡10–11. The
type has three fields ‡20–22: a Queue implemented by instantiating a generic package ‡13–14, a
random number Generator obtained by instantiating the library package Discrete_Random ‡15–

16, and the Latest time component. The generic package Heterogeneous_Priority_Queue (not
shown) contains, in addition to the binary tree, a protected type Lock. The private subprograms
Random and Random_Update ‡25–26 are used by the (grand-)child packages to create events.

The child packages that declare the event types are familiar except that they contain only the
Simulate procedure, not the Create function. Creation of events is done in a Creator child package
such as the following one for Steering.

29 package Root_Event.Simulation.Steering.Creator is
30 type Create(P: access Producer) is limited private;
31 private
32 task type Create(P: access Producer);
33 end Root_Event.Simulation.Steering.Creator;
34

14.8 Case study: concurrent simulation 237

35 package body Root_Event.Simulation.Steering.Creator is
36 task body Create is
37 function Create_Event return Steering_Event is . . .
38 begin
39 loop
40 Put(Create_Event, P.all);
41 delay 1.0;
42 end loop;
43 end Create;
44 end Root_Event.Simulation.Steering.Creator;
45

The package exports a type Create ‡30, which is implemented by a task type ‡32. The access
discriminant P is used to pass the Producer object to the task. The task itself simply executes
a loop calling Create_Event ‡37 to create a random event and placing the event on the queue
encapsulated in the producer ‡40.

Package Rocket_Simulation declares and exports a Producer object R ‡49 and declares and hides
the creators ‡57–59. Pragma Elaborate_Body ‡48 is required because there are no declarations
in the specification that require completions in a body, but we want the body with the hidden
declarations to be elaborated. An access to the producer object R is passed to each creator.

46 with Root_Event.Simulation;
47 package Rocket_Simulation is
48 pragma Elaborate_Body;
49 R: aliased Root_Event.Simulation.Producer;
50 end Rocket_Simulation;
51

52 end Root_Event.Simulation.Steering;
53 with Root_Event.Simulation.Telemetry.Creator;
54 with Root_Event.Simulation.Engine.Creator;
55 with Root_Event.Simulation.Steering.Creator;
56 package body Rocket_Simulation is
57 T: Root_Event.Simulation.Telemetry.Creator.Create(R’Access);
58 E: Root_Event.Simulation.Engine.Creator.Create(R’Access);
59 S: Root_Event.Simulation.Steering.Creator.Create(R’Access);
60 begin
61 null;
62 end Rocket_Simulation;

14.9 Tasks as access discriminants** 238

Finally, the main subprogram just contains the simulation loop:

63 with Root_Event.Simulation;
64 with Rocket_Simulation;
65 procedure RocketT is
66 begin
67 loop
68 Root_Event.Simulate(
69 Root_Event.Simulation.Get(
70 Rocket_Simulation.R’Access));
71 end loop;
72 end RocketT;

14.9 Tasks as access discriminants**

An access discriminant can be an access to a task type. The following program shows how
access discriminants can be used to configure a set of tasks at run-time. There is one task of
type Main_Task ‡13–17, which will call an entry of two worker tasks in succession ‡15–16.
Main_Task has two access discriminants Left and Right ‡8, which are initialized with accesses to
tasks of type Worker_Task. Note the implicit dereferencing in the entry calls to the worker tasks
‡15–16.

- - File: CONFIG1 - -
2 - - Access discriminants used for task configuration.
3 - -
4 package Tasks is
5 task type Worker_Task(ID: Character) is
6 entry Input;
7 end Worker_Task;
8 task type Main_Task(Left, Right: access Worker_Task);
9 end Tasks;

10

11 with Ada.Text_IO;
12 package body Tasks is
13 task body Main_Task is
14 begin
15 Left.Input;
16 Right.Input;
17 end Main_Task;
18

14.9 Tasks as access discriminants** 239

19 task body Worker_Task is
20 begin
21 accept Input do
22 Ada.Text_IO.Put_Line(ID & " called");
23 end Input;
24 end Worker_Task;
25 end Tasks;
26

27 with Tasks;
28 procedure Config is
29 W1: aliased Tasks.Worker_Task(’A’);
30 W2: aliased Tasks.Worker_Task(’B’);
31 M: Tasks.Main_Task(W2’Access, W1’Access);
32 begin
33 null;
34 end Config;

Here the main task M ‡31 is declared as an object in the main subprogram and initialized with
worker tasks W1 and W2 ‡29–30. In a real application, the main task would be dynamically
allocated and the worker tasks would be determined at run-time.

Simulating dispatching on entries

Access discriminants can be used to simulate dispatching on entry calls. The following program
demonstrates how an access value to a task can be obtained from a heterogeneous data structure,
and used to call an entry (Figure 14.4).

Input-

Input-

W2

W1

C2

C1

Figure 14.4: ‘Dispatching’ on task entries

Two task types Worker_1 and Worker_2 ‡5–7, 10–12 are declared, as well as access types
W1_Ptr and W2_Ptr ‡8, 13 to the task types. The tasks just print their identifications.

- - File: DISPTASK1 - -
2 - - Access discriminants for "dispatching" to an entry.
3 - -
4 package Tasks is
5 task type Worker_1 is
6 entry Input;
7 end Worker_1;

14.9 Tasks as access discriminants** 240

8 type W1_Ptr is access Worker_1;
9

10 task type Worker_2 is
11 entry Input;
12 end Worker_2;
13 type W2_Ptr is access Worker_2;
14 end Tasks;
15

16 with Ada.Text_IO;
17 package body Tasks is
18 task body Worker_1 is
19 begin
20 accept Input do
21 Ada.Text_IO.Put_Line("Worker 1");
22 end Input;
23 end Worker_1;
24

25 task body Worker_2 is
26 begin
27 accept Input do
28 Ada.Text_IO.Put_Line("Worker 2");
29 end Input;
30 end Worker_2;
31 end Tasks;

Types W1_Channel and W2_Channel ‡40–41,44–45 contain an access discriminant to the re-
spective task type. These types are derived from the tagged type Channel ‡33, and override ‡42,46
the abstract dispatching subprogram Output ‡34. This subprogram does nothing more than call
an entry of the task pointed to by the access discriminant ‡52,57.

32 package Channels is
33 type Channel is abstract tagged limited null record;
34 procedure Output(C: access Channel) is abstract;
35 type Channel_Ptr is access all Channel’Class;
36 end Channels;
37

38 with Tasks;
39 package Channels.Workers is
40 type W1_Channel(W: access Tasks.Worker_1) is
41 new Channel with null record;
42 procedure Output(C: access W1_Channel);
43

44 type W2_Channel(W: access Tasks.Worker_2) is
45 new Channel with null record;
46 procedure Output(C: access W2_Channel);
47 end Channels.Workers;

14.9 Tasks as access discriminants** 241

48

49 package body Channels.Workers is
50 procedure Output(C: access W1_Channel) is
51 begin
52 C.W.Input;
53 end Output;
54

55 procedure Output(C: access W2_Channel) is
56 begin
57 C.W.Input;
58 end Output;
59 end Channels.Workers;

In the main subprogram, two workers W1 and W2 are dynamically allocated ‡63–64, as well
as two channels—one for each worker task. These are stored in a ‘heterogenous data struc-
ture’, here just two variables C1 and C2 of access to class-wide type ‡65–66. The declaration
of Get_Channel ‡67 stands for removing an arbitrary channel channel from the data structure.
Procedure Output, whose formal parameters are of access to a tagged type, is called with an ac-
tual parameter of access to the class-wide type ‡69. By §3.9.2(2), this is a dispatching call on the
designated type. Whichever version of Output that is dispatched to now calls the entry for the
task pointed to by the channel, so in effect we have ‘dispatched’ an entry call.

60 with Tasks;
61 with Channels.Workers; use Channels;
62 procedure DispTask is
63 W1: Tasks.W1_Ptr := new Tasks.Worker_1;
64 W2: Tasks.W2_Ptr := new Tasks.Worker_2;
65 C1: Channel_Ptr := new Workers.W1_Channel(W1);
66 C2: Channel_Ptr := new Workers.W2_Channel(W2);
67 Get_Channel: Channel_Ptr := C2;
68 begin
69 Output(Get_Channel);
70 end DispTask;

See Ben-Ari (1996c) and Ben-Ari (1998b) for case studies that use these techniques.

15 Systems Programming*

15.1 Implementation dependencies

Our discussion has focused on Ada as a formalism for writing programs: syntax, semantics and
stylistics. However, Ada is firmly rooted in the requirements of computer systems with their hard-
ware, operating systems and libraries, and in the requirements of projects in terms of performance,
reliability and reuse of existing subsystems.

The design of a programming language for use in real projects must cope with conflicting require-
ments:

• If the language is small, implementation-specific extensions and ‘third-party’ add-ons will be
needed, making the software non-portable. If the language is large, it may be too expensive or
even impossible to implement completely for important target computers and operating systems.

• If the language specification is too general, implementations will fill in the details as they see
fit and the software developer will not be able to rely on a portable behavior. If the language
specification is extremely detailed, again there may be difficulty implementing the language as
specified on a target architecture.

The Ada approach to implementation dependency can be summarized as follows:

Certain features in the language need not be implemented, but if you do implement
them, this must be done as described in the standard. Where the standard leaves a
decision up to the implementation, the decision must be documented.

The documentation provides the information you need in order to choose an implementation that
satisfies the requirements of your project. The standard specification of ‘optional’ features means
that programming techniques and even existing source code can be easily adapted to a new im-
plementation. Furthermore, little retraining is necessary for software engineers moving from one
implementation to another, because the concepts, terminology and even the type and subprogram
declarations will be almost identical across all implementations.

There are two levels of implementation dependency in Ada. First, there are six ‘Specialized Needs
Annexes’:

• Annex C Systems Programming

• Annex D Real-Time Programming

• Annex E Distributed Systems

• Annex F Information Systems

242

15.2 Annex B Interface to Other Languages 243

• Annex G Numerics

• Annex H Safety and Security

An implementation need not provide any of these annexes. The marketing literature for an imple-
mentation will almost certainly list which annexes are supported and which are not.

The second level of support for optional features is the freedom granted to an implementation.
These freedoms appear throughout the ARM, many in paragraphs entitled ‘Implementation Permis-
sions’ and ‘Implementation Advice’. In addition, the annexes contain paragraphs entitled ‘Docu-
mentation Requirements’ that give the detailed information you need about individual constructs.
A centralized list of 136 items appears in Annex §M ‘Implementation-Defined Characteristics’.
Once you have chosen candidate implementations that support the annexes your project requires,
you can further compare levels of support for individual features.

In time-critical systems, you need to be able to predict the performance of the software. Paragraphs
entitled ‘Metrics’ require the implementation to document performance characteristics, mostly
bounds on execution time in terms of processor cycles. While this information may not be exact, it
can be extremely useful when you are designing the program and choosing the language constructs
to be used. For example, you may want to compare the overhead of an entry call of a protected
object with that of a task.

Information Systems were discussed in Section 10.7 and Numerics outlined in Section 10.8. This
chapter will present the other Specialized Needs Annexes, as well as Annex §B ‘Interface to Other
Languages’. Since this material is mostly new for Ada 95, the Rationale for the annexes is quite
extensive. When you study an annex in the ARM, you will also want to study the corresponding
section in the Rationale that discusses intentions, justifications, tradeoffs and examples.

15.2 Annex B Interface to Other Languages

Very few software systems are developed in a vacuum. Your program will almost certainly have
to call operating system services and subprograms from libraries; it may also need to be integrated
with existing ‘legacy’ code. Since these subsystems may have been written in other languages,
Ada supplies facilities for mixed-language programming.

There are two technical problems that must be solved:

• The representation of similar types may differ from one language to another. Two famous
examples are the use of null-terminated strings in C instead of an array plus current length used
in other languages, and the storage of multi-dimensional arrays in Fortran in column-major
order rather than in row-major order.

• Subprogram naming and calling conventions. For example, C++ uses a language-specific en-
coding of the external names of subprograms called ‘name mangling’, to perform typesafe link-
age, that is, checking the profiles of function calls at link-time.

15.2 Annex B Interface to Other Languages 244

In Ada, there are two approaches to solving these problems:

• You can specify a convention for a type, object or subprogram, requesting that the representa-
tion of the entity be appropriate for the specified language. Computer vendors usually share
conventions among languages that they support, often by re-using existing code generators.

• Language-specific child packages of Interface declare Ada types that are represented in the
same way as types in other languages. You can declare an Ada object that is a null-terminated
C string, convert an Ada string to this object and then pass it to a system service that expects
parameters in the C convention.

Interfacing pragmas

§B.11 A pragma Import is used to import an entity defined in a foreign language into
an Ada program, thus allowing a foreign-language subprogram to be called from
Ada, or a foreign-language variable to be accessed from Ada. In contrast, a pragma

Export is used to export an Ada entity to a foreign language, thus allowing an Ada
subprogram to be called from a foreign language, or an Ada object to be accessed
from a foreign language. The pragmas Import and Export are intended primarily for
objects and subprograms, although implementations are allowed to support other
entities.

2 A pragma Convention is used to specify that an Ada entity should use the con-
ventions of another language. It is intended primarily for types and “callback”
subprograms. For example, “pragma Convention(Fortran, Matrix);” implies that
Matrix should be represented according to the conventions of the supported Fortran
implementation, namely column-major order.

Predefined conventions, such as the default convention Ada, are defined in §6.3. An implemen-
tation may define other conventions, such as language-specific conventions. The pragmas Import

and Export take two required parameters—the convention and the entity it applies to—and one of
two optional parameters, either an External_Name §B.1(34) or a Link_Name §B.1(35):

pragma Import(C, CFunc, Link_Name => "_cfunc");

If the system can guess the link name of the imported entity from the local name, neither is needed;
if not, the system may be able to deduce it from the external name in the foreign language; finally,
you can give the exact name expected by the linker. Obviously, each option in this sequence is less
portable than the previous one.

§B.122 A pragma Import shall be the completion of a declaration. . . .

15.2 Annex B Interface to Other Languages 245

In particular, it can be the completion of a subprogram or a deferred constant. For example:
§B.1

51 package Fortran_Library is
function Sqrt (X : Float) return Float;

function Exp (X : Float) return Float;

private
pragma Import(Fortran, Sqrt);

pragma Import(Fortran, Exp);

end Fortran_Library;

An Ada subprogram can be exported and called from a foreign language; in fact, the main program
may be in the foreign language. Implementations are advised to supply two subprograms adainit
and adafinal that can be called from the foreign main program to perform elaboration of Ada
library units and finalization of the environment task §B.1(39).

Package Interfaces

Types and subprograms for interfacing to other languages are contained in package Interfaces. The
package itself §B.2 contains declarations of numerical types (signed and modular integer types,
and floating point types) directly supported by the target computer, as well as shift and rotate
instructions for the integer types. Clearly, using these types will tend to make the program non-
portable and they should only be used to declare objects that are passed directly to the hardware.

An implementation may provide interfaces to other programming languages as child packages of
Interfaces §B.2(11). Standard interfaces for C, COBOL and Fortran are declared in this annex.
These interfaces declare types corresponding to each of the types in the foreign language, as well
as functions To_Lang and To_Ada for converting the types of language Lang to and from Ada.

C

Package Interfaces.C §B.3 contains declarations of types corresponding to C’s types such as int

and unsigned_char. char_array is a character array, and the conversion functions To_Ada and
To_C can deal with the null terminator §B.3(47–56). The suggested correspondence between
Ada subprograms and parameters and those of C is given in §B.3(63–71). For example, a void-
returning C function corresponds to an Ada procedure, and a parameter of type T* corresponds to
an in out parameter of type T in Ada.

String processing in C is usually done on dynamically allocated objects rather than on static ar-
rays. The following two declarations give rise to the data structures shown in Figure 15.1.1 The
declaration of s1 corresponds to a value of type char_array.

char s1[] = "Hello world";
char *s2 = "Hello world";

1The figure is reproduced from Ben-Ari (1996b, p. 192).

15.2 Annex B Interface to Other Languages 246

s2

- Hello world

Hello world

s1

Figure 15.1: Array versus pointer in C

Package Interfaces.C.Strings declares a private type chars_ptr for pointers to C strings of type
char* such as s2 in the figure, and chars_ptr_array for arrays of pointers. The Ada program
can manage the storage for these strings. New_Char_Array §B.3.1(25–28) and New_String

§B.3.1(29–30) allocate a C string initialized by an existing value of type char_array and String,
respectively. Free §B.3.1(31–32) releases the storage.

Given an (aliased) object S of type char_array, To_Chars_Ptr §B.3.1(23–24) returns a value
of type chars_ptr pointing to S’Access. The package also contains subprograms for the reverse
conversion and subprograms for directly updating C strings.

If you are really homesick for C programming, generic package Interfaces.C.Pointers §B.3.2
declares type Pointer as an access to a generic formal parameter, and provides subprograms for
pointer arithmetic and copying arbitrary arrays!

COBOL

§B.42 The COBOL interface package supplies several sets of facilities:
3 A set of types corresponding to the native COBOL types of the supported COBOL

implementation (so-called “internal COBOL representations”), allowing Ada data
to be passed as parameters to COBOL programs

4 A set of types and constants reflecting external data representations such as might
be found in files or databases, allowing COBOL-generated data to be read by an
Ada program, and Ada-generated data to be read by COBOL programs

5 A generic package for converting between an Ada decimal type value and either an
internal or external COBOL representation

For details, see the ARM.

Recall that decimal fixed point arithmetic is supported in the Ada language (Section 10.7), and
picture editing is supported in Annex §F ‘Information Systems’ (Section 10.7), so you do not
need to write COBOL code to obtain this functionality.

Fortran

Package Interfaces.Fortran §B.5 declares types corresponding to Fortran types such as double
precision and logical. There is very little functionality in the Fortran language that does not exist
in Ada, so the primary use of this interface will be to use numerical and scientific libraries, and to

15.3 Annex C Systems Programming 247

integrate legacy software. Pragma Convention is particularly useful in this case, as demonstrated
by the following example from the ARM:

§B.5
30 type Fortran_Matrix is array (

Integer range <>, Integer range <>) of Double_Precision;

pragma Convention (Fortran, Fortran_Matrix);

- - stored in Fortran’s column-major order

procedure Invert(

Rank: in Fortran_Integer; X: in out Fortran_Matrix);

pragma Import(Fortran, Invert); - - a Fortran subroutine

15.3 Annex C Systems Programming

Annex §B describes interface capabilities at the applications software level. This annex specifies
capabilities needed to interface with the hardware and the underlying operating system (if any).
Many of the features needed for hardware interface are specified in §13 ‘Representation Issues’.
The core language does not require §13.1(20) that the implementation actually support the features
described in §13. but this permission is not available if Annex §C is supported.

§C.22 The implementation shall support at least the functionality defined by the recom-
mended levels of support in Section 13.

The recommended level of support is specified in the ‘Implementation Advice’ paragraphs in §13.

Discard_Names

Some Ada constructs have a string associated with them so that they can be displayed:

• The attributes Image and Value, and IO for enumeration types.

• Ada.Exceptions.Exception_Name §11.4.1(5).

• Ada.Tags.Expanded_Name §3.9(10).

Pragma Discard_Names §C.5 allows the implementation to save storage by not storing these
strings at run-time; in this case, the null string will probably be returned by these functions. This
feature is important for saving memory in embedded computer systems that have no display de-
vice, or no use for the constructs listed above. When I applied Discard_Names to the rocket
simulation program, the size of the object files was reduced from 39,085 to 38,012 bytes.

Preelaboration

Embedded computer systems need the ability to quickly restart a program in case of a failure such
as loss of power. In Ada, the time to start a program includes the elaboration time, which may

15.4 Hardware interfacing 248

be significant. Elaboration time can be reduced by preelaborating as much of the program as
possible. Furthermore, an implementation can store the constants of a preelaborated unit in ROM.

§10.2.1(2–12) specify restrictions that a library unit must satisfy for it to be preelaborable. Roughly,
a unit can be preelaborated if no ‘code’ need be executed at run-time. For example, tasks are illegal
because they give require run-time structures that must be initialized. However, the core language
does not specify what ‘privileges’ a preelaborable unit has—only that it is elaborated after a pure
unit and before an ordinary unit.

Annex §C imposes requirements on the implementation of preelaborated units.

§C.42 The implementation shall not incur any run-time overhead for the elaboration
checks of subprograms and protected_bodies declared in preelaborated library
units.

3 The implementation shall not execute any memory write operations after load time
for the elaboration of constant objects declared immediately within the declara-
tive region of a preelaborated library package, so long as the subtype and ini-
tial expression (or default initial expressions if initialized by default) of the ob-

ject_declaration satisfy the following restrictions. The meaning of load time is
implementation defined.

The restrictions given in §C.4(4–11) are intended to ensure that expressions are static.

15.4 Hardware interfacing

Machine code

The architecture of most computers includes specialized instructions; use of these instructions
can be essential when implementing time-critical algorithms. Of course, hardly anything makes a
program less portable than use of machine code!

§C.12 The implementation shall support machine code insertions (see 13.8) or intrinsic
subprograms (see 6.3.1) (or both). Implementation-defined attributes shall be pro-
vided to allow the use of Ada entities as operands.

4 The interfacing pragmas (see Annex B) should support interface to assembler; . . .

Suppose that the machine includes an atomic increment instruction. To implement a concurrent
algorithm, it may be essential that this instruction be used rather than an assignment X:=X+1.
There are three ways in which this could be supported.

The implementation could simply allow to program to call an assembly language subprogram. The
problem with this method is that there may be significant overhead associated with subprogram
call and return.

15.4 Hardware interfacing 249

A better method is to have the implementation simply supply an intrinsic subprogram: Inc(X).

§6.3.14 The Intrinsic calling convention represents subprograms that are “built in” to the
compiler. . . .

Intrinsic subprograms are probably the best solution when there are a few commonly used machine-
code instructions. However, to access the full set of instructions and addressing modes, support
for machine code insertions §13.8 is a better solution. The implementation supplies a package
System.Machine_Code that defines types that allow qualified expressions to be written for each
instruction and addressing mode. Attributes must also be defined for addressing ordinary objects
of the Ada program. For example, if an object is addressed by a page number and an offset, the
implementation could support a statement like:

Instruction’(Inc, X’Page, X’Offset);

§C.110 The implementation should ensure that little or no overhead is associated with call-
ing intrinsic and machine-code subprograms.

Interrupts

In this section, we describe a simple model for interrupts and constructs that can be used to im-
plement an interrupt handler. There is an extensive discussion in the ARM and the Rationale on
adapting the constructs to support other architectures. Note in particular the extensive documen-
tation requirements associated with interrupt support §C.3(12–22).

§C.32 An interrupt represents a class of events that are detected by the hardware or the
system software. Interrupts are said to occur. An occurrence of an interrupt is
separable into generation and delivery. Generation of an interrupt is the event in the
underlying hardware or system that makes the interrupt available to the program.
Delivery is the action that invokes part of the program as response to the interrupt
occurrence. Between generation and delivery, the interrupt occurrence (or interrupt)
is pending. Some or all interrupts may be blocked. When an interrupt is blocked,
all occurrences of that interrupt are prevented from being delivered. . . . Program
units can be connected to non-reserved interrupts. While connected, the program
unit is said to be attached to that interrupt. The execution of that program unit, the
interrupt handler, is invoked upon delivery of the interrupt occurrence.

A typical implementation is shown in Figure 15.2. When the interrupt occurs, the hardware looks
in a fixed memory location called a vector for the address of a subprogram called the handler.
Delivery of the interrupt consists of preempting the currently executing task and executing the
statements of the handler; any needed stack space is ‘borrowed’ from the current task. Upon
completion of the handler, a ‘return from interrupt’ instruction restores the stack and registers of
the preempted task. A bit may be set in a mask register to block a pending interrupt.

Interrupts implement a simple form of mutual exclusion: during the execution of the handler,
software tasks are blocked because interrupts execute at a higher priority than any software task.

15.5 Low-level tasking** 250

00111001

Mask

Vector Handler
-

Figure 15.2: Interrupts

If a task wishes to update a variable shared with an interrupt handler, it simply sets the mask
register to block the interrupt.

This interrupt model maps onto procedures of protected objects. The interrupt is modelled as
an anonymous hardware task executing a protected procedure, and mutual exclusion with other
protected operations is implemented by masking the interrupt.

§C.3.1
4 pragma Attach_Handler(handler_name, expression);

5 . . . the handler_name shall resolve to denote a protected procedure with a parame-
terless profile.

10 As part of the initialization of that object, if the Attach_Handler pragma is speci-
fied, the handler procedure is attached to the specified interrupt. . . .

13 When a handler is attached to an interrupt, the interrupt is blocked . . . during the
execution of every protected action on the protected object containing the handler.

It is also possible to dynamically attach, detach or exchange interrupt handlers using subpro-
grams declared in package Ada.Interrupts §C.3.2. In this case, the pragma Interrupt_Handler

§C.3.1(2,9) must be used on the protected procedure instead of Attach_Handler.

15.5 Low-level tasking**

Shared variables

If several tasks are declared within a subprogram or package, they can all read and write variables
declared previously in the enclosing declarative region. Normally, sharing variables is not con-
sidered a good programming technique, because the variables should be encapsulated in protected
objects or tasks. However, low-level systems programming needs this capability. Note that the
problem is only in sharing variables; the executable code is assumed not to modify itself (‘pure
code’) and can be executed concurrently by several tasks §6.1(35).

There are two potential problems that can arise from concurrent access to shared variables:

• The variable may not be atomic; this is likely to happen if more than one memory word is
needed to store the variable. Suppose that one task updates one word of a two-word variable
and then it is preempted by another task that updates both words of the same variable. When
the first task is resumed, it will update the second word, leaving the variable with a mixture of
two values.

15.5 Low-level tasking** 251

• Code generators in general, and optimizers in particular, make assumptions that may not be
valid in the presence of concurrency.

For example, given the statements:

X := Y + 4;
Z := X + Y;

the code generator might not write to the memory word for X; instead, when computing the ex-
pression X+Y, it might use the value of Y+4 that was stored in a register. Then another task might
use the old value in X. An extreme case of this problem is shown by the sequence of instructions:

Mem := 16#F000#;
Mem := 16#000C#;

where the assignment is done solely for the side effect of issuing a command to a memory-mapped
peripheral. A ‘good’ optimizer will simply discard the first assignment.

§9.10 defines what it means for two actions to be sequential. Roughly, they are sequential if they
are part of the same task, or if they are synchronized by a task rendezvous or protected action.
Reading and updating a shared variable is erroneous unless the actions are sequential §9.10(11).

For systems programming, we may want to read and update shared variables without the overhead
of rendezvous or protected actions. This is done by using pragmas to specify that an object or all
objects of a type are atomic or volatile.

§C.615 For an atomic object (including an atomic component) all reads and updates of the
object as a whole are indivisible.

16 For a volatile object all reads and updates of the object as a whole are performed
directly to memory.

17 Two actions are sequential (see 9.10) if each is the read or update of the same atomic
object.

8 . . . every atomic type or object is also defined to be volatile. . . .

Pragma Atomic is simply an assertion that an object can be read and updated indivisibly, and thus
can be accessed concurrently §9.10. If the implementation cannot ensure this, the program is
illegal §C.6(10). Pragma Volatile (which is also implied by Atomic) affects code generation: no
temporary copies will be kept and no reads or updates will be discarded. Volatile can be used on a
compound object that cannot be accessed atomically; you will have to use other means to ensure
that the object contains a consistent value.

It is also possible to specify that the components of an array are atomic or volatile, even if the entire
array is not §C.6(5–6). These pragmas can be applied to a constant object §C.6(13), provided
that Import is also applied so that an external program (or perhaps the hardware) can modify it.
§C.6(12,18,19) discuss the rules for passing atomic or volatile objects as parameters.

Task identification and attributes

Tasks in Ada are quite flexible: given a task type, you can create a dynamic data structure of tasks
and you can associate information with a task by using discriminants, or by creating a record with

15.5 Low-level tasking** 252

a component of the task type. However, since tasks are typed, you cannot create a data structure
that contains tasks of arbitrary type, as would be needed for writing an operating system. Package
Ada.Task_Identification §C.7.1 declares a nonlimited private type Task_ID that can hold the
identification of a task, regardless of its type.

§C.7.15 A value of the type Task_ID identifies an existent task. The constant Null_Task_ID
does not identify any task. Each object of the type Task_ID is default initialized to
the value of Null_Task_ID.

8 The function Current_Task returns a value that identifies the calling task.
11 For a prefix T that is of a task type (after any implicit dereference), the following

attribute is defined:
12 T’Identity—Yields a value of the type Task_ID that identifies the task denoted by

T.
13 For a prefix E that denotes an entry_declaration, the following attribute is defined:
14 E’Caller—Yields a value of the type Task_ID that identifies the task whose call is

now being serviced. Use of this attribute is allowed only inside an entry_body or
accept_statement corresponding to the entry_declaration denoted by E.

The function Current_Task §C.7.1(8) is not well-defined within a protected entry body. The
reason is that when a blocked task is awakened, the entry body will probably be executed by the
awakening task to avoid a context switch.

§C.7.117 It is a bounded error to call the Current_Task function from an entry body or an
interrupt handler. Program_Error is raised, or an implementation-defined value of
the type Task_ID is returned.

To associate data items with all tasks in a program, you instantiate the generic packageAda.Task_-

Attributes §C.7.2 one or more times to create user-defined attributes. Procedure Set_Value writes
to the attribute and function Value reads the attribute.

Case study: task identification and attributes

These packages are demonstrated in the following program, which models a server receiving re-
quests from an arbitrary set of client tasks. At any point in time, the server maintains the Task_ID

of the two ‘most important’ tasks, where ‘importance’ is an attribute associated with each task.
The most important tasks will be released before other tasks.

Importance ‡10 is an instantiation of Ada.Task_Attributes with an attribute of type Integer. Task
Server stores the IDs and attributes of the two most important tasks ‡21–22, updating these vari-
ables when a request is accepted ‡32–43.

15.5 Low-level tasking** 253

- - File: ID1 - -
2 - - Task identification and attributes.
3 - -
4 with Ada.Text_IO; use Ada.Text_IO;
5 with Ada.Task_Identification;
6 with Ada.Task_Attributes;
7 with Ada.Numerics.Discrete_Random;
8 procedure ID is
9

10 package Importance is new Ada.Task_Attributes(Integer, 0);
11

12 task Server is
13 entry Request;
14 entry Release;
15 private
16 entry Slow_Release;
17 end Server;
18

19 task body Server is
20 use Ada.Task_Identification;
21 ID1, ID2: Task_ID;
22 Imp1, Imp2: Integer := 0;
23

24 procedure Print(S: String; T: Task_ID) is
25 begin
26 Put_Line(S & Image(T) & Integer’Image(Importance.Value(T)));
27 end Print;
28

The attribute E’Caller is used ‡33,38 to obtain the ID of the calling task. When a client calls
Release ‡45–50, its ID is compared with the stored ID to see if it is one of the two ‘most important’
tasks. If so, it is ‘processed’ by calling Print ‡24–27. Note the use of the function Image §C.7.1(3)
to obtain a string uniquely identifying a task. If the task is not important, it is requeued on the
private entry2 Slow_Release ‡52–55, whose guard ensures that it is only executed if no important
tasks are being served.

2Tasks, not just protected objects, can have private entries.

15.5 Low-level tasking** 254

29 begin
30 loop
31 select
32 accept Request do
33 if Importance.Value(Request’Caller) > Imp1 then
34 Imp2 := Imp1;
35 ID2 := ID1;
36 ID1 := Request’Caller;
37 Imp1 := Importance.Value(ID1);
38 elsif Importance.Value(Request’Caller) > Imp2 then
39 ID2 := Request’Caller;
40 Imp2 := Importance.Value(ID2);
41 end if;
42 Print("Request ", Request’Caller);
43 end Request;
44 or
45 accept Release do
46 if Release’Caller /= ID1 and Release’Caller /= ID2 then
47 requeue Slow_Release;
48 end if;
49 Print("Release ", Release’Caller);
50 end Release;
51 or
52 when Release’Count = 0 =>
53 accept Slow_Release do
54 Print("Slow release ", Slow_Release’Caller);
55 end Slow_Release;
56 or
57 terminate;
58 end select;
59 end loop;
60 end Server;

Clients set their own importance ‡68,77 by calling a random number generator ‡61–63.

61 subtype Numbers is Integer range 1..100;
62 package Random_Numbers is new Ada.Numerics.Discrete_Random(Numbers);
63 G: Random_Numbers.Generator;
64

15.5 Low-level tasking** 255

There are two task types ‡65–81, which are used to declare ten client tasks ‡83–84, but the same
ID and attributes types are be used by all of them.

65 task type Client1;
66 task body Client1 is
67 begin
68 Importance.Set_Value(Random_Numbers.Random(G));
69 Server.Request;
70 delay 0.5;
71 Server.Release;
72 end Client1;
73

74 task type Client2;
75 task body Client2 is
76 begin
77 Importance.Set_Value(Random_Numbers.Random(G));
78 Server.Request;
79 delay 0.5;
80 Server.Release;
81 end Client2;
82

83 C1: array(1..5) of Client1;
84 C2: array(1..5) of Client2;
85 begin
86 null;
87 end ID;

16 Real-Time and Distributed Systems*

16.1 Annex D Real-Time Systems

The essence of real-time systems is predictability. The software requirements of these systems
include reactive time constraints: when an input event occurs, the system must react within a
specified time by computing and sending the correct output. Real-time systems frequently need to
be very efficient—reacting to a large number of events within a very short time—but there is no
necessary relationship between the two concepts. Annex §D goes into great detail on two main
topics: task scheduling and time. Documentation requirements and metrics are as important as
the prescribed language features, because the systems engineer needs this information to design a
program that will fulfill the requirements.

§D1 . . . To conform to this Annex, an implementation shall also conform to the Systems
Programming Annex.

The reason is that real-time systems invariably control hardware and need the interfacing support
described in §13 and §C.

16.2 Scheduling

Recall (Section 14.1, §9(10)) that a ready task competes for resources such as processors that it
needs to run. However, the core language does not specify how a ready task is chosen if there are
more ready tasks than resources. Similarly, the language does not specify how a task blocked on an
entry queue is chosen if there is more than one open protected entry §9.5.3(17) or selective accept
alternative §9.7.1(16). There could also be more than one expired delay §9.7.1(18). §9.5.3(17)
does specify that any particular entry queue will be served in first-in, first-out (FIFO) order of
arrival of the calling tasks.

§D.1 through §D.5 describe detailed scheduling rules. For portability, an implementation must
support these rules, though it is free to support other scheduling rules needed by applications.

Ada 95 is designed to be ‘multiprocessor-friendly’, but for simplicity, we will describe the standard
rules for a single processor and refer you to the ARM and Rationale for the modifications needed
for multiprocessors.

256

16.2 Scheduling 257

Priorities

Figure 16.1 shows the queue of ready tasks.1 Each task has a priority and there is a queue of tasks
for each priority. Interrupts have higher priority than tasks.

Interrupt_Priority’Last

Interrupt_Priority’First

Priority’Last

Priority’First

-

-

-

-

- -

Figure 16.1: Ready queues

Priority is specified by a pragma Priority or Interrupt_Priority in the declaration of a task or
protected unit §D.1(3–13). The priority is usually static, but it can depend on a discriminant
§D.1(27) so different tasks of the same type can be assigned different priorities. Priorities are used
to control task dispatching:2

§D.2.14 Task dispatching is the process by which one ready task is selected for execution on
a processor. This selection is done at certain points during the execution of a task
called task dispatching points. A task reaches a task dispatching point whenever it
becomes blocked, and whenever it becomes ready. In addition, the completion of
an accept_statement (see 9.5.2), and task termination are task dispatching points
for the executing task. Other task dispatching points are defined throughout this
Annex.

6 . . . Whenever a task running on a processor reaches a task dispatching point, one
task is selected to run on that processor. The task selected is the one at the head of
the highest priority nonempty ready queue; this task is then removed from all ready
queues to which it belongs.

1It is important to emphasize that the figure is conceptual; the ARM obviously does not specify exactly what data
structures an implementation must use.

2This use of the term, dispatch, has nothing to do with the concept of dynamic dispatching of subprograms.

16.2 Scheduling 258

Normally, a task will run until it reaches a task dispatching point such as an entry call. Tasks can
also be preempted:

§D.2.17 A preemptible resource is a resource that while allocated to one task can be allo-
cated (temporarily) to another instead. Processors are preemptible resources. Ac-
cess to a protected object (see 9.5.1) is a nonpreemptible resource. When a higher-
priority task is dispatched to the processor, and the previously running task is placed
on the appropriate ready queue, the latter task is said to be preempted.

8 A new running task is also selected whenever there is a nonempty ready queue with
a higher priority than the priority of the running task, or when the task dispatching
policy requires a running task to go back to a ready queue. These are also task
dispatching points.

Preemption can occur when a delay expires or when an interrupt causes some blocked task to
become ready.

Task dispatching policy

The task dispatching policy concerns the maintenance of the ready queues. The standard policy
FIFO_Within_Priorities can be specified by a pragma; if not, the policy is implementation de-
fined §D.2.2(1–6). The policy FIFO_Within_Priorities is illustrated in Figure 16.2. Let us first

Running

Loss of inherited priority
Preemption

Change of base priority

? ?Head Tail

 -» -» -» -»

Change of
base or active
priority

Blocked, Delayed

Unblocked
Delay expired

66

Figure 16.2: FIFO_Within_Priorities policy

consider the transition in the lower right of the figure.

§D.2.28 When a blocked task becomes ready, it is added at the tail of the ready queue for its
active priority.

This is reasonable since there are other tasks of the same priority who have been ready, possibly
for quite some time. This transition is also taken for a delay statement whose expiration time has
already passed; even though the task is not blocked §9.6(21), it is put on the tail of the queue
§D.2.2(12) to allow voluntary round-robin scheduling.

One of the transitions in the upper left of Figure 16.2 is given in the following rule:

16.2 Scheduling 259

§D.2.213 In addition, when a task is preempted, it is added at the head of the ready queue for
its active priority.

If a task is preempted—say by an interrupt—there is no reason to ‘punish’ it, so it goes back on
the head of the queue. Of course, it may not become the next running task, if a higher-priority task
has become ready.

The other transitions show what happens when priorities are changed as described in the next
subsection.

Base and active priorities

Suppose that task T1 with priority 1 begins executing an entry E of a protected object PO, and
suppose that T1 is preempted by task T2 with priority 2. Next, T2 in turn is preempted by task T3

with priority 3, which immediately calls the same entry E of PO (Figure 16.3). T3 will be queued

-

-T3 T1

PO

E

T2

Figure 16.3: Priority inversion

pending the completion of the entry body, but this will not occur as long as T2 continues to execute
because T2 has a higher priority than T1! Only when T2 blocks, perhaps by calling an entry, will
it relinquish the processor to T1 and the entry will be completed. The state of the computation is
that a high-priority task T3 is waiting (and waiting and waiting . . .) for a lower-priority task T2 to
block. There are special rules designed to prevent this state, called priority inversion.

§D.115 . . . The base priority of a task is the priority with which it was created, At all
times, a task also has an active priority, which generally reflects its base priority
as well as any priority it inherits from other sources. Priority inheritance is the
process by which the priority of a task or other entity (e.g. a protected object; see
D.3) is used in the evaluation of another task’s active priority.

20 At any time, the active priority of a task is the maximum of all the priorities the task
is inheriting at that instant.

22 During rendezvous, the task accepting the entry call inherits the active priority of
the caller (see 9.5.3).

23 During a protected action on a protected object, a task inherits the ceiling priority
of the protected object (see 9.5 and D.3).

(The meaning of ‘ceiling’ will be discussed later in this section.)

When a task’s priority is reduced by loss of inherited priority (Figure 16.2, top left), the task goes
to the head of the ready queue for its priority §D.2.2(9). This can prevent an additional context
switch if no higher-priority tasks are ready.

In our example, the protected object would be given a high priority such as 5. The low priority
task T1 would inherit this priority which becomes its active priority; T2 with priority 2 cannot

16.2 Scheduling 260

execute as long as T1 is executing the entry body. Upon completion of the entry, T1 loses its
inherited priority and returns to its low base priority. T3 will execute the entry before T2 is allowed
to execute, because it has a higher priority.

Priority inversion still occurs, but it is bounded by the maximum duration of an entry body. You
can analyze the duration of all protected operations to obtain a bound on the maximum duration
of a priority inversion §D.2.2(14–16).

Entry queuing policies

We are not yet finished with priority inversion. If the entry queues are served in FIFO order, a
high-priority task could be enqueued behind a long series of lower-priority tasks. This default
queuing policy is called FIFO_Queuing §D.4(7).

Priority inversion can also occur if there is more than one open accept alternative or entry. Since
the choice is not specified by the language §9.5.3(17), a queue with a low-priority task could be
served before a queue with a high-priority task. Annex §D specifies an additional queuing policy
called Priority_Queuing, which can be chosen by using pragma Queuing_Policy §D.4(2–4).

§D.49 The calls to an entry (including a member of an entry family) are queued in an order
consistent with the priorities of the calls. The priority of an entry call is initialized
from the active priority of the calling task at the time the call is made, but can
change later. Within the same priority, the order is consistent with the calling (or
requeuing, or priority setting) time (that is, a FIFO order).

14 When more than one alternative of a selective_accept is open and has queued calls,
an alternative whose queue has the highest-priority call at its head is selected. If two
or more open alternatives have equal-priority queued calls, then a call on the entry
in the accept_alternative that is first in textual order in the selective_accept is
selected.

See §D.4(12–13) for protected entries and delay alternatives.

In the CEO problem (Section 13.4), we specified Priority_Queuing so that entries would be
selected in textual order. This prevents the following race condition: the guard when Wake-

(Finance_Group)’Count = 0 of the alternative acceptWake(Marketing) is evaluated and found
to be true; that is, there is no higher-priority accountant group waiting to wake the CEO. But
before the CEO task can execute the accept statement, it is preempted and an accountant task is
enqueued on Wake(Finance_Group). To ensure that the precedence specification is fulfilled, the
rendezvous should be made with the accountant task, but this cannot be guaranteed with arbitrary
selection of alternatives. Priority_Queuing ensures that the accountant task is accepted before the
salesperson task, because it is waiting on an alternative that is textually before the other.

Note that the queuing policy applies only to calls that have begun the protected action and are
enqueued on an entry queue. If several tasks are trying to start a protected action, they are not
queued and nothing can be said about the order in which they will begin the protected action
§9.5.1(19).

16.2 Scheduling 261

It is not a good idea to specify Priority_Queuing if you don’t need it, because maintaining the
entry queues in order of priority will be less efficient than simply adding an node to the tail of a
FIFO queue.

Dynamic priorities

Package Ada.Dynamic_Priorities §D.5 contains subprograms Set_Priority and Get_Priority that
set and return the base priority of a task. The priority change is deferred during a protected action
§D.5(10). A change of priority will send the task to the tail of the ready queue for the new priority
§D.2.2(9–10) (Figure 16.2).

Dynamic priority modification can be inefficient because entry queues must be updated. Fur-
thermore, there are complications in the interaction between dynamic priority modification and
protected objects. Be sure to study the details in the ARM and the Rationale before using this
feature.

Priority ceiling locking

Our discussion of priorities has centered on tasks and rendezvous. Priority ceiling locking de-
scribes how priorities are used with protected objects. Ceiling_Locking can be specified with
pragma Locking_Policy. In the absence of the pragma, the locking policy is implementation
defined §D.3(2–6).

§D.38 Every protected object has a ceiling priority, which is determined by either a Prior-
ity or Interrupt_Priority pragma as defined in D.1. The ceiling priority of a protected
object (or ceiling, for short) is an upper bound on the active priority a task can have
when it calls protected operations of that protected object.

12 While a task executes a protected action, it inherits the ceiling priority of the corre-
sponding protected object.

13 When a task calls a protected operation, a check is made that its active priority is
not higher than the ceiling of the corresponding protected object; Program_Error is
raised if this check fails.

With ceiling locking, protected objects can be implemented on a single processor with no addi-
tional locking! Let us assume that task T1 is executing a protected action with ceiling priority PC .
We show that another task T2 cannot start a protected action of the same object.

• T1 is executing a protected action at the inherited ceiling priority PC §D.3(12).

• T1 cannot block §9.5(8).

• T2 cannot preempt T1 to start the protected action: its priority must be less or equal to PC

§D.3(13), but this is the priority of T1, and a running task can only be preempted by a task of
higher priority §D.2.1(8).

• However, T1 could be preempted by a third task of priority higher than PC , which could change
the priority of T2 to an arbitrary priority P2.

16.3 Monotonic Time 262

• If P2 > PC , T2 is not allowed to call the protected action §D.3(13).

• If P2 < PC , the scheduler will choose to run T1, which is of higher priority.

• If P2 = PC , T2 will be queued at the tail of the ready queue for this priority §D.2.2(9), but T1 is
at the head of the queue §D.2.2(13), so it will be chosen in preference to T2.

§D.2.25 If the FIFO_Within_Priorities policy is specified for a partition, then the Ceil-
ing_Locking policy (see D.3) shall also be specified for the partition.

16.3 Monotonic Time

The package Ada.Real_Time §D.8(2–17) specifies a high-resolution, monotonic clock. As with
Ada.Calendar, there is a private type Time and a function Clock that returns the current time.
Intervals of time are given by the private type Time_Span, rather than a predefined fixed point
type like Duration. Time and Time_Span are given in terms of the (same) fixed real number
called Time_Unit and Time_Span_Unit, respectively §D.8(19,23). This value must be no more
than 20 microseconds §D.8(30), as compared with the required 20 milliseconds and recommended
100 microseconds precision for Duration.

The type Time has no connection with astronomical or geographical time; instead, it is measured
from an arbitrary point called the epoch (Figure 16.4).

-» ≤ 20µsecEpoch

?

Time_Span_Unit
Time_Unit

? ?

T1 T2

-»
T2−T1

Figure 16.4: Monotonic time

The epoch will usually be the time at which the system is switched on. Clock will return an
integral number of Time_Units from the epoch until ‘just before now’ §D.8(19), and intervals are
measured in terms of the integral number of Time_Span_Units between two Times §D.8(20–
23). In the figure, at real times T1 and T2, the clock returns an integral number of units less than
or equal to the the time, so the time span T2-T1 is also integral. Subprograms are provided to do
the usual arithmetical and relational operations on the private types.

Time is required to support a 50 year range §D.8(30), which can be implemented in 64 bits.
Time_Span has a much shorter range of plus/minus one hour §D.8(31), as compared with one
day for Duration. These requirements are relaxed for implementations with a word size of less
than 32 bits §D.8(46).

You can convert a value of type Time_Span to and from a value of type Duration §D.8(25),
but there is no direct way to convert between Ada.Calendar.Time and Ada.Real_Time.Time.
Instead, procedure Split §D.8(29) converts a value T of type Ada.Real_Time.Time measured in
implementation-dependent Time_Units into SC, an integral number of seconds since the epoch

16.4 More on real-time systems** 263

of type Seconds_Count, and TS, a remainder of type Time_Span (Figure 16.5). If you call
Ada.Calendar.Clock once at the beginning of the program (or otherwise enter an ordinary time),
you can use the seconds count to compute an ordinary time based on monotonic time. There is
also a function Time_Of that does the reverse conversion.

Epoch
-» SC » -1 sec-»TS

?

T

Figure 16.5: Splitting monotonic time

Values of type Ada.Real_Time.Time can be used in a delay_until_statement §D.8(18). Values
of type Time_Span can be converted into values of type Duration for use in a delay_relative_-

statement, delay alternatives or timed entry calls. §D.9 specifies certain performance require-
ments on delay statements that are intended to make real-time programs more predictable.

16.4 More on real-time systems**

There are five additional clauses in Annex §D. We briefly survey these topics and refer you to the
Rationale for detailed justifications and examples.

Preemptive abort

Recall the concept of an abort completion point:

§9.815 . . . the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation; . . .

In a real-time system, it can be important that a task be aborted as soon as possible in order
to release the resources it holds. Furthermore, a task in an infinite loop may never reach an
abort completion point. §D.6(2) requires that an aborted constructed be completed immediately,
provided that it is not within an abort-deferred operation. See §D.6(3–8) for documentation and
metric requirements, especially as they relate to multiprocessors.

Tasking restrictions

There are no predefined limits to tasking in Ada: you can allocate an indefinite number of tasks
at run-time, any number of which can be blocked on a queue. Furthermore, the program text is
not limited in terms of the number of select alternatives, nor in the number of task and protected
entries. An implementation may need to use dynamic data structures to support this flexibility.
In addition, certain features like abort can impose significant overhead on the algorithms that
implement tasking.

§D.71 This clause defines restrictions that can be used with a pragma Restrictions (see
13.12) to facilitate the construction of highly efficient tasking run-time systems.

16.4 More on real-time systems** 264

§D.7(2–19) list restrictions that can be placed on the use of tasking in a program. If you can
specify restrictions on the number of tasks or entries, the implementation may be able to use
efficient static arrays rather than dynamic lists for the internal data structures.

§D.720 It is implementation defined whether the use of pragma Restrictions results in a
reduction in executable program size, storage requirements, or execution time. If
possible, the implementation should provide quantitative descriptions of such ef-
fects for each restriction.

Even if your implementation does not create a more efficient run-time system when restrictions
are requested, you may want to use the pragma to flag uses of features that you have decided to
refrain from using in your design.

Synchronous task control

A task that wishes to suspend itself can simply call a protected entry with a barrier that evaluates to
false, and wait until another task changes the value of the variables in the barrier so that it evaluates
to true. §D.10 defines a lower-level primitive that can be used for this purpose when protected
objects are not appropriate. Package Ada.Synchronous_Task_Control defines a limited private
type Suspension_Object and subprograms on the type. They can be used to implement two-stage
suspension: a task indicates that it is about to suspend on an object of the type and then it suspends
itself. Another task will eventually release the suspension. The construct is equivalent to a binary
semaphore with a queue of size one for blocked tasks. As such it is a very low-level, but very
efficient, construct.

Asynchronous task control

Just as a task may want to suspend itself, it may need to suspend another task without its co-
operation through an entry call. Package Ada.Asynchronous_Task_Control §D.11 declares the
subprogram Hold for changing the priority of an arbitrary task to the held priority. This prior-
ity is defined to be lower than the priority of a conceptual idle task, which in turn is below the
value of System.Priority’First. Such a task will never be scheduled until its priority is explicitly
reset by calling Continue. The rules for held tasks follow naturally from this model as detailed in
§D.11(14–19).

16.5 Annex E Distributed Systems 265

Other optimizations and determinism rules

§D.122 If the implementation blocks interrupts (see C.3) not as a result of direct user action
(e.g. an execution of a protected action) there shall be an upper bound on the
duration of this blocking.

3 The implementation shall recognize entry-less protected types. The overhead of
acquiring the execution resource of an object of such a type (see 9.5.1) shall be
minimized. . . .

4 Unchecked_Deallocation shall be supported for terminated tasks that are designated
by access types, and shall have the effect of releasing all the storage associated with
the task. This includes any run-time system or heap storage that has been implicitly
allocated for the task by the implementation.

This first requirement is important for predicting interrupt response time (‘latency’). The second
encourages the use of simple protected objects for efficient mutual exclusion. The third enables
you to reclaim storage for tasks allocated through an access type declared at library level; other-
wise, storage may not be reclaimed until the environment task is left, that is, when the program
terminates.

16.5 Annex E Distributed Systems

§E2 A distributed system is an interconnection of one or more processing nodes (a sys-
tem resource that has both computational and storage capabilities), and zero or more
storage nodes (a system resource that has only storage capabilities, with the storage
addressable by one or more processing nodes).

3 A distributed program comprises one or more partitions that execute independently
(except when they communicate) in a distributed system.

4 The process of mapping the partitions of a program to the nodes in a distributed
system is called configuring the partitions of the program.

5 The implementation shall provide means for explicitly assigning library units to a
partition and for the configuring and execution of a program consisting of multiple
partitions on a distributed system; the means are implementation defined.

Note the terminology: what is normally called a ‘program’ is called a partition §10.2 in Ada,
while a program is a set of partitions that can be assigned to nodes. One or more or all (active)
partitions may be assigned to a (processing) node. §E.3 requires version consistency among the
units of a distributed system.

Categorization

The central problem of programming a distributed system is to establish the semantic connections
between units assigned to different active partitions §E.1(2). If a type T is declared in a package P,

16.5 Annex E Distributed Systems 266

and the package is used in more than one active partition, is one type defined for all partitions, or
does each partition define its own type which may not be consistent with the others? The solution
in Ada is to categorize library units §E.2(1–2). A categorization pragma restricts the entities that
can be declared within a unit; more restrictive categories can be used to maintain consistency
across partitions.

There are five categories:

• Pure §10.2.1(16–17)—A pure unit has no state, and can be consistently replicated in more than
one partition.

• Shared Passive §E.2.1—A shared passive unit has only passive data (variables) and subpro-
grams, but not tasks or protected objects with entries. A passive partition can contain only pure
and shared passive units, and can be assigned to a storage node.

• Remote Types §E.2.2—Remote types units are used to contain declarations of access-to-sub-
program or access-to-class-wide-type that are used as encodings for communications between
active partitions. They can also be consistently replicated in more than one partition. Variables
cannot be declared in the visible part of the unit.

• Remote Call Interface §E.2.3—RCI units are split across partitions: all partitions share the
package specification, but the package body is assigned to one partition. If a visible subpro-
gram of an RCI unit is called from a partition not containing the body, the call is transparently
forwarded to the partition containing the body. Variables cannot be declared in the visible part
of the unit.

• Normal—No restrictions. A type declaration in a normal unit gives rise to distinct types in each
partition containing the unit.

Pragmas §E.2(3) are used to specify all categories (except for normal units, of course). A unit can
only depend on units of categories that appear above it in the hierarchy.

Remote subprogram calls

§E.41 A remote subprogram call is a subprogram call that invokes the execution of a sub-
program in another partition. The partition that originates the remote subprogram
call is the calling partition, and the partition that executes the corresponding sub-
program body is the called partition. Some remote procedure calls are allowed
to return prior to the completion of subprogram execution. These are called asyn-
chronous remote procedure calls.

The mechanics of a remote subprogram call—also known as a remote procedure call (RPC)—are
described in §E.4(9–20) and illustrated in Figure 16.6. The calling partition (on the left side of
the figure) will contain the specification of the RCI package P that contains a procedure Proc.
Replacing the body of the package is a calling stub. The stub is the interface between the calling
partition and the underlying partition communication subsystem (PCS) §E.5. The calling stub
marshals the parameters of the procedure call, that is, it translates them into stream elements using
the attribute Write, as was described in Section 11.3. The stream is passed to the PCS by calling

16.5 Annex E Distributed Systems 267

PCS

Calling stub P
Write
Do_RPC

package P
pragma RCI
procedure Proc

?

?

PCS

Receiving stub P
RPC_Receive
Read

package body P
procedure Proc

package P
pragma RCI
procedure Proc

6

6

-

Figure 16.6: Remote procedure call

Do_RPC (or Do_APC for a non-blocking asynchronous call) declared in package System.RPC

§E.5(17–20).

When the call is received by the PCS of the called partition, the receiving stub is notified by call-
ing an RPC_Receiver procedure §E.5(21) and the parameters are unmarshalled from the stream.
Finally, the receiving stub calls the subprogram body in the package body. If the RPC has out or
in out parameters, they are returned to the calling partition in a similar manner.

This processing is transparent to the programmer; you only have to declare the units with prag-
mas such as Remote_Call_Interface (respecting the restrictions, of course), and configure the
units into partitions using an implementation-supplied tool. The stubs, streams and PCS are the
responsibility of the implementation. Only the PCS is non-portable, since it must implement the
transmission of a stream over a physical communications channel.

Types of RPC

§E.42 There are three different ways of performing a remote subprogram call:
3 As a direct call on a (remote) subprogram explicitly declared in a remote call inter-

face;
4 As an indirect call through a value of a remote access-to-subprogram type;
5 As a dispatching call with a controlling operand designated by a value of a remote

access-to-class-wide type.
6 The first way of calling corresponds to a static binding between the calling and the

called partition. The latter two ways correspond to a dynamic binding between the
calling and the called partition.

16.5 Annex E Distributed Systems 268

We will give a short example demonstrating the third technique; more examples can be found in
the Rationale and in Burns & Wellings (1995).

Case study: distributed simulation

Suppose that our rocket simulation can no longer be run on a single computer; we redesign it
for a system with a separate node (computer) for simulating each event type (here limited to
telemetry and engine events) and an additional node to create the scenario (Figure 16.7).3 A
remote types package Root_Event is shared by all partitions. Package Simulation_Server is
remote call interface package assigned another partition and is responsible for dispatching calls to
the Simulate subprogram.

'

&

$

%
Root_Event
Engine_Event

'

&

$

%
Root_Event

Telemetry_Event

'

&

$

%
Root_Event

Simulation_Server

(body)

'

&

$

%
Root_Event

Dist
Simulation_Server

(stub)

» -

?

Figure 16.7: Distributed simulation

The normal declarations of a tagged type and primitive subprograms are declared in the remote
types package Root_Event ‡6–8. Pragma Remote_Call_Interface ‡15 has been specified in the
Simulation_Server to enable it to be split between the partition containing the client Dist and
its own partition. Function Get_Event ‡89–100, which returns a pointer to the class-wide type,
stands for the Get function of the heterogeneous priority queue. It prompts you to enter a character,
which is used to decide which specific type to return. This is sent to the Simulation_Server which
derefences the point and dispatches the call to one of the derived classes on another partition ‡22.

3The program in this section is significantly different from the one in the printed book; the errors in that program
were not caught by an early version of the compiler. Thanks to Jack Flynn for providing this program.

16.5 Annex E Distributed Systems 269

- - File: DIST1 - -
2 - - Distributed dispatching.
3 - -
4 package Root_Event is
5 pragma Remote_Types;
6 type Event is abstract tagged limited private;
7 type Event_Ptr is access all Event’Class;
8 procedure Simulate(E: in Event) is abstract;
9 private

10 type Event is abstract tagged limited null record;
11 end Root_Event;
12

13 with Root_Event;
14 package Simulation_Server is
15 pragma Remote_Call_Interface;
16 procedure Go_Simulate(E_Ptr: Root_Event.Event_Ptr);
17 end Simulation_Server;
18

19 package body Simulation_Server is
20 procedure Go_Simulate(E_Ptr: Root_Event.Event_Ptr) is
21 begin
22 Root_Event.Simulate(E_Ptr.all);
23 end Go_Simulate;
24 end Simulation_Server;
25

26 package Root_Event.Engine is
27 type Engine_Event is new Event with private;
28 function Create(F, O: Natural) return Event_Ptr;
29 procedure Simulate(E: in Engine_Event);
30 private
31 type Engine_Ptr is access all Engine_Event;
32 type Engine_Event is new Event with
33 record
34 Fuel, Oxygen: Natural;
35 end record;
36 end Root_Event.Engine;
37

16.5 Annex E Distributed Systems 270

38 with Ada.Text_IO; use Ada.Text_IO;
39 package body Root_Event.Engine is
40 function Create(F, O: Natural) return Event_Ptr is
41 E: Engine_Ptr := new Engine_Event;
42 begin
43 E.Fuel := F; E.Oxygen := O;
44 return Event_Ptr(E);
45 end Create;
46 procedure Simulate(E: in Engine_Event) is
47 begin
48 Put_Line("Engine fuel " & Integer’Image(E.Fuel) &
49 " L, oxygen " & Integer’Image(E.Oxygen) & " L");
50 end Simulate;
51 end Root_Event.Engine;
52

53 package Root_Event.Telemetry is
54 type Telemetry_Event is new Event with private;
55 type Subsystems is (Engines, Guidance, Communications);
56 type States is (OK, Failed);
57 function Create(Sub: Subsystems; St: States) return Event_Ptr;
58 procedure Simulate(E: in Telemetry_Event);
59 private
60 type Telemetry_Ptr is access all Telemetry_Event;
61 type Telemetry_Event is new Event with
62 record
63 ID: Subsystems;
64 Status: States;
65 end record;
66 end Root_Event.Telemetry;
67

68 with Ada.Text_IO; use Ada.Text_IO;
69 package body Root_Event.Telemetry is
70 function Create(Sub: Subsystems; St: States) return Event_Ptr is
71 E: Telemetry_Ptr := new Telemetry_Event;
72 begin
73 E.ID := Sub; E.Status := St;
74 return Event_Ptr(E);
75 end Create;
76 procedure Simulate(E: in Telemetry_Event) is
77 begin
78 Put_Line("Telemetry message " &
79 Subsystems’Image(E.ID) & " " &
80 States’Image(E.Status));
81 end Simulate;
82 end Root_Event.Telemetry;

16.6 Annex H Safety and Security 271

83

84 with Root_Event;
85 with Simulation_Server;
86 with Root_Event.Telemetry; with Root_Event.Engine;
87 with Ada.Text_IO; use Ada.Text_IO;
88 procedure Dist is
89 function Get_Event return Root_Event.Event_Ptr is
90 C: Character;
91 begin
92 Put(" Choose system "); Get(C);
93 if C = ’e’ then
94 return Root_Event.Engine.Create(500, 600);
95 else
96 return Root_Event.Telemetry.Create(
97 Root_Event.Telemetry.Engines,
98 Root_Event.Telemetry.Failed);
99 end if;

100 end Get_Event;
101 begin
102 Simulation_Server.Go_Simulate(Get_Event);
103 end Dist;

16.6 Annex H Safety and Security

The popularity of massive, widely distributed, but often bug-infested, software packages for per-
sonal computers has caused some people to forget that much software is developed for critical
computer systems in closed projects. Examples are control programs for aircraft or power plants.
As we discussed in the opening chapter, Ada is specifically designed for these systems, with its
support for compile-time and run-time type checking, encapsulation and abstraction, and reusabil-
ity. The software for these systems can be so critical that it is worth investing a large amount of
effort to validate it. Mathematical verification of a program relative to its specification is an impor-
tant tool in software validation, but even when this is feasible, there are implementation questions
that must be addressed, such as: Is the object code produced by the compiler equivalent to the
source code? Annex §H addresses additional support in Ada for these systems.

Support for program validation

In addition to the implementation-defined characteristics summarized in §M that must be docu-
mented, support of Annex §H imposes additional documentation requirements.

§H.21 The implementation shall document the range of effects for each situation that the
language rules identify as either a bounded error or as having an unspecified effect.
If the implementation can constrain the effects of erroneous execution for a given
construct, then it shall document such constraints. . . .

16.6 Annex H Safety and Security 272

This simplifies validation by reducing the analysis that must be done for each potential error.

One way to address the correspondence of the source and object code is to prove the correctness
of the compiler. Given the size of Ada compilers, this may not feasible, so the only alternative is
to directly validate the object code. Pragma Reviewable §H.3.1 requires that an implementation
produce information such as an object code listing, memory requirements and potential error situ-
ations, preferably in both human-readable and machine-readable form so that it can be processed
by automated tools §H.3.1(19).

A valuable tool for testing and debugging programs is a hardware analyzer that—with little or no
effect on the behavior of the computer—can save some or all of the state of a computation for
later analysis. Pragma Inspection_Point §H.3.2 can be used within a sequence of declarations
or statements to require the implementation to make some or all objects available for inspection.
The pragma is not just a documentation requirement telling you where to find each object; it can
modify code generation by requiring that a value be stored in memory rather than retained in a
register when an inspection point is reached.

Abnormal objects

When you create and initialize an object, it is in a normal state §13.9.1(4). An object can become
abnormal in certain unusual circumstances; for example, if an assignment is interrupted by an
abort statement, a discriminant might be updated but not a variant that depends on the discriminant.
It is erroneous to use an abnormal object §13.9.1(8), so it is important to check your program to
prevent such situations from occurring.

Invalid representations

A scalar object can have an invalid representation §13.9.1(9).

subtype Index is Integer range 0..255;
N1: Index := 300;
N2: Index;

Since Index is of type Integer, it will be allocated a full word of memory (16 or more bits),
but only a few of the possible contents of the word represent valid values of its subtype. The
initialization of N1 will raise Constraint_Error, because the value is not within the range of the
subtype. However, N2 is uninitialized, so even if the bit pattern in memory represents an invalid
value no exception would be raised. Other sources of invalid data are Unchecked_Conversion

and importing an object or subprogram; for example, a byte received from a communications line
might be intended to represent a value of an enumeration type with only a dozen values.

You can explicitly check the validity of a scalar object by using the attribute Valid §13.9.2. The
attribute never raises an exception.

Many languages and compilers automatically zero uninitialized variables. This actually reduces
reliability, because zero is often a valid, though unintended, value of the subtype! By using pragma
Normalize_Scalars §H.1, you request the compiler to set uninitialized objects to a predictable,
but if possible invalid, representation. For example, the variable N2 above might be initialized to
Integer’First. The idea is to ‘flush out’ the error as soon as possible by increasing the likelihood

16.6 Annex H Safety and Security 273

that Constraint_Error will be raised, rather than continuing the computation with an incorrect
value.

Restrictions

Validation of a program requires validation not just of your code, but also of the code of the
run-time system and standard libraries. By restricting the language features in a program, an
implementation can support a smaller run-time system and set of libraries, greatly reducing the
validation effort. Furthermore, a program that is guaranteed not to use tasking or dynamic alloca-
tion need not be checked for problems such as deadlock or storage leaks.

Pragma Restrictions §13.12 specifies the restrictions that a program can take upon itself. An
implementation that supports Annex §H is required to support certain restrictions such as No_-

Allocators §H.4. In addition, the restrictions described in §D.7 must be supported, in particular,
restricting Max_Tasks to zero §H.4(2). This allows an implementation to remove support for
tasking from the run-time system, making its validation significantly easier. You must check your
implementation’s documentation to see what effect restrictions have on a program §13.12(9).

A Tips for Transition

When you learn a new programming language, there is a tendency to apply inappropriate analogies
from previous experience. Furthermore, there are often subtle differences between languages that
may not be apparent at first glance. This appendix points out some of problems that programmers
experienced in Pascal, C, C++ or Java may encounter when learning Ada.

A.1 Pascal

Since the development of Ada started from Pascal, you will not have much trouble with the general
syntax and semantics of elementary constructs in Ada, though there are many differences in the
details. The discussion relates to standard Pascal; extended versions of the language have many
features in common with Ada.

• There is no program declaration. The ‘main’ program is simply a library unit which is a
subprogram. Like all subprograms, it is terminated with a semicolon, not a period.

• Ada does not restrict the order of declarations as in Pascal. Constants, types, variables and
subprograms can be declared in any order.

• The Pascal paradigm of declaring array types by first declaring a constant, then an index type
and finally an array is not needed in Ada because you can declare a constrained array subtype
and then use attributes. See Section 3.2.

• Semicolons separate statements in Pascal and terminate statements in Ada. Many Pascal pro-
grammers ‘terminate’ statements with semicolons; in reality, the semicolon separates the final
statement from a null statement. Of course this does not work before else statements, so you
may have learned a ‘special’ rule for this case. In Ada, the terminating semicolon is always
needed:

if A > B then
S1; - - Don’t forget the semicolon!

else
S2;

end if; - - Don’t forget the semicolon!

• Pascal uses begin—end to bracket compound statements. Ada uses reserved word pairs like
loop—end loop instead. However, Ada also uses begin—end to create a block that is used to
set up run-time structures like local variables and exception handlers. The block in the following
if-statement is legal, but neither needed nor recommended:

274

A.1 Pascal 275

if A > B then
begin - - Legal, but not needed in Ada!
S1;
S2;

end; - - Legal, but not needed in Ada!
end if;

• With the exception of anonymous arrays, all types in Ada must be explicitly declared. There is
no analogy to the Pascal declaration:

State: (Off, Standby, On);

• An Ada subprogram body has the reserved word is instead of a semicolon between the decla-
ration and the block. Unfortunately, a subprogram declaration—used for example in package
specifications—is terminated by a semicolon. If you replace the is by a semicolon, you may get
strange error messages:

procedure P(X: in Integer);
- - OK! Subprogram declaration

begin - - Strange error message here
. . .

end P;

• Feel free to use the exit and return statements in Ada. There is no reason to continue using the
contorted style needed to overcome the limitations of Pascal’s control structures.

• The loop parameter of an Ada for-loop is implicitly declared and its scope is restricted to the
loop body:

K, N: Integer; - - Explicitly declared variables
for N in 1..10 loop - - Implicitly declared loop parameter
. . . - - Explicitly declared N is hidden here
if Found then K := N; - - Save loop parameter
. . .

end loop;
Put(N); - - Prints the explicitly declared N
Put(K); - - Prints saved loop parameter K

• A value parameter in Pascal is an initialized local variable. In Ada, an in parameter is a constant
which cannot be assigned to; use additional local variables if needed. Pascal var parameters are
implemented as reference parameters, whereas scalar parameters in Ada are passed by copy.
Arrays and records in Ada can be passed by copy or by reference.

• An Ada function can return any (nonlimited) type, including arrays and records, but parameters
of functions are restricted to in mode.

• Pascal uses with to open the name space of a record. This is similar to use in Ada, which opens
the name space of a package, and not at all related to with in Ada, which is used to import
packages.

• Ada has no construct analogous to the Pascal with, but you can use renames for similar pur-
poses: to shorten names and to help the optimizer avoid recalculation of record addresses (Sec-
tion 12.5).

A.2 C 276

A.2 C

C was designed to make it easy to manipulate the underlying machine, whereas Ada was designed
to make it easy to construct large, reliable software systems. It may take you a while to learn how
to use Ada’s type system, and the compile-time type checking may prove frustrating at first.

• In Ada, "=" is the equality operator while ":=" is the token used in the assignment statement.
Assignment cannot be used in an expression and there is no multiple assignment.

• Enumeration types are true types, not just disguised integers as in C. You can convert an enu-
meration value to its position and back using the attributes Pos and Val, but normally the values
and attributes of the enumeration type should be used directly:

type Waves is (Radio, Microwave, Infrared, Visible, UV, X_Ray);

for W in Waves loop . . .
for W in Waves’First .. Waves’Pred(Waves’Last) loop . . .
- - Good Ada style

for I in Waves’Pos(Radio) .. Waves’Pos(X_Ray) loop . . .
for I in Waves’Pos(Radio) .. Waves’Pos(X_Ray)−1 loop . . .
- - Legal, but this is programming in C style

• Predefined Integer should rarely be used in Ada. Subtypes and user-defined integer types allow
you to precisely express both the range of a variable and its relationship to other objects.

• The bounds of a for-loop in Ada are evaluated once before beginning the loop. Only counting
loops which increment or decrement by one are allowed. Other C loop paradigms will have to
be explicitly programmed in Ada using while and exit. Furthermore, the loop parameter in Ada
is implicitly declared and has its scope limited to the loop body.

• In case statements there is no ‘fall-through’ from one alternative to the next, so there is no need
for a break statement. There is no continue statement in Ada.

• Arrays in Ada are first-class types and can be assigned and passed as parameters. The index type
of an array can be any discrete subtype, not just a range of the natural numbers starting from
zero. Array parameters ‘carry’ their bounds with them, and these can be accessed as attributes,
so there is no need for additional parameters. There is no equivalence between array indices
and pointers as in C.

• Normally, pointers in Ada (access types) only point to elements that are dynamically allocated.
Taking the address of a statically allocated object (& in C) is not needed in Ada for parameter
passing, since any type can be passed as a parameter and returned from a function. The Ada
attribute Access is used mostly for constructing static data structures. It is subject to restrictions
that make it impossible to create a dangling pointer.

• There is no void type or pointer in Ada, and pointers to different types cannot be converted to
each other except by escaping the type system with Unchecked_Conversion.

• In C, a source code file also delimits a scope of definition; ‘h’-files are used to repeat decla-
rations in several files. Source files have no meaning in Ada; scope is determined by units:

A.3 C++ 277

packages, subprograms, etc. Similarly, lifetime is determined by these units: a variable in a
library package is statically allocated like a variable declared within a C source file, and a vari-
able declared in a subprogram is automatically allocated upon invocation. There is no analogue
in Ada to a static variable declared within a C function.

A.3 C++

Most of what was written about C is relevant to C++ and need not be repeated. Beyond the C
constructs, the most significant difference between Ada and C++ is that Ada has extensive support
for encapsulation with its hierarchial packages, while C++ retains the independent-file model of
C. The constructs of C++ for object-oriented programming have close conceptual analogues in
Ada, though the syntax and semantics are quite different.

• C++ uses the same concepts of source code files, file scope and ‘h’-file conventions as C does.
While classes can define abstract data types, they cannot encapsulate them as Ada packages do.
In particular, definitions of function members can be placed anywhere (not just in a package
body), and depend on declarations that ‘just happen’ to be in the same ‘h’-file.

• C++ namespaces give you control over visibility similar to that of Ada packages.

• An Ada compiler is required to have an implicit ‘Make’ facility to ensure consistency among
the units.

• Static members are like variables declared within an Ada package. A static method is like a
subprogram with no parameters of the abstract data type defined by the package.

• C++ uses a distinguished-receiver syntax to call a member for an object: obj.func(x) executes
func(x) on obj, which becomes an implicit parameter accessible as this. The Ada syntax for
record components, task and protected entries is similar, but for calling a primitive operation
on an object Ada uses ordinary parameters. The object itself must be given explicitly as an
additional parameter: func(obj, x).

An advantage of the Ada syntax it that it is easy to dispatch on binary operators:
function "<"(Left, Right: Parent) return Boolean;
function "<"(Left, Right: Derived) return Boolean;
procedure P(X, Y: Parent’Class) is
begin
if X < Y then . . .
- - Dispatches on specific type of X and Y

end P;

• There are no constructors and destructors in Ada. The functionality of simple constructors can
be obtained by using default initial values for the components of a record type, record aggregates
and initializing functions. User-defined initialization, assignment and finalization is supported
by controlled types.

• For dynamic dispatching, a function member in C++ must be declared virtual; otherwise, static
binding is used for all calls. In Ada, any primitive subprogram is potentially dispatching and
the type of dispatching is determined per call.

A.4 Java 278

• In C++ dynamic dispatching will be done on pointers and references; the type of a value is
known at compile-time and the dispatching can be optimized away. No explicit pointer or
reference is needed in Ada for dispatching; class-wide types are indefinite types are implicitly
allocated at subprogram or block entry with an arbitrary object in the class.

• There is no term in C++ for what Ada calls a class; the equivalent concept is the hierarchial
family of derived types. There are no class-wide types in C++; instead, rules are stated in terms
of type conversion within the family.

• There is no multiple inheritance in Ada. Generics and access discriminants are used where C++

would use multiple inheritance (see Section 7.5). Section 4.6 of the Rationale discusses these
techniques at length.

• Explicit try-blocks are not needed in Ada for exception handling, since every subprogram (more
exactly, every construct containing the syntactic category handled-sequence-of-statements) can
have an exception handler. Ada exceptions are simple identifiers, whereas exception handling in
C++ is controlled by matching on the catch profile. The matching understands type derivation
in the sense that a handler for an object of a base type will handle an object of a derived type.

• Generic units must be explicitly instantiated in Ada, unlike the implicit instantiation of tem-
plates in C++. Each instantiation of an Ada generic gives a different instance, while C++ im-
plementations will collect all instances with the same actual parameters. In Ada, you would
normally create a single instantiation of a generic package, and the instance would be ‘with’ed
by other units as we do with Root_Event.Random_Time (Chapter 6).

• Ada generics use a contract model which ensures that the instantiation of a generic cannot cause
an error in the generic unit body. In C++, compilation of an instantiation can cause a compile-
time error within the template itself.

• The Ada library does not contain implementations of data structures that exist in the Standard
Template Library.

A.4 Java

Java’s superficial syntax is very much like the syntax of C++, but in many ways the language is
more similar to Ada: all code must be encapsulated, arrays are first-class objects and type-checking
is always done. Nonetheless, the languages are quite different.

Most of the interest in Java is due to support by network browsers of the portable Java Virtual
Machine (JVM) and associated standard libraries. With an Ada 95 to J-code compiler (Taft 1996),
Ada is an attractive alternative to Java for programs in a network environment!

• Java uses reference semantics for all non-primitive types, including arrays and strings, whereas
Ada uses value semantics. A common Ada paradigm is to hide its value semantics within a
package body, exporting only limited private types and class-wide types.

• The index type of an array in Ada can be any discrete subtype, not just a range of natural
numbers starting from zero.

A.4 Java 279

• A Java class is like an Ada package that declares a single visible tagged type.

• Java packages are not like Ada packages! An Ada package creates an encapsulation which you
have to explicitly ‘with’ to access. A Java package is really a construct for name space control,
much like namespaces in C++. A public construct in any Java package is always accessible to
any other class; import just makes its name directly available like use in Ada or using in C++.

• All functions in Java can dispatch. Because of reference semantics, there is no need for class-
wide types to implement dynamic dispatching. Any object is—that is, can point to—any object
derived from its class; calling a method on the object will cause dispatching.

• Java uses a distinguished receiver syntax; see the note for C++.

• There are no constructors in Ada; see the note for C++. Few Ada compilers implement garbage
collection.

• There are no interface declarations in Ada.

• Ada does not require that all code be written within classes and there is no universal base type
such as Object.

• Explicit try-blocks are not needed in Ada for exception handling, since every subprogram (more
exactly, every construct containing the syntactic category handled-sequence-of-statements) is
implicitly the scope of an exception handler. Java exceptions are declared by inheriting from
class Throwable, and a method must declare the exceptions that it can throw. Ada exceptions
are ordinary identifiers, and a subprogram can propagate any exception raised by itself or by a
subprogram it calls.

• The Ada library does not contain implementations of data structures or graphical user interfaces.
Annex §E defines constructs for distributed programming.

• Java threads are like Ada tasks. However, the synchronization primitives in Java are very ele-
mentary when compared with protected objects and task rendezvous in Ada, and it is difficult
to write starvation-free algorithms in Java. The main differences between protected objects and
Java ‘monitors’ are (Ben-Ari 1998a):

– In Java, methods of a class can, but need not be, synchronized. All actions of an Ada protected
object (except functions) are executed under mutual exclusion.

– notify in Java releases an arbitrary thread, whereas entries in Ada maintain a FIFO queue.

– The semantics of barrier re-evaluation in Ada ensure immediate resumption of blocked pro-
cesses, unlike Java.

B Glossary of ARM Terms

The ARM is written in a precise style, with specialized terms defined and then used consistently
throughout the document. This glossary collects the definitions of these terms. For brevity, the
glossary does not include language constructs like procedure, terms from the annexes and well-
known terms like expression. Source code examples will help you understand and remember the
definitions.

The following declarations will be used in the examples:

type Piece is (Pawn, Knight, Bishop, Rook, Queen, King);
type Matrix is array(Integer range <>, Integer range <>) of Piece;
type Game_Board(Size: Positive) is
record
B: Matrix(1..Size, 1..Size);

end record;

type Node;
type Ptr is access Node;
type Node is
record
Key: Integer;
Next: Ptr;

end record;

package P is
type Parent is tagged null record;
procedure Primitive(X: Parent);
type Derived is new Parent with null record;
procedure Primitive(X: Derived);

end P;

abandoned §11.4(3) See exception.

abort deferred §9.8(5) When an abort statement is executed, if a task is executing one of the
operations listed in this section, the operation is allowed to complete before the abort takes effect.
For example, a protected action is abort-deferred and will be allowed to complete.

abnormal completion §7.6.1(2) The execution of a task completes abnormally if an exception
is raised and not handled, or if a task is aborted.

280

B Glossary of ARM Terms 281

abnormal object §13.9.1(1) If an assignment statement is interrupted by abort or if a non-scalar
object is returned from an imported subprogram, the bits representing the object might not form a
value of the object’s type. The object is abnormal and certain uses are erroneous.

A scalar object that does not contain a value of its subtype is said to have an invalid representation.
For example, an uninitialized variable of subtype Natural has an invalid representation if the initial
contents of the variable represent a negative number.

accessibility §3.10.2(3) The nesting levels of masters at run-time. Accessibility levels are used
to prevent dangling pointers when general access types are used. It is illegal to apply the Access

attribute to an object that has a deeper accessibility level than the access type. Usually, access
levels are known at compile-time, in which case one level can be determined to be statically
deeper than another §3.10.2(4). A library unit is at library level §3.10.2(22).

type Ptr is access all Integer;
function F return Ptr is
N: Integer; - - Statically deeper than Ptr

begin
return N’Access; - - Error !

end F;

actual subtype §3.3(23) See nominal subtype.

adjust §7.6(15–16) The operation performed on the target object of a controlled type after the
new value is copied during assignment. Procedure Adjust can be overridden.

ambiguous §8.6(30) See overloading.

ancestor §3.4.1(10) See derived type.

ancestor §10.1.1(11) See unit.

anonymous type §3.2.1(7) Single arrays, tasks and protected objects are objects of anonymous
type. Since the type has no name, you cannot declare other objects of the type. However, you can
convert an anonymous array to a named array type §4.6(9–12).

Translate_Table: constant array(Character) of Character := . . . ;
- - Anonymous array

type Table_Type is array(Character) of Character;
T: Table_Type := Table_Type(Translate_Table);

task Bounded_Buffer is - - Anonymous task
entry Put(I: in Integer);
entry Get(I: out Integer);

end Bounded_Buffer;

base range §3.5(6) Scalar types, in particular numeric types, are usually implemented in a larger
range than requested—the base range. Computations involving predefined operators are done in
the base range. The attribute S’Base gives the base subtype of the type of S.

B Glossary of ARM Terms 282

type Int is range 0..10_000;
K1, K2: Int := 8_000;
K: Int := K1 + K2;
B: Int’Base := K1 + K2;

The computation K1 + K2 will not cause an error. Constraint_Error will only be raised when the
result is assigned to K, though not when assigned to B.

bounded error §1.1.5(7–8) See error.

by copy §6.2(2–3) Parameters of elementary types must be passed by copy, that is by creating a
local object and copying the actual parameter in and/or out. The types listed in §6.2(5–9) must be
passed by reference. These are types such as tagged types and task types that are used to represent
entities (such as a task control block); they require that a reference to the entity be passed rather
than a copy of the entity’s contents. An implementation may choose to pass other types such as
records and arrays either by copy or by reference.

by reference §6.2(4) See by copy.

callable §6(2) A callable entity is a subprogram or entry. A callable construct defines the action
taken when the entity is called; it is a subprogram or entry body, or an accept statement.

check §11.5(2) A language-defined check such as Index_Check can fail, raising an exception.

class-wide type §3.4.1(4) A type whose values are the union of the values of all the specific
types within a derivation class.

compatible §3.2.2(12) See constraint.

compilation §10.1(2) See unit.

complete context §8.6(4) See overloading.

completely defined §3.11.1(8) See full type.

completion §3.11.1 Some declarations may be written in two parts; the first part is said to
require a completion. For example, a subprogram declared in a package specification requires a
body in the package body.

completion §7.6.1(2) The end of the execution of an entity. Completion may occur either by
executing the last statement, or by a transfer of control caused by raising an exception or executing
a statement such as return statement. After completion, a construct is left §7.6.1(3), meaning that
its execution continues with the next action. Before leaving a master, finalization §7.6.1(4) must
be performed: waiting for a dependent task, and for controlled types execution of the Finalize

procedure. A master §7.6.1(2) is the execution of a task, entry or subprogram body, or a block or
accept statement.

composite type §3.2(4) Composite types are types that can have components: record types
and their extensions, array types, task types and protected types. Private types and their exten-
sions are also considered to be composite types. Composite types (except for arrays) may have
discriminants.

B Glossary of ARM Terms 283

conformance §6.3.1 Two subprogram profiles conform to each other in one of four ways, each
one adding additional requirements:

• type conformant The number and types of parameters are the same. Since two subprogram
declarations are homographs if they are type conformant §8.3(8), they cannot be overloaded:

procedure Proc(X: in Integer := 5);
procedure Proc(Y: out Positive); - - Error, homograph
N: Integer;

Proc(N); - - Ambiguous

• mode conformant The profiles have identical modes. Mode conformance is sufficient for generic
instantiation §12.6(8):

generic
with procedure Formal(X: in Integer);

procedure Gen;

procedure Actual(Z: in Positive);
procedure Instance is new Gen(Formal => Actual);

Formal(-1) is a legal call within the body of Gen even though it will cause a constraint error in
the instantiation Instance.

• subtype conformant Subtypes of the profile must statically match. Subtype conformance is
sufficient for overriding §3.9.2(10); the following declaration of Primitive overrides the parent
primitive subprogram even though the formal parameter name has changed:

procedure Primitive(XXX: Derived);

• fully conformant The formal parameter names must be identical and the default expression must
be fully conformant §6.3.1(19–22). A completion must be fully conformant §6.3(4):

package P is
procedure P1(X: Integer; Y: Integer);
procedure P2(X: Integer := 5);
procedure P3(X: Integer := 5);

end P;
package body P is
procedure P1(Y: Integer; X: Integer) is . . . - - Error
procedure P2(X: Integer := 10); is . . . - - Error
procedure P3(X: Integer := 2#101#) is . . . - - OK

end P;

Calls P.P1(X=>3,Y=>7) and P.P2 in a client are interpreted according to the specification
(since the body could always be modified and recompiled). If full conformance was not re-
quired, the procedure specifications in the body would have to be ignored, which would be
confusing for the reader!

constant §3.3(13) See object.

B Glossary of ARM Terms 284

constraint §3.2(7) A restriction on the possible values of a type. A value satisfies a constraint if
it satisfies the restriction. A constraint applied to a subtype must be compatible with the subtype.
There are three types of constraints:

• range constraint §3.5(2)

subtype Moves_Far is Piece range Knight..Queen;
subtype Important1 is Piece range Queen..King;
subtype Important2 is Moves_Far range Queen..King;
- - Error, constraint not compatible with subtype

• index constraint §3.6.1(2)

Rectangle: Matrix(4,8);

• discriminant constraint §3.7.1(2)

Board: Game_Board(8);

constrained subtype §3.2(9) See unconstrained subtype.

controlled type §7.6(2) A controlled type is a type descended from the abstract tagged types
Controlled or Limited_Controlled. These types have primitive procedures Initialize, Adjust and
Finalize, which are called when a value of the type is elaborated, assigned or finalized. You can
override these procedures if needed.

controlling formal parameter §3.9.2(2) If T is a tagged type and S is a primitive subprogram
of T, then formal parameters of S of type T are controlling. The call will be statically bound or
dynamically dispatched depending on the corresponding controlling operands (actual parameters)
of the call. A function may also have a controlling result.

If the following declaration is placed after the declaration of tagged type Parent, then P1 and P3

are controlling, but P2 is not:

procedure S(P1: in Parent; P2: out Integer; P3: in out Parent);

convention §6.3.1(2) The convention defines how a callable entity is invoked. Ada is the conven-
tion for subprograms and Intrinsic is the convention for built-in operations. Protected operations
have their own convention. Conventions are also used to specify the interface between Ada types
and subprograms, and those of another programming language §B.1(2). Some language rules
refer to the convention of a subprogram; for example, you cannot use the Access attribute on a
subprogram of Intrinsic convention §3.10.2(32):

type Ptr is access function (Left, Right: Integer) return Integer;
P: Ptr := "+" ’ Access; - - Error

convertible §4.6(4) A type—the operand type—is convertible to another type—the target type—
if type conversion can be performed according to the rules in §4.6. The conversion may be either
a value conversion, which creates a new value of the target type, or a view conversion, which
denotes the operand object.

cover §3.8.1(9–12) A discrete_choice such as 5..10 or others is said to cover a set of values of
a subtype. In contexts like aggregates, variant records and case statements, a discrete_choice_list

B Glossary of ARM Terms 285

must cover all the values of the subtype. The term is used in a similar way in exception choices
§11.2(6).

cover §3.4.1(9) A class-wide type is said to cover all the types in the class, while a specific
type covers only itself. Membership tests such as E inMain_Engine’Class are defined in terms of
covering §4.5.2(2).

current instance §8.6(17–18) In contexts such as task types, protected types and generic units,
the name of a type denotes a value or object of the type rather than the type itself. This object or
value is the one currently being executed. In the following protected type, the call PT.E refers to
the entry of the current instance of the protected object:

protected type PT is
procedure P;
entry E;

end PT;

protected body PT is
procedure P is
begin
PT.E;

end P;
entry E . . .

end PT;

declaration §3.1(5) A declaration defines a view of an entity and associates a name with the
view. If may also define the entity itself. Entity is a general term used for ‘things’ like objects,
subprograms, exceptions, etc. A declaration may be explicit or implicit:

type Piece is (Pawn, Knight, Bishop, Rook, Queen, King);
- - Explicitly defines the type Piece and the enumeration literals
- - Piece’First is an implicitly declared attribute

function EOL return Boolean renames Ada.Text_IO.End_Of_Line;
- - EOL is a new view of an existing subprogram

declarative region §8.1(1) A place where a nested declaration can occur. Most declarations are
declarative regions, for example, subprograms and record types. However, a for-loop statement is
also a declarative region, because the loop parameter is nested within. Note that the declarative
region of a package includes its body and children.

deeper than §3.10.2(3) See accessibility.

deferred constant §7.4(2) A constant of a private type can be declared before the full type is
declared. The value of the constant must be completed following the full type declaration:

B Glossary of ARM Terms 286

package P is
type ID is private;
Null_ID: constant ID;

private
type ID is new String(1..5);
Null_ID: constant ID := "*****";

end P;

defining name §3.1(10) The occurrence of name where it is defined is its defining name.
Subsequent occurrences of the name are called usage names. Syntactic categories for defining
names start with ‘defining_’; categories for usage names are direct_name and selector_name.

definite subtype §3.3(23) See indefinite subtype.

definition §3.1(7) See declaration.

depends on §3.7(20–24) See per-object constraint.

dereference §4.1(8) A dereference of an access value returns a view of the designated object or
subprogram. A dereference may be either explicit or implicit:

Head: Ptr = new Node;
N: Node := Head.all; - - Explicit dereference
I: Integer := Head.Key; - - Implicit dereference

derivation class §3.4.1(1) See class-wide type.

derived type §3.4 A derived type is a new type derived from an existing parent type. It is said
to a descendant of its parent type, which is the derived type’s ancestor. These terms are extended
transitively: if a type is derived from a descendant of a parent type, it is also a a descendant of the
parent type.

descendant §3.4.1(10) See derived type.

descendant §10.1.1(11) See unit.

designate §3.10(1) The object or subprogram ‘pointed-to’ by an access value. The subtype of
an object designate is called the designated subtype §3.10(10) and the profile of a subprogram
designate is called the designated profile §3.10(11).

determined class §12.5(6) A generic formal parameter determines a class of types; a matching
generic actual parameter must be in this class. For example, the class determined by private is the
class of all nonlimited types §12.5.1(17).

generic
type T is private;

procedure Gen;

with Gen; with Ada.Exceptions;
package Instance is new Gen(Ada.Exceptions.Exception_Id);

B Glossary of ARM Terms 287

By §11.4.1(2), Exception_Id is a private type and can be the generic actual parameter, even
though we do not know how the type is implemented. Exception_Occurrence is limited private
§11.4.1(3) and cannot be a generic actual parameter for an instantiation of Gen.

direct name §4.1(3) See name.

directly visible §8.3(2) See scope.

discrete choice §3.8.1(5) A range of values in a case statement, array aggregate or variant
record declaration:

type Values is array(Piece) of Integer;
V: Values :=
(Pawn => 1, - - Discrete choice is expression
Knight..Bishop => 3, - - Discrete choice is discrete range
Rook => 5, - - Discrete choice is expression
others => 10); - - Discrete choice is others

discrete type §3.2(3) Integer types and enumeration types (which include Character and Bool-

ean). Discrete types can be used in for-loop statements §5.5(4) and as array index types §3.6(5).

dynamically tagged §3.9.2(5) A controlling operand of class-wide type is said to be dynam-
ically tagged and causes dispatching at run-time. If the operand is of a specific type, it is said to
be statically tagged and the subprogram can be statically bound at compile-time. If the operand
is a function call that returns a class-wide type (and no operands of the function call are either
statically or dynamically tagged), the operand is said to be tag indeterminate.

elaboration §3.1(11) See execution.

elaboration dependencies §10.2(9) See semantic dependencies.

elementary type §3.2(3) The elementary types are the scalar types and access types. Elemen-
tary types are definite §3.3(23) and are passed as by-copy parameters §6.2(3). Scalar types are the
discrete types and the real types (floating point and fixed point types). Scalar types are ordered
§3.5(1) and can have range constraints §3.5(7).

environment §10.1.4(1) The environment of a compilation is the context in which the compi-
lation takes place. It is a conceptual program library that contains compiled units. Execution of
a partition takes place within an environment task §10.2(8), which elaborates all the library units
and the main subprogram.

erroneous execution §1.1.5(9–10) See error.

error §1.1.5 A violation of a language rule. Errors are classified in four categories:

• Errors that must be detected prior to run-time:

procedure Proc(X: out Integer);
Proc(17); - - Must be a variable §6.4.1(5)

• Errors that must be detected at run-time; these errors will raise exceptions.

B Glossary of ARM Terms 288

• bounded error An error that need not be detected by the implementation, but the range of
possible effects is limited. For example, it is a bounded error to access a formal parameter by
an alias such as a global variable §6.2(12):

S: String := "Hello world";
procedure Proc(T: in String) is
begin
S(1..5) := "Bye ";
Put(T); - - Is T a reference to S or a copy of S?

end Proc;

Proc(S);

The possible effects are: (a) read the old value, (b) read the new value, (c) raiseProgram_Error.

• erroneous execution An error that need not be detected and whose effect is unspecified. For
example, if you close the standard output file and then attempt to write on it, the execution is
erroneous §A.10.3(23).

evaluation §3.1(11) See execution.

exception §11(1) An exception has a name (predefined like Constraint_Error or user-defined
like Underflow). Each time that an exception is raised, it creates a new occurrence of the exception
and the execution of the enclosing construct is abandoned §11.4(3). The occurrence may be
handled or propagated. Package Ada.Exceptions §11.4.1 declares the type Exception_Id for
exceptions, and Exception_Occurrence for occurrences.

execution §3.1(11) A construct achieves its run-time effect when it is executed. Execution of an
expression is called evaluation and execution of a declaration is called elaboration.

expanded name §4.1.3(4) A selected_component of the form prefix.selector_name denotes
a component of an object or value of composite type such as a record, or an operation of some
task or protected object. The same syntax is also used for expanded names, in which case the
prefix denotes a named construct such as a package and the name denotes an entity declared in
the package. See §4.1.3(10–13) for a list of constructs that the prefix can denote in an expanded
name.

R: Ada.Strings.Maps.Character_Range; - - Expanded name
R.Low := R.High; - - Record components

expected type §8.6(20) The expected type appears in the Name Resolution Rules for a construct
and is used for overload resolution. See §8.6(21–25) for the definition of expected type when
class-wide types are concerned. Similarly, a context can have an expected profile §8.6(26) for a
callable entity.

function F return Duration;
function F return Float;

delay F;
- - Delay expects Duration §9.6(5), the first F is chosen

B Glossary of ARM Terms 289

expiration time §9.6(1) The time at which a delay will expire.

explicit declaration §3.1(5) See declaration.

explicit dereference §4.1(5) See dereference.

external call §9.5(4) A task entry or protected operation call that explicitly mentions the target
object. An internal call §9.5(3) is also allowed, in which case the call is to the current task or
protected object. The meanings of external requeue and internal requeue are similar §9.5(7).

protected type PT is
entry E1;
entry E2;

end PT;
PO: array(1..5) of PT;
protected body PT is
entry E1 when . . . is
begin
if . . . then
requeue PO(5).E2; - - External requeue, different(?) PO

else
requeue PT.E2; - - Internal requeue, same PO

end if;
end E1;
entry E2 when . . . is . . .

end PT;

Note that the external requeue is potentially blocking §9.5.1(15).

external effect §1.1.3(8) The effect of an Ada program on its external environment. Optimiza-
tions are permitted §11.6(3) provided that they don’t change the external effect of the program.

fail §9.2(1) The activation of a task can fail, in which case the task becomes completed.

fail §11.5(2) See check.

finalization §7.6.1(4) See completion.

first subtype §3.2.1(6) Types are not considered to have names; instead, types that are not
anonymous are called named types and have nameable subtypes. A type declaration declares both
the type and the name of a first subtype. Informally, the name is also the name of the type. In the
following declaration, Vector is the name of the first subtype of the named array type:

type Vector is array(Integer range <>) of Float;

freezing §13.14 An entity is frozen when its representation must be fully determined. §13.14 de-
fines which constructs freeze which entities. For example, a tagged type is frozen by an extension,
and you cannot declare primitive operations after freezing the type.

full type §3.2.1(8) A declaration that defines a type. Some type declarations do not define a
type; for example, a private type declaration declares a partial view of the corresponding full type
declaration. The type is completely defined after the full type definition.

B Glossary of ARM Terms 290

full type declaration §3.2.1(3) See incomplete type declaration.

full view §7.3(4) See partial view.

hidden §8.3(5) See scope.

homograph §8.3(8) Two declarations are homographs if they have the same name, and, for
callable entities (subprograms, entries and enumeration literals), if they have type-conformant
parameter profiles. One homograph can hide or override another; otherwise, it is usually illegal
for two homographs to be immediately within the same declarative region.

package P is
type Parent is tagged null record;
procedure Primitive(X: Parent);
type Derived is new Parent with null record;
procedure Primitive(X: Derived); - - Overrides
procedure Primitive(XXXX: Derived); - - Error
package Inner is
procedure Primitive(X: in Parent); - - Hides

end Inner;
end P;

immediately within §8.1(13) A declaration is immediately within the innermost enclosing
declaration. For example, an accept statement must be immediately within a task body §9.5.2(14):

task body T is
procedure Proc is
begin
accept E; - - Error

end Proc;
begin
accept E; - - OK

end T;

implementation-defined §1.1.3(18) The semantics of Ada is not fully specified by the ref-
erence manual. A rule may specify a set of possible effects that a construct may have, and an
implementation may choose any of these possible effects. For example, an implementation may
supply predefined integer types in addition to Integer §3.5.4(25). See §M for a list of character-
istics that an implementation must document. Unspecified is the same as implementation-defined,
except that the choice need not be documented. For example, it is unspecified if an array parameter
is passed by copy or by reference §6.2(11).

implicit declaration §3.1(5) See declaration.

implicit dereference §4.1(6) See dereference.

incomplete type declaration §3.10.1 Recursive type definitions such as Node are implemented
by declaring just the type name (and discriminants, if any). This incomplete type declaration must
eventually be completed by a full type declaration.

indefinite subtype §3.3(23) There are three categories of indefinite subtypes:

B Glossary of ARM Terms 291

• Unconstrained array subtypes, for example Matrix.

• Unconstrained discriminated record subtypes without defaults, for example Game_Board.

• Subtypes with unknown discriminants (including class-wide types):

type Data_Structure(<>) is private;

All other subtypes, in particular all elementary types, are definite. If you declare an object of an
indefinite subtype, you must supply a constraint either explicitly, or implicitly from an initial value
or actual parameter.

internal call §9.5(3) See external call.

intrinsic §6.3.1(4) See calling convention.

invalid representation §13.9.1(2) See abnormal object.

left §7.6.1(3) See completion.

library unit §10.2 See unit.

limited type §7.5 A type for which neither assignment nor predefined equality are allowed. The
reserved word limited can be used to explicitly denote that a record or private type is limited. In
addition, task and protected types are limited.

task type Producer; - - Limited type
type R is - - Limited type because ...
record
P: Producer; - - ...this component is limited

end record;

master §7.6.1(3) See completion.

mode §6.1(18) An indication of the direction of the data flow from the actual parameter to
the formal parameter and back. There are three modes: in, out and in out, which allow the
subprogram to read from the actual parameter, write to the actual parameter, or both, respectively.

name §4.1(2) A name denotes a declared entity such as a variable or a component of a record. A
direct name is either an identifier or an operator symbol such as "+". A name can also be a prefix
of another name. An implicit dereference can also be a prefix:

N: Node;
Head: Ptr := new Node;

N and Head are direct names; Head.all is a name that is an explicit dereference. In the name
N.Key, N is a prefix that is a name, while in the name Head.Next, Head is a prefix that is an
implicit dereference.

named number §3.3.2 See object.

nominal subtype §3.3(23) The subtype specified for (a view of) an object when the view is
defined. The actual subtype of the object is determined when the object is created.

B Glossary of ARM Terms 292

type Vector is array(Integer range <>) of Float;
procedure Proc(Parm: in Vector);
V: Vector(5..10);
Proc(V);

The nominal subtype of the formal parameter Parm is Vector, but during the call Proc(V), the
actual subtype is Vector(5..10).

numeric type §3.5(1) The numeric types are the integer and real types. Real types can be either
fixed point types (ordinary or decimal) or floating point types.

object §3.3 An entity created at run-time to contain a value. Informally, objects describe memory
locations such as variables. A list of objects is given in §3.3(2-12). Objects may be variable
objects, or constant objects whose value cannot be changed. A list of constants is given in §3.3(16–
22). Note that a named number §3.3.2 is not a constant object; it is just a compile-time name for
a static value of universal type. A view of an object may also be constant, even if the object isn’t:

Translate_Table: constant array(Character) of Character := . . . ;
Stack_Size: constant := 500; - - Named number, not a constant
procedure P(X: in Parent) is . . . - - View conversion is constant

operator §6.6 A function whose name is one of the operator symbols listed in §4.5(2–7), such
as "+" and "=". Note that in, not in, and then and or else are not operators and cannot be
overloaded.

overloading §8.3(6) A set of declarations is overloaded if they have the same name and are di-
rectly visible at some place in the program. Name Resolution Rules are used to resolve a reference,
that is, to choose one of the possible interpretations §8.6(10–15). Preference can be given to root
types §8.6(29). Overload resolution is done by examining a complete context §8.6(4). A complete
context should have only one acceptable interpretation; otherwise it is ambiguous §8.6(30). For
example, the procedure call statement Ada.Text_IO.Put("Hello world") is a complete context,
and the possible interpretations are the Put procedures for characters and for strings. The interpre-
tation of the statement as a call to Put for strings is chosen because "Hello world" is the expected
type §8.6(20) for that procedure.

overriding §8.3(9) A declaration of a subprogram with the same name as an implicit declaration
of an inherited primitive subprogram overrides the implicit declaration.

parent type §3.4(1) See derived type.

part §3.2(6) See subcomponent.

partial view §7.3(4) The declaration of a private type declares a partial view of the type; its full
view is given by the full declaration in the private part:

B Glossary of ARM Terms 293

package P is
type Parent is private;
type Not_Derived is new Parent with . . . ; - - Error

private
type Parent is tagged null record;
type Derived is new Parent with . . . ; - - OK

end P;

The partial view of Parent is not tagged, so the extension in the declaration of Not_Derived is
illegal, even though Parent is ‘really’ tagged as shown in the full view.

partition §10.2(2) An Ada program is a set of partitions that can be executed in a distributed
environment by assigning each partition to a node. You can think of a partition as a ‘program’
running on a computer.

per-object constraint §3.8(18) A constraint in a component of a discriminated record is called
a per-object constraint if it depends on a discriminant. If so, it is evaluated only when the object
is created, not when the type declaration is elaborated.

In the following example, the discriminant D is a per-object expression. The constraint of Field1
is elaborated when the type declaration is elaborated, and is 1..11 for all objects. The per-object
constraint of Field2 is elaborated when an object is elaborated. For the object R, the constraint is
1..10, which is too small for the value in the aggregate, so Constraint_Error will be raised.

G: Integer := 11;
type Rec(D: Integer) is
record
Field1: String(1..G); - - Not a per-object constraint
Field2: String(1..D); - - Per-object constraint

end record;
R: Rec := (10, "Hello world", "Hello world");

pool-specific §3.10(8) See storage pool.

potentially blocking §9.5.1(8) It is a bounded error for a protected action to invoke an operation
such as a call to a task entry that could cause the task executing the action to block.

prefix §4.1(4) See name.

primitive operation §3.2.3 The primitive operations on a type include the predefined operations
on the type as well as user-defined primitive subprograms, which are subprograms that have a
formal parameter or result of the type. Inherited and overriding subprograms are also primitive
operations.

private part §7.1(6) See visible part.

profile §6.1(22) The profile of a callable entry such as a subprogram or entry is its interface as
defined by the declaration of the formal parameters. For a function, the profile includes the result
type.

B Glossary of ARM Terms 294

protected action §9.5.1(3) The execution of a protected subprogram or entry, including acquir-
ing and releasing the lock.

range §3.5(4) A subset of a scalar type defined by a lower and an upper bound. A discrete range
or discrete subtype indication is specified by giving either a range or by a subtype indication of a
discrete subtype:

for P in Piece loop . . . - - subtype indication
for P in Knight..Rook loop . . . - - range

representation item §13.1(7) An object is represented in memory by a string of bits. A
representation item specifies aspects of an object’s representation, such as the size, alignment and
placing of the object.

root type §3.4.1(8) See universal type.

root library unit §10.1.1(1) See unit.

scalar type §3.2(3) See elementary type.

scope §8.2 The scope of a declaration is the portion of the program where the declaration might
be visible §8.3. The declaration is visible if it can be referred to; it may be directly visible §8.3(4)
either because it is immediately visible and can be referred to by a direct name, or because it is
use-visible §8.4(9). A declaration is use-visible if it has been made potentially use-visible by a
‘use’ clause §8.4(8) and there are no name conflicts §8.4(10–11). Within its scope, a declaration
may be hidden §8.3(5), either from direct visibility, or from all visibility.

type Index is Integer range 1..100;
type T(D1: Index := 10; D2: Index := D1) is . . .
- - Error, D1 is hidden from all visibility §8.3(19)

Head: Ptr := new Node;
First: Integer := Head.Key;
- - Key is visible but not directly visible §8.3(2)

semantic dependencies §10.1.1(24) One compilation unit may depend on another; this depen-
dency is used to determine the correctness of a unit and the visibility of declarations. Semantic
dependencies also determine allowable sequences of compilation. Elaboration dependencies are
the same as semantic dependencies, except that they can be changed by using pragmas §10.2(9).
For example, a package body depends on the corresponding package declaration, and must be
compiled and elaborated after it.

short-circuit control form §4.5.1(1) The constructs and then and or else do not evaluate
their second operand if the value of the form can be determined from the first one:

while P /= null and then P.Key /= Value loop
- - If P = null, don’t evaluate P.Key

B Glossary of ARM Terms 295

specific type §3.4.1(3) See class-wide type.

static §4.9 An static expression is one whose value can be determined at compile-time. Similarly,
a subtype whose constraint can be determined at compile-time is called a static subtype §4.9(26).
The choices of a case statement must be static §5.4(5).

procedure Proc(X: Piece) is
subtype R1 is Piece range Pawn..Bishop; - - Static
subtype R2 is Piece range Pawn..X; - - Not static

begin
case P is
when Pawn => . . . ; - - OK
when X => . . . ; - - Error
when R1 => . . . ; - - OK
when R2 => . . . ; - - Error

end case;
end Proc;

statically match §4.9.1 Certain language constructs require that a pair of subtypes or constraints
be statically matching. This means that the compiler can determine that they are the same: either
they are both static and equal, or they are both derived from the same definition. Array type
conversion is permitted only if the subtypes of the components statically match §4.6(12) (and the
index subtypes are convertible):

procedure Proc(N: in Integer) is
subtype R is Integer range 1..N;
type AT1 is array(1..10) of R;
type AT2 is array(1..10) of R;
type AT3 is array(1..10) of Integer range 1..N;
A1: AT1;
A2: AT2;
A3: AT3;

begin
A1 := AT1(A2); - - OK, statically match
A1 := AT1(A3); - - Error, do not statically match

end Proc;

statically tagged §3.9.2(4) See dynamically tagged.

storage element §13.3(8) A storage element is an addressable element of memory. Sys-

tem.Storage_Unit is the number of bits in a storage element. On most computers, storage el-
ements are eight-bit bytes.

for Ptr’Storage_Size use 1000 * (Node’Size / System.Storage_Unit);
- - Storage pool for 1000 nodes

storage pool §13.11(2) Allocation of memory using new is done from an area of memory
called the storage pool associated with a pool-specific access type §3.10(8). Normally, all storage

B Glossary of ARM Terms 296

is allocated from one or more standard pools, but the user can define other pools and memory
allocation schemes. A object of a general access type can contain a value of any access type with
the same designated type.

subcomponent §3.2(6) A subcomponent is a component of an object of composite type, or re-
cursively a component of a subcomponent. A part is an entire object or any set of subcomponents.

Chess_Board: Game_Board(8);
Chess_Board.B; - - Component and subcomponent
Chess_Board.B(3, 4); - - Subcomponent

subsystem §10.1(3) See unit.

subtype §3.2(8) A type together with a constraint on the values of the type. The subtype of an
entity is determined at run-time; violations of subtype matching cause Constraint_Error.

subtype Strong is Piece range Knight..Queen;
Current: Strong := Pawn; - - Compiles OK, raises Constraint_Error

subunit §10.1.3 A separately compiled physical unit that is a body corresponding to a stub in
the parent unit.

package body P is
Title: constant String := . . . ;
procedure Display is separate; - - Stub

end P;

with Ada.Text_IO; - - Subunit can have context clause
separate(P)
procedure Display is
begin
Ada.Text_IO.Put(Title); - - Subunit retains visibility

end Display;

tag indeterminate §3.9.2(6) See dynamically tagged.

target object §9.5(2) The called task or protected object in an entry or protected subprogram
call.

terminated §9.3(5) The state of a task after it has been completed and finalized.

type §3.2(1) A set of values and primitive operations on these values. The type of an entity is
determined at compile-time.

unconstrained subtype §3.2(9) A subtype that allows constraints, but for which no constraints
have been defined.

type Game_Board(Size: Positive) is . . . - - Unconstrained subtype
subtype Chess_Board is Game_Board(8); - - Constrained subtype

B Glossary of ARM Terms 297

Subtypes with unknown discriminants are also unconstrained §3.7(26). Integer’Base and dis-
criminated records with defaults are examples of unconstrained subtypes that are not indefinite;
uninitialized objects of these types can be declared.

unit §10.1(1) Ada programs (more exactly, partitions) are composed of (possibly nested) units
such as packages, tasks and subprograms. A compilation consists of a set of one or more compila-
tion units, which are either library units or subunits. A library unit is a unit not physically nested
within another (except Standard). Library units that are not children of another package except
Standard are called root library units §10.1.1(1).

A unit may be a parent unit of a child unit §10.1.1(1), and the terms ancestor and descendant
§10.1.1(11) are used transitively for this relation. A root library unit and its descendants form a
subsystem §10.1(3).

universal type §3.4.1(6) A universal type is the conceptual class-wide type for a class of numeric
types. The conceptual specific type at the root of a universal type is called a root type §3.4.1(8).

unspecified §1.1.3(18) See implementation defined.

usage name §3.1(10) See defining name.

view §3.1(7) A declaration defines a view, which is a way of ‘looking at’ an entity. There may
be several views for the same entity:

• A private type is a partial view of the full type whose definition is given in its completion
§7.3(4).

• A formal by-reference parameter is a view of the actual parameter §6.2(2).

• A type conversion to a tagged type is a view of the object §4.6(5,26). In the following example,
the type conversion to Parent is a view conversion, so within the subprogram we can convert
the parameter to Parent’Class and dispatch:

D: Derived;
Primitive(Parent(D));

visible §8.3 See scope.

visible part §7.1(6) The declarations in a package specification before the keyword private
(or before the end of the specification if there is no private part) form the visible part of the
specification. Declarations following private (if any) form the private part of the specification.

C Source Code

The source code for the examples and case studies is organized in a directory structure correspond-
ing to the chapters of the book. The file LIST.TXT contains a list of each file and its contents. The
name of the main subprogram (or quiz number) with extension ADA is used as the file name.

If you use GNAT, you will have to run ‘gnatchop’ to create separate files for each compilation
unit.

gnatchop -w euler.ada
gnatmake euler

This step is not necessary if your compiler allows multiple compilation units per file.

The source code is copyright c© 1998 by M. Ben-Ari. Copying and modification are permitted,
provided that this copyright notice is included, and provided that the copying is not for commercial
use. The source code is provided ‘as is’ with no warranty.

298

D Quizzes

The quizzes will help you understand the finer points of the Ada language; they also offer an
opportunity to practice reading the ARM. Each quiz is a small Ada program; you are to examine it
and decide if it will compile, and if so, what will be the result of executing the program (for quizzes
that have executable statements). The quizzes are grouped according to topic, but this grouping is
only approximate, because a quiz may show the interaction between several constructs.

Appendix E Hints refers you to the relevant clauses of the ARM from which you should be able to
solve many, if not most, of the quizzes before looking at Appendix F Answers!

The source code of the quizzes is on the CD-ROM. To save space in the book, ‘with’ and ‘use’
clauses for Ada.Text_IO, Ada.Integer_IO and Ada.Exceptions are omitted. Furthermore, if the
source code of the quiz consists only of a main subprogram with declarations and statements, the
following program structure is assumed:

procedure Main is
- - Declarations

begin
- - Statements, or null if none

end Main;

Types

1. type Rec is
record
V: String;

end record;
- - - - - - - - - -

2. S: String := "Hello world";

S(2..5) := S(1..4);
Put(S);

- - - - - - - - - -

299

D Quizzes 300

3. procedure Proc(Stop: Character) is
Start: constant Character := ’A’;
type R(C: Character) is
record
case C is
when Start .. Character’Succ(Start) => I: Integer;
when Stop => B: Boolean;
when others => F: Float;

end case;
end record;

begin
null;

end Proc;
- - - - - - - - - -

4. subtype Letters is Character range ’A’..’Z’;

Put(Letters’Val(42));
Put(Positive’Val(0));

- - - - - - - - - -

5. type T1 is range 5..10;
type T2 is new T1 range 50..100;

- - - - - - - - - -

Aggregates

6. type Rec is
record
One, Two, Three, Four, Five: Integer;

end record;
R: Rec := (1, 2, Four=>4, Five=>5, Three=>3);
type Vector is array(1..5) of Integer;
V: Vector := (1, 2, 3=>3, 4=>4, 5=>5);

- - - - - - - - - -

7. package P is
type T1 is tagged
record I: Integer := 0; end record;

type T2 is new T1 with
record N: Integer := 0; end record;

end P;
with P; use P;
procedure Main is
A: T2’Class := (I => 2, N => 4);

begin
null;

end Main;
- - - - - - - - - -

D Quizzes 301

8. type Name_Array is
array(Integer range <>, Integer range <>) of Character;

Names: constant Name_Array(1..4, 1..6) :=
("Kirk ", "Spock ", "McCoy ", "Scotty");

Put(Names(4,1));
- - - - - - - - - -

9. type Vector is array(Integer range <>) of Integer;
V1: Vector(1..5) := (6..10 => 0);
V2: Vector(1..5) := (6 => 1, others => 0);

- - - - - - - - - -

10. N: Integer;
procedure P(T: String) is
begin
Put(T’Last);

end P;

Get(N);
P((1..N => ’X’));
P((1..10 => ’X’, 11..N => ’Y’));

- - - - - - - - - -

Boolean types and equality

11. X, Y, Z: Boolean;
B1: Boolean := X and Y and Z;
B2: Boolean := X and Y or Z;

- - - - - - - - - -

12. package P is
type T1 is tagged
record I: Integer := 0; end record;

function "="(Left, Right: T1) return Boolean;
type T2 is new T1 with
record N: Integer := 0; end record;

end P;

package body P is
function "="(Left, Right: T1) return Boolean is
begin
return abs(Left.I-Right.I) < 2;

end "=";
end P;

D Quizzes 302

with P; use P;
procedure Main is
A: T2 := (I => 2, N => 4);
B: T2 := (I => 3, N => 4);
C: T2 := (I => 3, N => 4);
D: T2 := (I => 3, N => 5);

begin
Put_Line(Boolean’Image(A = B));
Put_Line(Boolean’Image(C = D));

end Main;
- - - - - - - - - -

13. type My_Boolean is new Boolean;
function "="(Left, Right: Integer) return My_Boolean is
B: Boolean := Left = Right + 1;

begin
return My_Boolean(B);

end "=";
function "/="(Left, Right: Integer) return My_Boolean is
B: Boolean := Left = Right - 1;

begin
return My_Boolean(B);

end "/=";
M1: My_Boolean := 4 = 3;
M2: My_Boolean := 3 /= 4;

Put_Line(My_Boolean’Image(M1));
Put_Line(My_Boolean’Image(M2));

- - - - - - - - - -

14. function "/="(Left, Right: Integer) return Boolean is
B: Boolean := Left = Right - 1;

begin
return B;

end "/=";

Put_Line(Boolean’Image(4 /= 3));
- - - - - - - - - -

15. type T1 is null record;
X, Y: T1 := (null record);

Put(Boolean’Image(X = Y));
- - - - - - - - - -

16. type My_Boolean is new Boolean;
I, J: Integer := 1;
M: My_Boolean := My_Boolean(I = J);
if M then Put("Equal"); else Put("Not equal"); end if;

D Quizzes 303

- - - - - - - - - -

17. type T is new Integer;
function "="(Left, Right: T) return Boolean is
begin
return Integer(Left) /= Integer(Right);

end "=";

type Vector is array(1..2) of T;
A: Vector := (1, 2);
B: Vector := (3, 4);

Put_Line(Boolean’Image(A(1) = B(1)));
Put_Line(Boolean’Image(A = B));

- - - - - - - - - -

Discriminants

18. type Rec(D: Positive := 100) is
record
V: String(1..D);

end record;
R: Rec;

- - - - - - - - - -

19. type Rec(D: Positive) is
record
V: String(1..D-1);

end record;
- - - - - - - - - -

20. subtype Index is Integer range 1..100;
type Rec(Disc: Index := 100) is
record
Data: String(1..Disc);

end record;
R1: Rec(100);
C1: Character renames R1.Data(100);
R2: Rec;
C2: Character renames R2.Data(100);

- - - - - - - - - -

21. subtype Sizes is Integer range 1..5000;
type Queue(Size: Sizes := 100) is tagged null record;

- - - - - - - - - -

D Quizzes 304

22. type Parent(Number: Positive; Size: Positive) is
record
X: String(1..Number);
Y: String(1..Size);

end record;
type Derived(Count: Positive) is new Parent(Count, Count);
P: Parent := (2, 3, "ab", "cde");
D: Derived := (3, "uvw", "xyz");

D := Derived(P);
Put_Line(D.X); Put_Line(D.Y);

- - - - - - - - - -

Numeric types

23. type Int is range 0..10_000;
A: Int := 1_000;
B: Int := 20;
C: Int := (A * B) / 5;

Put_Line(Int’Image(C));
- - - - - - - - - -

24. Put(16#a#e2);
Put(16#A#E2);
Put(16#E#EA);

- - - - - - - - - -

25. Put("+"(Left => 2, Right => 3));
- - - - - - - - - -

26. type M is mod 23;
X1: M := 21;
X2: M := 10;

Put_Line(M’Image(X1 xor X2));
- - - - - - - - - -

27. type Fixed is delta 0.5 range 0.0 .. 10.1;
Put_Line(Fixed’Image(10.1));

- - - - - - - - - -

28. N1: aliased constant Integer := 1;
N2: aliased constant := 1;

- - - - - - - - - -

D Quizzes 305

29. I: Integer;
case Integer’Pos(I) is
when Integer’First..Integer’Last => null;

end case;
- - - - - - - - - -

Access types

30. package P is
type Ptr is access all Integer;

end P;

with P;
procedure Main is
N: aliased Integer;
Q: P.Ptr := N’Access;

begin
null;

end Main;
- - - - - - - - - -

31. package P is
type Parent is tagged null record;
type Parent_Ptr is access all Parent;
procedure Proc1(X: Parent_Ptr);
procedure Proc2(X: access Parent);
type Derived is new Parent with null record;
D: aliased Derived;

end P;

with P; use P;
procedure Main is
begin
Proc1(D’Access);
Proc2(D’Access);

end Main;
- - - - - - - - - -

32. type String_Ptr is access String;
S: String_Ptr := new String’("Hello world");
type Integer_Ptr is access Integer;
I: Integer_Ptr := new Integer’(10);

Put_Line(S(1..5));
Put(I);

- - - - - - - - - -

D Quizzes 306

33. type Int_Ptr is access all Integer;
N: aliased Integer;
function Func return Int_Ptr is
begin
return N’Access;

end Func;
Func.all := 5;
Put(N);

- - - - - - - - - -

34. package P is
protected type PT is
entry E(X: access Integer);

end PT;
task type T is
entry E(X: access Integer);

end T;
end P;
- - - - - - - - - -

35. package P is
type Rec(D: access Integer) is limited null record;
type Ptr is access Rec;

end P;

with P; use P;
procedure Main is
N: aliased Integer;
R: Ptr := new Rec(N’Access);

begin
null;

end Main;
- - - - - - - - - -

36. package P is
type Parent is tagged null record;

end P;

with P; use P;
procedure Main is
type Derived is new Parent with null record;

begin
null;

end Main;
- - - - - - - - - -

D Quizzes 307

Parameters

37. N1: Integer := 5;
type Ptr is access Integer;
N2: Ptr := new Integer’(5);
procedure Proc(K: out Integer; P: out Ptr) is
begin
Put_Line(Integer’Image(K));
Put_Line(Integer’Image(P.all));

end Proc;

Proc(N1, N2);
- - - - - - - - - -

38. type Vector is array(1..2) of Integer;
Vec: Vector := (others => 1);
procedure Proc(V: in out Vector) is
V(1) := 2;
if Vec(1) = 1
then Put("One");
else Put("Two");

end if;
end Proc;

Proc(Vec);
- - - - - - - - - -

39. procedure Proc(N1: in Integer; N2: in Integer := N1) is
begin
null;

end Proc;
- - - - - - - - - -

40. package P is
type T1 is range 1..100;
procedure Proc(X: T1; Y: T1);
type T2 is new T1 range 1..50;

end P;

package body P is
procedure Proc(X: T1; Y: T1) is
begin
Put(Integer(X));
Put(Integer(Y));

end Proc;
end P;

D Quizzes 308

with P; use P;
procedure Main is
Z: T2 := 10;

begin
Proc(Z, 99);

end Main;
- - - - - - - - - -

41. procedure Proc1(I: in Integer) is
begin
Put(I);

end Proc1;
procedure Proc2(I: in Positive) renames Proc1;

Proc2(0);
- - - - - - - - - -

42. package P is
type T1 is range 1..100;
subtype Sub is T1 range 1..50;
procedure Proc(X: Sub; Y: Sub);
type T2 is new T1 range 51..100;

end P;

package body P is
procedure Proc(X: Sub; Y: Sub) is
begin
Put(Integer(X));
Put(Integer(Y));

end Proc;
end P;

with P; use P;
procedure Main is
Z1: T2 := 88;
Z2: T2 := 99;

begin
Proc(Z1, Z2);

end Main;
- - - - - - - - - -

D Quizzes 309

Packages

43. package P is
type T1 is private;
C: constant T1;
V: T1;

private
type T1 is new Integer;
C: constant T1 := 0;

end P;
- - - - - - - - - -

44. package P is
Mode: Integer;

end P;

package body P is
begin
Mode := 777;

end P;

with P; use P;
procedure Main is
begin
Put(Mode);

end Main;
- - - - - - - - - -

45. package P is
type Node;
type Ptr is access Node;

end P;

package body P is
type Node is
record
Key: Integer;
Next: Ptr;

end record;
end P;
- - - - - - - - - -

46. package P is
procedure Proc1(I: in Positive);
procedure Proc2(I: in Natural);
procedure Proc3(I: in Natural) renames Proc1;

end P;

D Quizzes 310

package body P is
procedure Proc1(I: in Positive) is
begin
null;

end Proc1;
procedure Proc2(I: in Natural) renames Proc1;

end P;
- - - - - - - - - -

Visibility

47. N: Integer := 5;
procedure Proc is
N: Integer := 10;

begin
Put(N);
Put(Main.N);

end Proc;

Proc;
- - - - - - - - - -

48. procedure Proc(X: in Integer; Y: in Integer := 2) is
begin
Put(X*Y);

end Proc;

procedure Proc(Z: in Integer; Y: in Float := 3.0) is
begin
Put(Z*Integer(Y));

end Proc;
procedure Proc(X: in out Integer) is
begin
Put(X);

end Proc;

Proc(Z => 4);
Proc(X => 5);

- - - - - - - - - -

D Quizzes 311

49. package P is
procedure Proc;

end P;

package body P is
procedure Proc is
begin
Put_Line("Hi from Proc in the package");

end Proc;
end P;

with P; use P;
procedure Main is
procedure Proc is
begin
Put_Line("Hi from Proc in the main subprogram");

end Proc;
begin
Proc;

end Main;
- - - - - - - - - -

50. package P is
procedure Proc;

end P;

package body P is
Inner: exception;
procedure Proc is
begin
raise Inner;

end Proc;
end P;

with P; use P;
procedure Main is
begin
Proc;

exception
when E: others => Put(Ada.Exceptions.Exception_Name(E));

end Main;
- - - - - - - - - -

D Quizzes 312

51. package P is
type T is tagged null record;
procedure Proc(X: T);

end P;

package body P is
procedure Proc(X: T) is
begin
Put_Line("Parent");

end Proc;
end P;

with P; use P;
package Q is
type T1 is new T with null record;

private
procedure Proc(X: T1);

end Q;

package body Q is
procedure Proc(X: T1) is
begin
Put_Line("Derived");

end Proc;
end Q;

with Q; use Q;
procedure Main is
A: T1;

begin
Proc(A);

end Main;
- - - - - - - - - -

52. function F return Integer is
begin
return 1;

end F;
function F return Float is
begin
return 1.0;

end F;

Put(F);
Put(Integer(F));

- - - - - - - - - -

D Quizzes 313

53. In procedure Tabbing on page 130, a ‘use’ clause was used rather than a ‘use-type’ clause.
Why?

Type extension

54. package P is
type T1 is tagged null record;
procedure Proc1(X: in out T1);
type T2 is new T1 with null record;
procedure Proc1(X: in out T2);
procedure Proc2(X: in out T1);

end P;
- - - - - - - - - -

55. package P is
type Parent is tagged record N: Integer; end record;
type Derived is new Parent with record M: Integer; end record;

end P;

with P; use P;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
procedure Main is
P: Parent := (N=>1);
D: Derived := (N=>2, M=>3);

begin
Parent(D) := P;
Put(D.N);
Put(D.M);

end Main;
- - - - - - - - - -

56. package P is
type T is private;

private
type Ptr is access T’Class;
type T is tagged
record
Next: Ptr;

end record;
end P;
- - - - - - - - - -

D Quizzes 314

57. package P is
type T1 is tagged
record I: Integer; end record;

function F return T1;
type T2 is new T1 with
record N: Integer; end record;

end P;
- - - - - - - - - -

58. package P is
type T1 is tagged
record
N: Integer;

end record;
procedure Proc2(X: T1 := (N=>1));

end P;
- - - - - - - - - -

59. package P is
type T1 is tagged
record
N: Integer;

end record;
procedure Proc1(X: T1);
Empty: constant T1;
procedure Proc2(X: T1);

private
Empty: constant T1 := (N => 1);

end P;
- - - - - - - - - -

Tasks

60. procedure Main is
task type T(ID: Integer);
task body T is
N: Positive := ID;

begin
for I in 1 .. 4 loop
Put_Line("Hi from task " & Integer’Image(ID));

end loop;
end T;

T0: T(0);
T1: T(1);

D Quizzes 315

begin
null;

exception
when Tasking_Error => Put_Line("A task has died");

end Main;
- - - - - - - - - -

61. procedure Main is
task T is
entry E1(N: Integer);
entry E2;

end T;
task body T is
begin
accept E1(N: Integer) do
select
when N > 0 => accept E2;

end select;
end E1;

exception
when Ex: others =>
Put_Line("Task T " & Exception_Name(Ex));

end T;

task A;
task body A is
begin
T.E1(0);

exception
when Ex: others =>
Put_Line("Task A " & Exception_Name(Ex));

end A;

begin
T.E2;

exception
when Ex: others =>
Put_Line("Main " & Exception_Name(Ex));

end Main;
- - - - - - - - - -

D Quizzes 316

62. task type T is
entry E;

end T;

task body T is
procedure P is
begin
accept E;

end P;
begin
begin
accept E do
accept E;

end E;
end;

end T;
- - - - - - - - - -

63. procedure Main is

task type T(ID: Integer);
type Ptr is access T;
task body T is
begin
for I in 1 .. 5 loop
Put_Line("Hi from task " & Integer’Image(ID));
delay 0.5*ID;

end loop;
end T;

begin
Put_Line("Main subprogram");
declare
P: Ptr := new T(1);

- - type New_Ptr is access T;
- - New_P: New_Ptr := new T(2);
begin
null;

end;
Put_Line("Back from block");

end Main;
- - - - - - - - - -

What would happen if the commented lines were added to the program?

D Quizzes 317

64. protected P is
entry E1;
entry E2;

end P;
procedure Proc renames P.E1;
protected body P is
entry E1 when True is
begin
null;

end E1;
entry E2 when True is
begin
Proc;
requeue Proc;

end E2;
end P;

- - - - - - - - - -

65. procedure Main is

protected PO is
entry E;

private
C: Character := Character’First;

end PO;
protected body PO is
entry E when Character’Pred(C) < ’A’ is
begin
null;

end E;
end PO;

begin
PO.E;

exception
when Ex: others =>
Put_Line("Main " & Exception_Name(Ex));

end Main;
- - - - - - - - - -

D Quizzes 318

66. procedure Main is

task T1 is
entry E;

end T1;
task body T1 is
begin
delay 0.2;
accept E do
Put_Line("Starting T1.E");
delay 0.8;
Put_Line("Finishing T1.E");

end E;
end T1;

task T2 is
entry E;

end T2;
task body T2 is
begin
delay 0.4;
accept E do
Put_Line("Starting T2.E");
delay 0.1;
Put_Line("Finishing T2.E");

end E;
end T2;

begin
select
T1.E;
Put_Line("Finished triggering");

then abort
T2.E;
Put_Line("Finished abortable");

end select;
end Main;
- - - - - - - - - -

D Quizzes 319

67. task type T;
type Ptr is access T;

function F return Ptr is
begin
return new T;

end;

task body T is
X: Ptr := F;
Y: Ptr := new T;

begin
null;

end T;

Z: Ptr := new T;
- - - - - - - - - -

Generics

68. generic
type Item is private;
type Vector is array(1..10) of Item;

procedure Proc;
- - - - - - - - - -

69. package P is
Local_Max: Integer := 100;
generic
Max: Integer := Local_Max;

package GP is
procedure Proc;

end GP;
end P;

package body P is
package body GP is
procedure Proc is
begin
Put(Max);

end Proc;
end GP;

end P;

D Quizzes 320

with P;
procedure Main is
package First_GP is new P.GP;
function Init return Integer is
begin
P.Local_Max := 200;
return 1;

end Init;
N: Integer := Init;
package Second_GP is new P.GP;

begin
First_GP.Proc;
Second_GP.Proc;

end Main;
- - - - - - - - - -

70. generic
type T(A: Integer) is private;

procedure Proc;
procedure Proc is
begin
null;

end Proc;

type Base(D: Integer) is null record;
type R(Disc: Integer) is new Base(D => Disc);
type S is new Base(D => 10);

procedure Proc1 is new Proc(T => R);
procedure Proc2 is new Proc(T => S);

- - - - - - - - - -

D Quizzes 321

71. generic
type T is range <>;
with function Formal(Left, Right: T) return T;

package GP is
function Func(Left, Right: T) return T;

end GP;

package body GP is
function Func(Left, Right: T) return T is
begin
return 2*(Left+Right);

end Func;
end GP;

with GP;
generic
with package GFP is new GP(<>);
- - with package GFP is new GP(Integer, "+");

procedure Proc;

procedure Proc is
package GIO is new Ada.Text_IO.Integer_IO(GFP.T);

begin
GIO.Put(GFP.Func(1,2));
GIO.Put(GFP.Formal(1,2));

end Proc;

with GP; with Proc;
procedure Main is
function Actual(Left, Right: Long_Integer) return Long_Integer is
begin
return 4*(Left+Right);

end Actual;
package GP_Instance is new GP(Long_Integer, Actual);
procedure Proc_Instance is new Proc(GP_Instance);

begin
Proc_Instance;

end Main;
- - - - - - - - - -

What would happen if the generic formal package parameter were changed to the com-
mented line?

D Quizzes 322

72. package Q is
type Parent is null record;
procedure Proc(A: in Parent);
type Actual is new Parent;
procedure Proc(A: in Actual);

end Q;

with Ada.Text_IO; use Ada.Text_IO;
package body Q is
procedure Proc(A: in Parent) is
begin
Put_Line("Parent");

end Proc;
procedure Proc(A: in Actual) is
begin
Put_Line("Actual");

end Proc;
end Q;

with Q;
generic
type Formal is new Q.Parent;

package P is
type Derived is new Formal;
procedure Inside;

end P;

package body P is
procedure Inside is
D: Derived;

begin
Proc(D);

end Inside;
end P;

with P; with Q;
procedure Main is
package Instance is new P(Q.Actual);
D: Instance.Derived;

begin
Instance.Inside;
Instance.Proc(D);

end Main;
- - - - - - - - - -

E Hints

1. §3.6(10), §3.3(23)

2. §5.2(7,13)

3. §4.3.1(17), §4.9(6,21–22)

4. §3.5.1(7), §3.5.4(15), §3.5.5(6)

5. §3.5(9),§3.4(26)

6. §4.3.3(3–4), §4.3.1(4-6)

7. §4.3(4), §3.9(29)

8. §4.3.3(19)

9. §4.3.3(27), §4.3.3(26,29)

10. §4.3.3(17)

11. §4.4(2–7)

12. §3.4(17), §4.5.2(14)

13. §6.6(6)

14. §6.6(5)

15. §4.3.1(15), §4.5.2(22)

16. §3.5.3(1), §5.3(4)

17. §4.5.2(24)

18. None

19. §3.8(12)

20. §8.5.1(5)

21. §3.7(11)

22. §4.6(43)

23. §3.5(6), §3.5.4(21)

24. §2.4.1(6), §2.4.2(7–8)

25. §4.5(9)

26. §4.5.1(5)

27. §3.5.9(13)

28. §3.3.1(2), §3.3(24)

29. §3.5.5(3), §5.4(8)

30. §3.10.2(6,22), §10.2(8)

31. §3.4(18), §6.1(27)

32. §4.1(12)

33. §3.3(9)

34. §9.5.2(13)

35. §3.10.2(28)

36. §3.9.1(3)

37. §6.4.1(12–15)

38. §6.2(11)

39. §6.1(21)

40. §3.4(19)

41. §8.5.4(7)

42. §3.4(6,19,34)

43. §7.3(5)

44. §7.2(4)

45. §3.10.1(3)

46. §8.5.4(4–5)

47. §8.3(22), §4.1.3(4)

48. §6.4(6,9), §6.4.1(5), §8.6(2,14)

323

E Hints 324

49. §8.4(10)

50. §11.4.1(12)

51. §3.2.3(7), §8.1(9)

52. §8.6(7,27)

53. §8.4(8)

54. §13.14(7,16), §3.9.2(13)

55. §3.3(12), §4.6(5), §5.2(5)

56. §7.3.1(8–9)

57. §3.9.3(4,6)

58. §3.9.2(11)

59. §13.14(6)

60. §9.2(1,5), §9.3(5)

61. §9.7.1(21), §9.5.2(24), §9.5.3(21)

62. §9.5.2(14–15), §5.6

63. §9.3(2)

64. §8.5.4(7)

65. §9.5.3(7)

66. §9.7.4(6,9), §9.5.3(20)

67. §8.6(17)

68. §12.5.3(3)

69. §12.1(10), §12.3(20)

70. §3.4(6), §12.5.1(11–14)

71. §12.7(10)

72. §12.3(16–17)

F Answers

1. Compile-time error. A component must be of a definite subtype; an unconstrained array
type is indefinite .

2. Prints ‘HHell world’. There is no ‘overlap’ because both sides of the assignment statement
are evaluated before the target variable receives the value of the expression.

3. Compile-time error. The discrete choices in the variant must be static: Character’Succ(Start)
is static, but Stop is not.

4. Prints an asterisk that is at position 42 in the enumeration type Character and then prints
zero. The position of an enumeration value is its position within the type, not the subtype,
and the position of an integer is its value. Val returns a value of the base type.

5. This is not a compile-time error; instead, Constraint_Error is raised at runtime!

6. Compile-time error. While record aggregates can have named associations after positional
associations, array aggregates must be either positional or named (except for others).

7. Compile-time error. An aggregate cannot be of class-wide type. Qualification T2’(I=>2,

N=>4) should be used to give the aggregate a specific type.

8. Prints ‘S’. The bottom subaggregate can be a string literal if the component is of type Char-
acter.

9. Raises Constraint_Error. The declaration of V1 is legal: the aggregate bounds are taken
from the discrete choice list and then converted during the assignment (‘sliding’). Because
of the others, the bounds of the aggregate for V2 are taken from the index constraint, and 6
is not within the bounds of the constraint. Aggregates with others do not slide.

10. Compile-time error. The second aggregate is illegal, because a choice may not be dynamic
unless it is the only choice.

11. Compile-time error. The declaration of B1 is legal because repetitions of and (or or) are
allowed by the syntax. The declaration of B2 is illegal because combining operators requires
the syntax of a parenthesized expression.

12. The first statement prints ‘True’ because the first components 2 and 3 of A and B are
equal by the overridden equality function, and the second components, which are both 4,

325

F Answers 326

are equal by predefined equality which is used on non-inherited components. The second
statement prints ‘False’ because 4 is not equal to 5 using predefined equality. We say that
predefined equality is incorporated. Without the special rule, the second component N
would be ignored by the inherited equality and both statements would print ‘True’.

13. Prints ‘True’ twice! Except for predefined Boolean type, there is no relationship between
"=" and "/=".

14. Compile-time error. An explicit declaration of "/=" for predefined Boolean is illegal.

15. Prints ‘True’. Equality of a composite types returns true if there are no components.

16. Prints ‘Equal’. The descendant of Boolean is also a boolean type and the condition of an if
statement can be any boolean type.

17. Prints ‘True’ then ‘False’. Predefined, rather than overridden equality, is used for untagged
components of a composite type.

18. Raises an exception such as Storage_Error. The object is allocated the maximum space
that might be needed by any value of the discriminant subtype.

19. Compile-time error. A discriminant must be used directly in a constraint, not as part of an
expression.

20. Compile-time error. The declaration of C2 is illegal, because you can’t rename something
that might not exist.

21. Compile-time error. Default expressions are not allowed for discriminants of tagged type.

22. The declaration of D raises Constraint_Error. When a discriminant of the target type cor-
responds to more than one discriminant of the operand, they must both be equal.

23. Prints ‘4000’. The expression is evaluated using the base range, which is sufficient to hold
20_000 on any computer with at least a 16-bit word.

24. Compile-time error. The third statement is a parse error because the exponent must be
decimal. With the third statement deleted, the program prints 2560 (= 10 · 162) twice:
exponent letters and hexadecimal digits can be of either case.

25. Prints ‘5’. The implicit parameter names of the predefined binary operators are Left and
Right.

26. Prints ‘8’: 01010 xor 10101 = 11111 = 31 and 31 mod 23 = 8.

27. The program is correct even if it prints 10.0. The bounds of fixed point type are not neces-
sarily values of the type!

F Answers 327

28. Compile-time error. The first declaration declares an aliased object. The second declaration
declares a named number, which is a value not an object that is allocated storage and can be
aliased.

29. Compile-time error. The attribute Pos returns a value of type universal integer. A case
statement needs an others alternative if the expression is of universal type.

30. Compile-time error. Ptr is at library level and Main is deeper than the master which calls it,
namely the library level environment task.

31. Compile-time error. The call to Proc1 is a call to an unknown subprogram. Parent_Ptr

is not of type Parent, so it is not inherited by the derived type. The call to Proc2 is legal,
because the profile of a subprogram includes the designated subtype of an access parameter.

32. Compile-time error. An implicit dereference is a prefix, thus S(1..5) returns a slice of
a string, which is an acceptable parameter for Put_Line. However, there is no implicit
dereference of I and a pointer is not an acceptable parameter for Put. Put(I.all) would
make the subprogram call legal.

33. Prints 5. The dereference is a variable, and it does not matter that the access object is
returned by a function. However, you cannot assign directly to the function result, because
it is a constant §3.3(21).

34. Compile-time error. An entry for task cannot have an access parameter, because imple-
mentation of accept statements would be too difficult. An entry for a protected object is not
subject to this restriction.

35. Compile-time error. The view D of N is of the accessibility level of the main program,
which is deeper than the library access level of the anonymous type of the discriminant.

36. Compile-time error. A type extension may not be at a deeper accessibility level than the
parent.

37. K is uninitialized, so the first statement will print garbage or whatever the default initializa-
tion of an integer is. The second statement will print 5 because P is initialized to the actual
parameter. The special rule exists so that uninitialized pointers will never exist, as this can
break the type system.

38. Prints ‘One’ if by copy and ‘Two’ if by reference, depending on your implementation.

39. Compile-time error. A formal parameter cannot be used in the formal part.

40. Prints ‘10 99’. The subtypes of the subprogram for the derived type are taken from the
parent type.

41. Prints ‘0’. The subtype is taken from the renamed procedure, not the renaming declaration.

F Answers 328

42. Raises Constraint_Error. There is no way to call the inherited subprogram, because the
parameters are constrained by 1..50, while the derived values are constrained by 51..100.

43. Compile-time error. An object cannot be declared before the full declaration of its type.

44. The body is not allowed unless needed; if you delete the body, the program prints garbage or
whatever the default initialization of an integer is. Use pragma Elaborate_Body §10.2.1(26)

in the specification to require that the package have a body.

45. Compile-time error. The completion of an incomplete type declaration can be in the body
only if the incomplete declaration is in the private part.

46. Compile-time error. The declaration of Proc2 is a renaming-as-body which must be subtype
conformant. The declaration of Proc3 is correct because mode conformance is sufficient
for a renaming-as-declaration.

47. Prints ‘10 5’. The homograph is hidden from direct visibility, but not from all visibility. An
expanded name can be used to access the outer declaration.

48. Compile-time error. Overloading resolution can make use of the names in a named asso-
ciation §6.4(9), so the first call is unambiguous. However, the only way to disambiguate
the second call is to note that the actual parameter of an out or in out formal parameter
must be a variable. But this is a legality rule, not an overload resolution rule §6.4.1(5).
§8.6(14) only requires that a possible interpretation satisfy the syntax rule—here §6.4(6).
So overloading fails even before the legality is checked §8.6(2).

49. Prints ‘Hi from Proc in the main subprogram’. A use clause will not cause ambiguity with
a homograph declared directly in a declarative region.

50. Prints ‘P.Inner’. The function Exception_Name returns the fully expanded name of the
exception even though the exception itself is not visible.

51. Prints ‘Derived’ even though the overridden subprogram is not visible! Overriding sub-
programs need not be declared in the visible part of the specification, only in the same
declarative region as the parent type, which includes the private part and child packages.

52. Compile-time error. The second call is ambiguous because a type conversion is not a context
for overload resolution. The first statement by itself would print 1, because the call to Ada.-

Integer_Text_IO.Put is a context for overloading resolution.

53. String is declared in package Standard, so the operator declared in this package is not a
primitive operator of String. ‘Use-type’ clauses only make primitive operators potentially
use-visible.

54. Compile-time error. The declaration of the extension T2 freezes the type T1, and a primitive
subprogram such as Proc2 cannot be declared after the type is frozen.

F Answers 329

55. Prints ‘1 3’. A type conversion to a tagged type is a view conversion, and a view conversion
of a variable is a variable as required for the target of an assignment statement.

56. The specification is legal. Even though the partial view of T untagged, you can apply the
attribute T’Class provided that the full view is tagged.

57. Compile-time error. The function must be overridden, otherwise the inherited function
would return a value of type T1, which cannot be assigned to an object of type T2!

58. Compile-time error. A default expression must be tag indeterminate.

59. A deferred constant does not freeze a type, so the declaration of Proc2 is legal.

60. Prints (in some order) ‘A task has died’ and four times ‘Hi from task 1’. The exception in the
elaboration of task T0 causes it to become completed and raise Tasking_Error in the main
subprogram, but the main subprogram cannot terminate until all its dependents including
T1 have terminated.

61. Prints ‘Task T Program_Error’ and then ‘Task A Program_Error’ and ‘Main Tasking_Error’
in some order. There is a Program_Error in T because there is no open alternative in
the selective accept. The exception in the rendezvous between A and T is propagated to
the caller A. Tasking_Error is raised in the main subprogram because the called task A

completes before call is accepted.

62. Compile-time error. An accept statement must be immediately within a task body, not within
a nested subprogram body such as P. Furthermore, an accept statement cannot contain an-
other accept for the same entry. Note that a block is a statement, not a body, so the outermost
accept in the task body is legal.

63. Prints ‘Main subprogram’ and then ‘Hi from task 1’ five times and ‘Back from block’ in
some order. The termination of a dynamically allocated task depends on the master declar-
ing the access type, in this case the main subprogram. The task is a ‘garbage task’ which runs
but is not accessible after the termination of the block. If the commented lines are added,
the block becomes the master containing the declaration of the access type New_Ptr and
will await the termination of T(2). ‘Back from block’ will be printed only after the ten lines
of output from the tasks.

64. Compile-time error. A renamed entry is a procedure, not an entry, so it cannot appear in a
requeue statement.

65. Program_Error is propagated to the caller Main because an exception is raised when eval-
uating the barrier.

66. Because of the delay 0.2 in the body of T1, the call T1.E is queued; thus the abortable
part is started, calling T2.E. When the delay expires, T1.E is accepted and prints ‘Starting
T1.E’. Because of the subsequent delay 0.8 within the accept statement, the call does not

F Answers 330

finish before the call to T2.E is started and finishes, printing the lines ‘Starting T2.E’ and
‘Finishing T2.E’. When the call T2.E and the rest of the abortable part finishes (printing
‘Finished abortable’), an attempt is made to cancel T1.E, but by §9.5.3(20) the attempt
fails since the call is not on an entry queue. Thus the triggering statement is not cancelled
§9.7.4(9), and the rest of the triggering alternative is eventually executed, printing ‘Finishing
T1.E’ and ‘Finish triggering’.

67. Compile-time error. The use of T within the declarative region of T denotes the current
instance, not the type, so in the declaration of Y is not legal. The uses of T within the
function F and the object declaration Z are legal because they are not within the declarative
region of T.

68. Compile-time error. The index of a generic formal array type parameter must be a subtype
mark.

69. Prints 100 then 200. Generic parameter associations are evaluated when instantiated, not
when elaborated.

70. Compile-time error. The discriminated record R is unconstrained, but S is constrained by
a discriminant constraint. Since T is a generic formal parameter with a known discrim-
inant part, the instantiation of Proc1 is legal because R is unconstrained and supplies a
discriminant, while the instantiation of Proc2 is not legal because S is constrained without
a discriminant.

71. Prints ‘6 12’. The formal part of the formal package parameter (function Formal) is visible
only if the formal package actual part is (<>). If the actual part supplies parameters as
in the commented instantiation, a compile-time error results because Integer and "+" are
used, and the formals T and Formal are not visible.

72. Prints ‘Parent’, then ‘Actual’. The copied operations from Formal are the only ones visible
within the instantiation. Outside the instantiation, the ‘whole new set’ is visible and can be
overridden.

G Further Reading

G.1 Hard copy

The Ada Reference Manual and Rationale have been published in book form in Taft & Duff (1997)
and Barnes (1997), respectively.

If you find this book too difficult, you will want to start with an elementary Ada textbook such as
English (1997) or Feldman & Koffman (1996).

‘Competing’ advanced textbooks are Barnes (1995) and Cohen (1996). Cohen has detailed com-
parisons between Ada 83 and Ada 95, which will be useful if you have had extensive experience
in Ada 83.

Textbooks on concurrent programming are Ben-Ari (1990), Burns & Davies (1993) and Andrews
(1991). Burns & Wellings (1995) is entirely devoted to concurrency in Ada 95. You may also
want to read some of the articles in Brinch Hansen (1996) for a historical view of monitors and
conditional critical sections, the constructs upon which protected objects are based. Sha & Good-
enough (1990) is a tutorial on real-time scheduling in the context of Ada, while Gargaro, Smith,
Theriault, Volz & Waldorp (1997) describes an implementation of the distributed systems annex.

This book presents the mechanics of object-oriented programming in Ada 95. For a comparison
with other languages, see Ben-Ari (1996b). A textbook on the analysis and design of systems
using object-oriented techniques is Rumbaugh, Blaha, Premerlani, Eddy & Lorensen (1991).

G.2 Electronic

• http://www.adahome.com—Ada Home. A comprehensive site with articles, FAQs, reviews
and links to vendors of Ada compilers and other software.

• http://www.acm.org/sigada—The home page of the ACM Special Interest Group on Ada
(SIGAda). The site emphasizes information on Ada research and education.

331

Bibliography

Andrews, G. R. (1991), Concurrency Programming: Principles and Practice, Ben-
jamin/Cummings, Redwood City, CA.

Barnes, J. (1995), Programming in Ada 95, Addison-Wesley, Reading, MA.

Barnes, J., ed. (1997), Ada 95 Rationale: The Language, The Standard Libraries, LNCS 1247,
Springer-Verlag, Berlin.

Ben-Ari, M. (1990), Principles of Concurrent and Distributed Programming, Prentice-Hall Inter-
national, Hemel Hempstead.

Ben-Ari, M. (1996a), ‘Structure exits, not loops’, SIGCSE Bulletin 28(3), 51–55, 59.

Ben-Ari, M. (1996b), Understanding Programming Languages, John Wiley & Sons, Chichester.

Ben-Ari, M. (1996c), ‘Using inheritance to implement concurrency’, SIGCSE Bulletin 28(1), 180–
184.

Ben-Ari, M. (1998a), ‘How to solve the Santa Claus problem’, Concurrency: Practice & Experi-
ence 10(6), 485–496.

Ben-Ari, M. (1998b), Synchronizing multiple clients and servers, in ‘Ada-Europe International
Conference on Reliable Software Technologies Proceedings’, LNCS 1411, Springer-Verlag,
Berlin, pp. 40–51.

Brinch Hansen, P. (1996), The Search for Simplicity: Essays in Parallel Programming, IEEE
Computer Society Press, Los Alamitos, CA.

Burns, A. & Davies, G. (1993), Concurrent Programming, Addison-Wesley, Reading, MA.

Burns, A. & Wellings, A. (1995), Concurrency in Ada, Cambridge University Press, Cambridge.

Cohen, N. (1996), Ada as a Second Language (Second Edition), McGraw-Hill, New York, NY.

Diller, A. (1993), LATEX Line by Line, John Wiley & Sons, Chichester.

English, J. (1997), Ada 95: The Craft of Object-Oriented Programming, Prentice-Hall, Hemel
Hempstead.

332

BIBLIOGRAPHY 333

Feldman, M. B. & Koffman, E. (1996), Ada 95: Problem Solving and Program Design, Addison-
Wesley, Reading, MA.

Gargaro, A., Smith, G., Theriault, R. J., Volz, R. A. & Waldorp, R. (1997), ‘Future directions
in Ada—distributed execution and heterogeneous language interoperability toolsets’, Ada
Letters XVII(5), 51–56.

Lamport, L. (1986), LATEX: A Document Preparation System, Addison-Wesley, Reading, MA.

Lions, J. L. (1996), Ariane 5: Flight 501 failure, http://ravel.esrin.esa.it/docs/

esa-x-1819eng.pdf.

Manna, Z. & Pnueli, A. (1992), The Temporal Logic of Reactive and Concurrent Systems: Speci-
fication, Springer-Verlag, New York, NY.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991), Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ.

Sha, L. & Goodenough, J. B. (1990), ‘Real-time scheduling theory and ada’, IEEE Computer
23(4), 53–62.

Taft, S. T. (1996), Programming the Internet in Ada 95, in ‘Reliable Software Technologies -
Ada-Europe ’96’, LNCS 1088, Springer-Verlag, Berlin, pp. 1–16.

Taft, S. T. & Duff, R. A., eds (1997), Ada 95 Reference Manual: Language and Stan-
dard Libraries, LNCS 1246, Springer-Verlag, Berlin. International Standard ISO/IEC
8652:1995(E).

Index of ARM Sections

1.1.2, 6
1.1.3, 289, 290, 297
1.1.5, 282, 287
2, 18
2.1, 18
2.3, 18
2.4, 19
2.4.1, 323
2.4.2, 323
2.5, 18
2.6, 18
2.7, 18
2.8, 189
2.9, 18
3, 6
3.1, 189, 285–290, 297
3.2, 282, 284, 287, 292, 294, 296
3.2.1, 18, 30, 281, 289, 290
3.2.2, 17, 282
3.2.3, 72, 73, 293, 324
3.3, 10, 32, 134, 141, 281, 283, 286, 287,

290–292, 323, 324, 327
3.3.1, 14, 25, 30, 36, 62, 145, 323
3.3.2, 291, 292
3.4, 7, 70, 72, 141, 152, 286, 292, 323, 324
3.4.1, 77, 82, 89, 160, 281, 282, 285, 286,

294, 295, 297
3.4.5, 24, 162
3.5, 281, 284, 287, 292, 294, 323
3.5.1, 13, 323
3.5.3, 323
3.5.4, 31, 162, 174, 290, 323
3.5.5, 13, 161, 323
3.5.7, 174

3.5.9, 169, 323
3.6, 24, 29, 287, 323
3.6.1, 17, 24, 29, 284
3.6.2, 25
3.7, 135, 141, 142, 157, 286, 297, 323
3.7.1, 134, 284
3.8, 36, 134, 135, 293, 323
3.8.1, 17, 284, 287
3.9, 97, 247, 323
3.9.1, 124, 323
3.9.2, 84, 97–99, 241, 283, 284, 287, 295,

296, 324
3.9.3, 68, 95, 114, 324
3.10, 45, 139, 145, 146, 218, 286, 293, 295
3.10.1, 45, 290, 323
3.10.2, 145–147, 149, 151, 281, 284, 285,

323
3.11.1, 282
4.1, 46, 286, 287, 289–291, 293, 323
4.1.1, 25
4.1.3, 36, 84, 288, 323
4.1.4, 13
4.3, 117, 323
4.3.1, 137, 323
4.3.2, 153
4.3.3, 26, 27, 31, 323
4.4, 323
4.5, 13, 292, 323
4.5.1, 31, 106, 164, 294, 323
4.5.2, 18, 31, 89, 285, 323
4.5.5, 168
4.6, 30, 32, 89, 91, 135, 143, 149, 151,

161, 281, 284, 295, 297, 323, 324
4.8, 78, 139

334

Index of ARM Sections 335

4.9, 295, 323
4.9.1, 295
5, 7
5.1, 10
5.2, 14, 91, 99, 135, 323, 324
5.3, 195, 323
5.4, 10, 17, 295, 323
5.5, 10, 287
5.6, 324
5.7, 10
5.8, 10
6, 7, 282
6.1, 17, 18, 86, 151, 201, 250, 291, 293,

323
6.2, 33, 91, 282, 287, 288, 290, 297, 323
6.3, 9, 108, 189, 244, 283
6.3.1, 283, 284, 291
6.3.2, 187
6.4, 323, 328
6.4.1, 14, 32, 135, 287, 323, 328
6.5, 10
6.6, 292, 323
7.1, 50, 293, 297
7.2, 190, 323
7.3, 71, 140, 141, 290, 292, 297, 323
7.3.1, 324
7.4, 285
7.5, 62, 291
7.6, 152, 153, 281, 284
7.6.1, 223, 280, 282, 289, 291
8.1, 10, 87, 193, 285, 290, 324
8.2, 88, 193, 194, 294
8.3, 73, 194, 283, 287, 290, 292, 294, 297,

323
8.4, 193, 194, 294, 324
8.5, 191
8.5.1, 323
8.5.4, 192, 323, 324
8.6, 38, 157, 195, 196, 281, 282, 285, 288,

292, 323, 324, 328
9, 256
9.1, 201, 206, 223

9.2, 223, 226, 289, 324
9.3, 223, 224, 296, 324
9.4, 201, 202
9.5, 221, 261, 289, 291, 296
9.5.1, 218, 220, 221, 260, 289, 293, 294
9.5.2, 202, 217, 290, 323, 324
9.5.3, 201, 209, 226, 256, 260, 324, 330
9.5.4, 219, 225
9.6, 226, 227, 229, 258, 288, 289
9.7.1, 213, 224, 226, 233, 234, 256, 324
9.7.4, 232, 324, 330
9.8, 225, 227, 232, 280
9.9, 217, 226, 230
9.10, 251
10, 186
10.1, 86, 186, 227, 282, 296, 297
10.1.1, 9, 122, 186, 188, 281, 286, 294,

297
10.1.2, 9, 87, 186
10.1.3, 187, 188, 201, 296
10.1.4, 186, 187, 287
10.1.5, 189, 190
10.1.6, 195
10.2, 9, 189, 191, 223, 265, 287, 291, 293,

294, 323
10.2.1, 190, 191, 248, 266, 328
11, 288
11.1, 11
11.2, 285
11.4, 280, 288
11.4.1, 180, 182, 247, 287, 288, 324
11.5, 41, 42, 190, 282, 289
11.6, 41, 289
12.1, 324
12.2, 108
12.3, 112, 115, 124, 324
12.5, 286
12.5.1, 109, 117, 286, 324
12.5.3, 107, 109, 324
12.5.4, 107, 109
12.6, 283
12.7, 121, 324

Index of ARM Sections 336

13, 138, 247, 256
13.1, 138, 206, 247, 294
13.2, 24, 138
13.3, 138, 223, 295
13.4, 139
13.5, 139
13.5.1, 144
13.6, 143
13.7, 138, 229
13.7.1, 138
13.7.2, 138
13.8, 249
13.9, 137
13.9.1, 272, 281, 291
13.9.2, 272
13.10, 149
13.11, 152, 295
13.11.2, 46, 47
13.12, 189, 273
13.13.1, 182, 183
13.13.2, 182, 183, 185
13.14, 89, 289, 324

A, 126, 179, 180
A.1, 18, 24, 174
A.2, 191
A.3.2, 126
A.3.3, 18, 126, 169
A.4.1, 126
A.4.2, 126, 131
A.4.3, 130, 131
A.4.4, 130, 131, 139
A.4.6, 126
A.5, 161
A.5.1, 168
A.5.2, 76, 168
A.6, 179
A.7, 180
A.8.1, 180
A.8.2, 180
A.8.4, 180
A.9, 180

A.10, 9, 21, 179
A.10.1, 24, 179
A.10.3, 179, 288
A.10.4, 179
A.10.5, 179
A.10.7, 10, 232
A.10.8, 38, 39, 179
A.10.9, 170, 179
A.10.10, 170
A.11, 179
A.12, 180
A.12.1, 183
A.12.2, 185
A.13, 172, 180
A.14, 179, 180
A.15, 132
B, 243, 247
B.1, 244, 245, 284
B.2, 164, 245
B.3, 245
B.3.1, 126, 246
B.3.2, 246
B.5, 246
C, 247, 248, 256
C.3, 249
C.3.1, 250
C.3.2, 250
C.4, 248
C.5, 247
C.6, 251
C.7.1, 252, 253
C.7.2, 252
D, 230, 256, 260, 263
D.1, 223, 256, 257
D.2.1, 261
D.2.2, 258–262
D.3, 261, 262
D.4, 260
D.5, 256, 261
D.6, 263
D.7, 264, 273
D.8, 262, 263

Index of ARM Sections 337

D.9, 263
D.10, 264
D.11, 264
E, 279
E.1, 265
E.2, 266
E.2.1, 266
E.2.2, 266
E.2.3, 266
E.3, 265
E.4, 266
E.5, 266, 267
F, 169, 246
F.3.1, 171
F.3.2, 171
F.3.3, 171, 172

G, 168, 175, 178
G.1, 65
G.1.2, 175
G.1.3, 175
G.2, 178
H, 271, 273
H.1, 272
H.3.1, 272
H.3.2, 272
H.4, 273
J.1, 192
K, 6, 13
L, 189
M, 243, 271, 290
P, 6

Subject Index

Index entries are usually listed as nouns; for
example, ‘access type’ will be found un-
der ‘type, access’ and ‘case statement’ under
‘statement, case’. Entries from the quiz an-
swers are indexed under the quiz number Qnn,
and glossary entries are indicated by Gnnn.
Since the glossary entries were automatically
generated, there may be some duplications or
inconsistencies.

abandoned, 39, G280
abnormal completion, G280
abnormal object, 272, G281
abort, 225–226

completion point, 225
completion point, 263
preemptive, 263
of requeued task, 225

abort deferred, G280
abortable part, 233
abstract data type, 54
accessibility, G281

level, 149, 151, Q30, Q35, Q36
rule, 148–149

activation, 223
actual subtype, G281
Ada

Annotated Reference Manual, 7
history of, 3–4
Reference Manual, 5–7

Ada, 191
.Asynchronous_Task_Control, 264
.Calendar, 226
.Characters.Handling, 126
.Characters.Latin_1, 126, 169
.Command_Line, 132
.Decimal, 169
.Direct_IO, 180
.Dynamic_Priorities, 261

.Exceptions, 180

.Finalization, 152

.IO_Exceptions, 180

.Numerics, 161
.Complex_Types, 175
.Elementary_Functions, 168
.Generic_Complex_Types, 175
.Generic_Elementary_Functions,

168
.Real_Time, 262
.Sequential_IO, 180
.Storage_IO, 180
.Streams, 182
.Streams.Stream_IO, 183
.Strings, 126
.Bounded, 139
.Maps, 126

.Synchronous_Task_Control, 264

.Task_Attributes, 252

.Task_Identification, 252

.Text_IO, 9, 179
.Decimal_IO, 170
.Editing, 169
.Editing.Decimal_Output, 171
.Enumeration_IO, 170
.Text_Streams, 185

.Wide_Text_IO, 179
.Editing, 169

Ada 83, 4–5, 192
adjust, G281
aggregate, Q7

not abstract, 95
array, 26–27, 31, 287, Q6, Q9

multi-dimensional, 27
extension, 90, 153
record, 37, Q6
string, Q8

aliased, 145, Q28
all, 145

338

Subject Index 339

allocator, 45
not abstract, 95
of task, Q63

alternative
delay, 233
select, 208, Q61
terminate, 224
triggering, 233

ambiguous, 38, G281
ancestor, G281
anonymous type, G281
Ariane rocket, 41
array, 20–31

aggregate, see aggregate, array
constrained, 29–30
one dimensional, 30–31
ragged, 146
unconstrained, 24–25, 78

assignment, 13, 91, Q2
target not abstract, 95
of access types, 61
of controlled type, 152
not allowed for limited types, 62, 291
not an operator, 62
is primitive, 72
slice as target of, 28
and type conversion, 28

asynchronous transfer of control, 232–233,
Q66

atomic instruction, 198
atomic object, 251
attribute

of access type, 145, 149, 276
of array object and type, 25
definition clause, 138, 144, 173
of enumeration type, 13, Q29
stream, 183, 185
of tagged type, 97
of task, 217, 226, 251–255

barrier, see entry, barrier
base range, 174, G281, Q23
bounded error, G282
by copy, G282
by reference, G282
by-copy, 33, Q38
by-reference, 33, 91, Q38

C, 46, 67, 126, 245–246, 276–277
C++, 277–278
callable, G282
callback, 146
cascaded wakeup, 218
case study

Ada to LATEX, 127–133
callback, 146–148
CEO problem, 210
checksum, 164
complex vectors, 175–177
country of origin, 8–9
currency converter, 169–173
distributed simulation, 268–271
Euler’s method, 166–168
fill and justify, 20–24
message conversion, 136–138
mixin inheritance, 109
palindrome, 27–28
periodic task

ATC, 232–233
conditional entry, 231–232
delay, 228

priority queue
array, 34–37
controlled type, 153–156
generic, 101–104
package, 49–64
tree, 42–44

producer–consumer
protected object, 199–201
rendezvous, 205–206

representation conversion, 143–144
saving exceptions, 180–182
simulation, 66–82

access discriminant, 157–159
access parameter, 150–151
concurrent, 234–238
discriminants, 141–142
generic, 118–122
streams, 184–185

sort, 107–109
swap array halves, 28
task identification and attributes, 252

categorization of partitions, 265–266
ceiling locking, 261–262
character, 126, 169

Subject Index 340

set, 18, 126
check, 41, G282
class, see derivation class
class-wide type, G282
COBOL, 171, 246
command line, 132
compatible, G282
compilation, 52, 186, G282
complete context, 195, G282
completed, 224
completely defined, G282
completion, 45, 59, 63, 244, G282, Q45
composite type, G282
concurrency, 197–241
conformance, G283, Q46

fully, 283
mode, 106, 283
subtype, 192, 283, Q46
type, 194, 221, 283, 290

consistent, 186
constant, 14, G283

aliased, 147
deferred, 65, 245, Q59
discriminant is a, 134
formal parameter is a, 32
generic in object is a, 116
and named numbers, 162

constrained subtype, G284
constraint, G284

discriminant, 134
index, 24, 31
per-object, see per-object constraint
range, 16, Q42

context clause, 9
context switch, 207
controlled type, G284
controlling

formal parameter, 84
operand, 84

multiple, 97–98
controlling formal parameter, G284
convention, 244, G284

intrinsic, 249, 284
conversion, see type, conversion
convertible, 28, 150, G284
cover, 89, G284, 285
current instance, 218, G285, Q67

dangling pointer, see accessibility, rule
declaration, G285
declarative part, 9
declarative region, 193, G285
deeper than, G285
default expression, Q58

for discriminant, 139
discriminant can be used as, 135
for formal parameter, 38
for record component, 36
tag indeterminate can be used as, 99

deferred constant, G285
defining name, G286
definite subtype, G286
definition, G286
delta, 168, 173
depends on, G286
dereference, 46, G286, Q32
derivation class, 71, G286
derived type, G286
descendant, G286
designate, G286
designated subtype, 45
determined class, G286
direct name, G287
directly visible, G287
discrete choice, G287
discrete type, G287
discriminant, 36, 134–135, Q18, Q19, Q21,

Q22, Q35
access, 157–159, 237
with default expression, see default ex-

pression, discriminant, 139
and derived type, 144
inheriting, 141–142
known, 134, 140, Q70
and per-object constraint, 293
of private type, 140–141
of task, 215
tasks as access, 238–241
unknown, 117, 140

dispatch table, 96
dispatching, see dynamic dispatching
distributed systems, 265–271
documentation requirements, 243, 271
dynamic dispatching, 81–84

of abstract subprogram, 95

Subject Index 341

on access parameter, 151
in assignment statement, 99
in C++, 277
in a distributed system, 267
on function result, 98–99
implementation, 95–96
in Java, 279

dynamic semantics, 7
dynamically enclosing execution, 40
dynamically tagged, G287

elaboration, 14–15, 189–191, G287
check, 190, 191, 248
control, 191
order, 15, 189–191
pragma, Q44

elaboration dependencies, G287
elementary type, G287
else-part, 233
entry

barrier, 202
conditional call, 230
‘dispatching’, 239–241
family, 217, 221–222
implementation of call, 209–210
of protected type, 202, 220–222
queue, 202
queuing policy, 256, 260–261
servicing, 202
of task, Q34
timed call, 230–232

environment, 52, 186, G287
task, 189, 223

equality, 62, 98, 291, Q12, Q13, Q14, Q15,
Q17

erroneous execution, G287, 288
error, G287

bounded, 220, 288
evaluation, 14, G288
exception, G288

in barrier, Q65
in C++, 278
Constraint_Error, 14

class-wide type, 89
controlling operands, 97
discriminant, 135
modular type, 164

qualification, 47
declaration, 39
handler, 11, 39
in Java, 279
occurrence, 10

save and reraise, 180
package, 180–182
predefined, 11
Program_Error, 149, 190, 234
propagated, 40
raise, 10
retry after, 92
Storage_Error, 14
and tasking, 226
in task elaboration, Q60
Tasking_Error, 226
visibility, Q50

execution, 14, G288
exit when, 10
expanded name, G288
expected type, G288
expiration time, G289
explicit declaration, G289
explicit dereference, G289
extension

aggregate, see aggregate, extension
private, 70
record, 70, 89, 123

external call, G289
external effect, G289

fail, G289
finalization, 152, G289
first subtype, 18, G289
Fortran, 246–247
freezing, 88–89, G289, Q54, Q59
full type, G289
full type declaration, 59, 64, 140, G290, Q43
full view, G290
function

dispatching on, see dynamic dispatching,
function

protected, 218
return type in Pascal, 275

functions
elementary, 168

garbage collection, 46

Subject Index 342

garbage task, Q63
generic, 100–125

body, 102, 124
in C++, 278
child package, 122–123
contract model, 104–106, 117

limitations of, 123–125
declaration, 101, 124
formal

access type, 109
array type, 107, Q68
derived type, 112–116
object, 116
package, 118–122, Q71
part, 101
private type, 109–112
subprogram, 106–107
tagged type, 109–116
type, 106

instantiation, 102, 124, 283, Q69
GNAT, 186, 298
guard, 208

heterogeneous data structure, 77
hidden, 194, 290, G290
homograph, 283, G290, Q47

immediate resumption, 204
immediately within, G290
implementation

advice, 138, 243
permissions, 138, 243

implementation-defined, G290
implicit declaration, G290
implicit dereference, G290
in, 32
in out, 32
incomplete type declaration, 45, 64, G290
indefinite subtype, G290
Information Systems, 169–173
informative, 6
inheritance, 67, 70, Q12, Q40

of discriminants, 141–142
function, Q57
mixin, 111
multiple, 112, 157, 278
priority, see priority, inheritance

initial value, 14

of access type, 45
of controlled type, 153
of normalized scalar, 272

initialization, 152
Inline, 187
input–output, 179–185
inspection point, 272
interface

to other languages, 243–247
pragma, 244–245

Interfaces, 245
.C, 245
.C.Pointers, 246
.C.Strings, 246
.COBOL, 246
.Fortran, 246

interleaving, 197
internal call, G291
interrupt, 249–250, 265

priority, see priority, interrupt
intrinsic, G291
invalid representation, G291

Java, 278–279

LATEX, 127
left, G291
legality rule, 6, 124, Q48
lexical element, 18
lexicographic order, 31
library item, 52
library unit, 9, 88, G291
limited type, G291
literal

character and string, 18, Q8
enumeration, 13

is primitive, 72
numeric, 19

locking policy, 261
loop parameter, 7

in C, 276
in Pascal, 275

machine code, 248–249
main subprogram, 9
master, 149, 223, 282, G291
mathematical functions, see functions, ele-

mentary

Subject Index 343

membership test, 18, 89, 285
is primitive, 72

metrics, 243
mode, see parameter, mode, G291

name, G291
of enumeration literals, 247
of exception, 247
tag, 247

name equivalence, 15
name resolution rule, 7, 195
named number, G291
nominal subtype, G291
normative, 6
null access value, 45, 151
number

complex, 175–177
model, 178
named, 161–162, Q28

numeric type, G292

object, 14, G292
atomic, 251
volatile, 251

object code, 272
operation

abort-deferred, 225, 263
potentially blocking, 220
predefined, 72
primitive, 13, 71–73, 293

operator, G292, Q25
concatenation, 10, 30
dispatching on, 97, 277
equality, see equality
of fixed point types, 171
as generic actual, 107
logical, 31, 164, Q11
predefined

is primitive, 72
relational, 31

optimization, 41, 42
others, Q6, Q9, Q29
others, 10, 26, 31, 37
out, 32
overloading, 15, 37–38, 195–196, G292, Q48,

Q52
overriding, 73, 283, 290, G292, Q51, Q57

package, 48, 50
body, 77
child, 84–88, Q51

generic, 122–123
in Java, 279
specification, 59

parameter
access, 150–151, Q31, Q34
array and record, 33
in barrier, 220
formal, Q39
of function, 32
implementation, 33
initialization, Q37
mode, 32–33
named association, 38
positional association, 38

parent type, G292
part, G292
partial view, G292
partition, G293
partition communication subsystem, 266
Pascal, 16, 25, 46, 67, 274–275
per-object constraint, G293
periodic task, 227–233
Pi, 161
picture, 171
pointer, see type, access
polling, 230
pool-specific, G293
potentially blocking, G293

operation, see operation, potentially
blocking

pragma, 189
elaboration, 190
representation, 138

preelaborate, see unit, preelaborable
preempt, 229, 258
preference

for servicing the entry queue, 203–204
prefix, G293
primitive operation, G293
priority, 257–260

active, 259
base, 259, 261
ceiling, 261
dynamic, 261

Subject Index 344

held, 264
inheritance, 259, 261
interrupt, 257
inversion, 259

private part, 59, 87, G293, Q45
procedure

protected, 218
profile, G293
Program Error, 209, 226
protected action, 201–204, G294
protected object, 199–201
pure, see unit, pure

qualified expression, 47, 98, 196, 249, Q7
queuing policy, 260

race condition, 198, 229
range, G294
real-time systems, 256–265
record, 36

aggregate, see aggregate, record
record, 287
unconstrained, Q70
variant, 135–138

redispatching, 91
reference semantics, 64, 278
remote subprogram call, 266–267
renaming, 191–192, Q20, Q41, Q46, Q64

for Pascal with, 275
rendezvous, 204–207
representation

invalid, 272, 281
item, 138–139, 143

representation item, G294
requeue, 219

external, 221
internal, 221

reserved word, 18
restrictions, 263–264, 273
ROM, 146, 191, 248
root library unit, G294
root type, G294

safety and security, 271–273
scalar type, G294
scope, 193, G294
selected component, 36
self-referential data structure, 157

semantic dependencies, G294
semantic dependency, 52, 189
semantic dependency, 186
sequential, 251
shift, 245
short-circuit control form, G294
signature, 118
slice, 27, 37, Q32
sliding, 29, Q9
small, 168, 173, 229
specific type, G295
statement

abort, see abort
accept, 206–207, Q62
block, 92–93
case, 6, 10, 287, Q29
delay, 227
exit, 10
if, 7
requeue, see requeue
return, 10
selective accept, 208–209, 213, 233–234

static, G295
static semantics, 6
statically match, G295
statically tagged, G295
storage element, G295
storage pool, 145, 152, G295
stream, 182–185, 266
string, 24, 126–127

ragged array of, 147
stub

body, 187
calling, 266
receiving, 267

subcomponent, G296
subprogram, 9

abstract, 95
intrinsic, 248
protected, 217–218

subsystem, G296
subtype, 16–18, 24, 163, G296

indication, 16
subunit, 187–188, G296
suppress, 41–42
System, 138

.Address_To_Access_Conversions,

Subject Index 345

138
.Machine_Code, 249
.Storage_Elements, 138
.Storage_Pools, 152

systems programming, 247–255

tag, 83
explicit, 97, 247

tag indeterminate, 98, G296, Q58
tagged

dynamically, 83, 97
statically, 83, 97

target object, G296
task, 199–201

asynchronous control, 264
dispatching point, 257
dispatching policy, 258
identification, 251–255
restrictions, 263–264
synchronous control, 264

terminated, G296
termination, 223–224, Q63
time, 226–230

expiration, 227
implementation, 229–230
monotonic, 262–263

two-stage suspension, 264
type, 11–15, G296

abstract, 94–95
and extension aggregate, 90
generic formal, 117

access, 45
general, 145–148
pool-specific, 145

access-to-constant, 145, 146, 152
access-to-subprogram, 146, 166, 218,

267
access-to-variable, 145
anonymous, 30
boolean, Q13, Q14, Q16
checking, 11
class-wide, 77–78, 89, Q7

not abstract, 95
covers types, 285
object of, 93–94

controlled, 152–156, 281
conversion, 30, 89–91, Q52

of access type, 149
and assignment, 28–29
with discriminants, Q22
of numeric types, 161
for representation change, 143
value, 91
view, 91

definite, 78
derived, 70, Q5, Q40, Q42

and discriminant, 144
untagged, 95, 142–144

enumeration, 13–14, 276, Q4
representation, 139

fixed point, 227, Q27
decimal, 168
ordinary, 173

floating point, 166–168
indefinite, 78, 93, Q1

of full type, 140
generic actual, 117

integer, 162
limited, 61–62, 123, 157
modular, 163–164, Q26
numeric, 160–178
parent, 70
private, 58–61

and discriminants, 140–141
real, 165
root, 71, 160

preference for, 177–178
tagged, 68, 89, Q21, Q56

generic formal, 109
universal, 160–161, 177, 297, Q29
untagged, Q17

unchecked conversion, 137, 276
unchecked deallocation, 46–47, 152, 154, 265
unconstrained subtype, G296
unit, G297

compilation, 186, 201
library, 186
preelaborable, 191, 247–248
pure, 191, 266
remote call interface, 266
remote types, 266
shared passive, 266

universal type, G297

Subject Index 346

unspecified, 290, G297
usage name, G297
use context clause, 191, Q49
use type, Q53
use type, 193

value semantics, 64
variable, 14

actual parameter of mode out, 32
class, 56
shared, 250–251
unconstrained, 139–140

variant, Q3

view, 285, G297
full, 60
generic in out object is a, 116
partial, 60, 140, Q56

visibility, Q47, Q51
rule, 193–195

visible, G297
visible part, 59, 88, 124, G297
volatile object, 251

with abort, 226
with context clause, 51–52, 87

