
Type-preserving Heap Profiler for C++

József Mihalicza

Eötvos Loránd University

Faculty of Informatics

Dept of Programming Languages and Compilers

jmihalicza@gmail.com

Zoltán Porkoláb

Eötvos Loránd University

Faculty of Informatics

Dept of Programming Languages and Compilers

gsd@elte.hu

Ábel Gábor

NNG Ltd.

abel@abel.hu

Abstract—Memory profilers are essential tools to understand
the dynamic behaviour of complex modern programs. They help
to reveal memory handling details: the wheres, the whens and
the whats of memory allocations. Most heap profilers provide
sufficient information about which part of the source code is
responsible for the memory allocations by showing us the relevant
call stacks. The sequence of allocations inform us about their
order. However, in case of some strongly typed programming
languages, like C++, the question what has been allocated is not
trivial. Reporting the actual allocation size gives minimal or no
information about the structure or type of the allocated objects.
Though this information can be retrieved from the location
and time of allocation, it cannot be easily automated, if at all.
Therefore in large software systems programmers do not have
an overall picture of which data structures are responsible for
bottlenecks and have too few clues for pinpointing enhancement
possibilities. In this paper we present a type-preserving heap
profiler for C++. On top of the usual heap profiler features
our allocation entries, including those of template constructs,
contain exact type information about the allocated objects. We
can extract information on individual memory operations as well
as supply aggregated overview. Having such a type information
in hand programmers can identify critical classes more easily
and can perform optimizations based on evidence rather than
speculations.

I. INTRODUCTION

Most object-oriented programs heavily use heap operations.

Objects with dynamic lifetime are created on the heap. There

are also numerous design patterns [1] which require one or

more of its components to be located on the heap. Heap

operations are inherently slow compared to other in-memory

activities. They usually go through several layers and manipu-

late a complex data structure. Sometimes an allocation has to

perform garbage collection and/or even file operations (swap-

ping). Thread-safety is another bottleneck regarding effective

heap usage. Because of their high performance footprint, the

optimal usage of heap operations is crucial when optimizing

applications for speed.

According to the Pareto principle [2] in most cases only a

relatively small amount of code is responsible for the majority

of application running time. Therefore it is very important to

know what parts of the code these are. Profilers can help us

identifying them.

There are many good heap profilers for different platforms.

They typically hook heap allocation routines (malloc and

free on many platforms) and monitor what happens. At

the end we can freely explore what call stacks belong to

the allocations. One property, however, is lost in almost all

C++ memory profiler tools we know: what type of object the

allocation has created.

Type related information on heap usage can be very useful

in modern object-oriented languages. As types, classes are the

main language construct, this information can reveal hot-spots,

critical bottlenecks on a higher level.

For some languages, where a reflection model is built into

the language, retrieving heap related type information is easy.

This is the case in Objective C[3] and Java[4] for example.

The C++ programming language is infamous about its very

poor introspection capabilities. C++ does not give much aid

for preserving type information for heap operations.

Tools operating on binaries have minimal chance to recover

such data in C++ since the very same code is generated for

different kinds of objects with same size and they are not

differentiable afterwards. Also, in C++ only minimal run-time

information are kept about the individual objects. A solution,

therefore, probably requires a separate build configuration

where these information live longer.

Once we retrieved profiling related data we want to use

them to better understand program behaviour. Contrary to the

low level infrastructure types, like strings, data structures,

thread synchronisation primitives, many classes can be directly

connected to certain program features. Therefore type infor-

mation can naturally group memory allocations to features

or program components. On resource-limited platforms it is

important to know the memory footprints of each individual

feature when composing a new product. In some cases features

can be easily measured using only call stack information.

Large systems, however, often contain complex cooperative

components where the objects have shared ownership. In those

situations we cannot select the exact code area which is

responsible for handling these objects.

In this paper we present a heap profiler framework for C++

that is capable of preserving the type of the allocated objects.

Our framework is based on macros, operator overloading, and

instrument functions. To apply it on a project, some constructs

in the source code have to be modified, but fortunately this

transformation is straightforward and seldom requires signif-

icant time. The data retrieved by using the profiler can be

analysed in our interactive visualiser tool, where with user

defined filter graphs we can focus on arbitrary aspects.

The rest of the paper is organized as follows. Section II

walks through the subtleties of the implementation of our

profiler framework. In section III we get familiar with the

usage patterns of the toolset. Section IV describes what kinds

of analysis and visualisation is possible once we have the

profiler output. Section V presents a case study, showing a

few typical use cases while Section VI presents some similar

works and focuses on the differences. Finally we conclude in

section VII.

II. IMPLEMENTATION

The C++ language is well known of its limited (almost noth-

ing) introspection features compared to Java or C# languages,

where the run time system supports reflection. Therefore

among the numerous C++ heap profilers we can hardly find

any that provides sufficiently precise type information. Our

target is implementing a type preserving heap profiler for C++.

First we enlist our main requirements against the desired

tool. Then we systematically narrow the space of possible

solutions, and at the same time present some details of our

concrete implementation.

An ideal type preserving heap profiler has the following

essential features:

• work on real, industrial sized C++ systems

• be as platform/compiler independent as possible

• have acceptable overhead both in the means of memory

and speed

• provide a full overview of the allocations and dealloca-

tions with call stacks and types

• preserve exact type information, including template con-

structs like std::vector<std::string> or even

more complex ones

• ease of use

• have minimal syntactic overhead

• no influence on performance if the profiler is not enabled

(do not pay for what you did not ask)

• support multithreading

A. Capturing memory operations

Many C++ heap profilers work on binary code using tech-

niques like dll injection or preloading. A tool that operates

on compiled binaries would be very useful, but unfortunately

the C++ binaries do not preserve type information (RTTI for

example can only be applied to polymorphic types). Though

we can identify calls to malloc and free, the original types

are lost. Attempts to recover type information from memory

layout is hopeless. Having two structures with identical mem-

ber layouts, the generated code for object allocation of one or

the other will not differ. The debug information, if exists, could

help to identify the type, but that would require big efforts for

each supported compiler (more precisely each supported debug

information format).

Due to the issues listed above it is more promising to

address the problem at the time of compilation when type

information is still available. Our main targets are the typed

new and delete expressions and the typeless malloc calls

with its fellows: free, realloc, calloc.

In C++ the new expression is the main language feature

for creating objects on the heap. The new expression is not

equivalent to the new operator, it has a much wider role.

The new expression is responsible for allocating space for

objects on the heap by calling one of the overloaded new

operators. Then it calls the constructor to ensure proper

initialisation of the raw memory area. It is also responsible

for catching possible exceptions caused by the constructor and

clean up the already allocated memory in such cases to avoid

memory leaks. The new expression therefore has exact type

information, on the contrary new operators are typeless.

Though the operators will not help us identifying the types,

they are perfect hook points of memory operations. Let us

start with redefining operator new. The signatures are the

following:

void* operator new (size_t);

void* operator new[] (size_t);

void operator delete (void*);

void operator delete[] (void*);

For simplicity we omit the discussion of other overloads like

the nothrow versions, they can be added similarly. We left

out the placement versions as they have nothing to do with

actual (de)allocation.

Apart from calling the actual allocation routines (the stan-

dard malloc, or any already existing custom implementa-

tion), we decorate [1] these functions with an extra admin-

istration step. With this added administration step we can

keep track of the address and size of each allocation and the

corresponding deallocation.

The recommended data structure for storing allocation en-

tries is a hash table, using the address as key. In multithreaded

environments concurrent access should be considered. The

hash table contains allocation entries for all heap memory

actually being used by the application. This is ideal for

creating snapshots at arbitrary time. If we are interested also

in the freed entries, they can be added to a circular vector at

deallocation. This vector is dumped when it gets full, produc-

ing a series of dumps describing the past. It is important not to

use the redefined allocation routines from within themselves.

This can be accomplished by using custom allocators or static

memory areas. The custom allocators should use the low level

allocation primitives not garnished with the administration.

Caveat: Heap allocations can happen during static initiali-

sation:

A* globalVarA = new A;

which means our administration should not rely on static

initialisation order. An on demand initialisation technique is

recommended.

B. Retrieving type information

Although we are able to monitor allocations and deallo-

cations through the new and delete operators, the types

are still missing. The expression new T has a static type

of T*, but we cannot reach this type information inside the

new operator, which only gets a size parameter and returns

the allocated area as a typeless void* pointer. Note that

the allocation may pass arguments to one of the construc-

tors, and also the type name can contain commas: new

std::pair<int,int>(3,4). This is important if we

are considering using macros, which is a usual technique to

minimize syntactic overhead. To demonstrate the difficulties

of seizing type information, consider the following attempts:

• New((std::pair<int,int>),(3,4))

where New is a macro with two parameters

• New((std::pair<int,int>)(3,4))

where New is a macro with a sequence [5] parameter

• New(new std::pair<int,int>(3,4))

where New is a template function

• new std::pair<int,int>(3,4))

where new is a macro, substituting to New(new, result-

ing in the previous line

The last one already has minimal syntactic overhead, though

in a complex expression the extra parenthesis can be very

confusing. We should eliminate that. Fortunately C++ has the

possibility to call a function without writing any parenthesis

with its infix operator syntax. Operators are ranked by well

defined precedence categories and can be templates as well.

Our solution is new std::pair<int,int>(3,4),

with zero syntactic overhead, where the new macro is defined

as follows:

#define new NewTrick() * new

Here NewTrick is a helper type, with an overloaded *
operator for each T:

template<class T>

struct TYPE_IDENTIFIER {

static char mDummy;

};

struct NewTrick {

template<class T>

T* operator* (T* Ptr) {

RegisterAllocation(

Ptr, &TYPE_IDENTIFIER<T>::mDummy);

return Ptr;

}

};

The key feature of our construction is the mDummy static

member of the TYPE_IDENTIFIER<T> helper template.

In NewTrick() * new we call the default constructor

of NewTrick to create a temporary object on which we

can perform our overloaded operator*. This template

operator* takes a pointer of arbitrary type as right hand

side operand. In our case this operand will be provided by

the new expression. Inside the operator the second parame-

ter of the call to RegisterAllocation instantiates the

TYPE_IDENTIFIER template class for each type which

happens to appear on the right hand side of the new keyword.

For each such type there will be a unique global variable

for type identification. It is important to understand that these

variables are not holding any specific value for identifying the

corresponding types like std::type_info does. It is the

existence of the variables with their separate addresses which

holds the information we are looking for. These addresses with

the appropriate type names, however, are listed in the map file

generated by the linker. This file contains the addresses of

entities in the binary, including our mDummy variables. This

functionality is available on all platforms, although the format

of the file may vary. Having the map file at hand, we can

associate type names to the type identifier addresses. Below

are some fragments of a name demangled map file:

public: static char TYPE_IDENTIFIER<unsign

ed short>::mDummy 010f29d4

public: static char TYPE_IDENTIFIER<unsign

ed char>::mDummy 010f29d5

...

public: static char TYPE_IDENTIFIER<class

std::set<int,struct std::less<int>,class

std::allocator<int> > >::mDummy 01118dec

...

public: static char TYPE_IDENTIFIER<struct

std::pair<unsigned long,bool> >::mDummy

This way we do not have to generate a string from a type,

which would be a difficult task, if not impossible without

syntactic overhead. This has also a positive impact on the

memory overhead of our solution, as the growth of the

executable size and static memory footprint is minimal. In

the optimized version of a concrete mid-sized real application

the map file had 3675 TYPE_IDENTIFIER entries. This

equals to the number of types involved in new expressions.

With our method the memory footprint is therefore 3675 bytes

(1 byte per each mDummy instance). Having the mangled or

demangled names stored in memory, however, it would be

191412 or 243222 bytes respectively.

We chose operator* because that was one of the suitable

binary operators with strongest precedence. Thus we avoided

unwanted side effects if someone mixed allocation and pointer

arithmetics:

ObjWithRefCount* obj = (ObjWithRefCount*)(

sizeof(RefCount) + new char

[sizeof(RefCount) + sizeof(Obj)]);

If we had chosen operator= for example, then in this case

the preprocessed code would have been:

ObjWithRefCount* obj = (ObjWithRefCount*)(

sizeof(RefCount) + NewTrick() = new char

[sizeof(RefCount) + sizeof(Obj)]);

and the compiler would have complaint about missing

operator+ overload between size_t and NewTrick.

In certain cases a two phase approach is preferable,

where the lowest level memory manager routines (called

from a redefined malloc and/or operator new) call

RegisterAllocation without type information and

NewTrick::operator* calls a SetAllocationType

type modifier to the already registered entry afterwards. This

implementation has the advantage that if the type information

is not needed, the whole NewTrick trick can be disabled, still

keeping track of the allocations via the typeless mechanism.

C. Pitfalls

We have just walked into a trap. In case of new[] the item

count is sometimes stored at the beginning of the allocated

area. More precisely it is when the type has a non-trivial de-

structor to be called for each allocated element at deallocation.

The following C++ code:

struct A {

˜A() {}

int member;

} *fiveAs = new A[5];

is compiled as:

size_t* allocated = (size_t*)::operator

new(sizeof(size_t) + 5 * sizeof(A));

*allocatedArea = 5; // store size

A* fiveAs = (A*)(allocated + 1);

allocated

ւ

5 A A A A A

տ

fiveAs

Fig. 1. Example of the typical memory layout of an array with non-trivial
destructor

Having the new macro defined as described, we get this:

size_t* allocated = (size_t*)::operator

new(sizeof(size_t) + 5 * sizeof(A));

*allocatedArea = 5; // store size

NewTrick Temporary;

A* fiveAs = NewTrick::operator*<A>(

&Temporary, (A*)(allocated + 1));

That means in NewTrick::operator* a different address

will be passed to SetAllocationType than has been to

RegisterAllocation somewhere under ::operator

new[]. Let us consider our possibilities:

• Adjust the pointer in ::operator new[] when call-

ing RegisterAllocation. Without type information

we have no chance to determine if the adjustment is really

necessary. Arrays of built-in types, like int, will not be

prefixed with size.

• Do the necessary pointer adjustment when calling

SetAllocationType. Using the described syntax we

are not aware of whether it was a single object or an

array allocation.

The safe solution is either having fiveAs (see Fig. 1.)

available in ::operator new[], or having allocated

available in NewTrick::operator*. The first is impossi-

ble because fiveAs is calculated only after ::operator

new[] returned. With the current syntax we can only pass

the value via global variables. That pops up multithreading

issues, and it is also not guaranteed that there are no subse-

quent calls to ::operator new[] before the correspond-

ing NewTrick::operator* gets executed. We should

probably use a stack on each thread. Do not forget that

NewTrick::operator* cannot differentiate between new

and new[], therefore we should do this extra pointer adminis-

tration also in the more frequent single object allocation case.

Though this solution could probably work, we rather chose a

simpler one and gave up the nice syntax. Instead of

A* fiveAs = new A[5];

one will have to write

A* fiveAs = New_<A>(5);

for array allocations. The underscore is only added to reduce

the possible name clash with existing symbols. New_ passes

a pointer to a local stack variable (named allocated in

the previous example), to ::operator new. The operator

is supposed to write the actual allocation address into this

variable:

template<class T>

T* New_(int Count) {

void* allocated;

T* result = new (&allocated) T[Count];

SetAllocationTypeAndCount(

allocated,

/* result, */ // optional

&TYPE_IDENTIFIER<T>::mDummy,

Count);

return result;

}

void* operator new[](size_t size,

void** pAllocated) {

return *pAllocated =

RegisterAllocation(malloc(size));

}

Here RegisterAllocation returns its argument un-

changed allowing the elimination of a temporary variable.

Note that passing allocated as void*& would have con-

flict with placement new. Be careful to add this code to a place

where the new macro has not yet been defined. We also pass

Count, which eliminates the need of knowing sizeof(T)

when the allocations are analysed. In fact, having Count at

hand, we will use it for the opposite purpose, to calculate

sizeof(T) based on the allocation sizes.

Fortunately array allocations are less frequent, hence the

introduced syntactic overhead hurts less. Regardless of how

frequently the new form of array allocation is advertised

among the coders, likely they will sometimes forget not to

use the standard form. In those cases SetAllocationType

will get an address that is not present among the allocation

entries. It is a silent killer, because it either produces a

run time error if the execution once wanders there, or just

simply distorts the measure. We should somehow protect the

framework against misuse. Using the standard form of new[]

should result in a broken build. Though we cannot delete

the always existing void* operator new[](size_t)

overload, we already have a define for new. Let us add an

extra parameter to it:

struct UseNew_ { static UseNew_ st; };

#define new NewTrick() * new (UseNew_::st)

Of course this will affect the single object allocations, we

should modify the declaration of operator new accord-

ingly:

void* operator new(size_t size,

const UseNew_&) { ... }

For the new[] case let us declare an overload that does not

match:

void* operator new(size_t size,

const UseNew_*);

With some compilers we will get compilation errors wherever

someone tried to use the standard operator new[] syntax.

With other compilers, however, we will not get any errors, they

just silently fall back on using the standard one. On these

compilers it is better using the proper overload, undefined:

void* operator new(size_t size,

const UseNew_*);

This will result in an unresolved external at link time. The

exact place of misuse is not revealed, but at least the build

gets broken. In most cases a clever regular expression suffices

to find the problematic line.

Array typedefs can make our lives harder too. Consider

the following example:

typedef A HideArrayA[10];

A* Array = new HideArrayA;

Despite the allocation seems correct, it is actually a call to

operator new[]. In these cases we have to substitute the

typedef, which unfortunately hurts the DRY (Do not Repeat

Yourself) principle [6].

We have discussed the two most common usages of new,

the single object and the array forms. There, however, can

be arbitrary additional overloads with their special custom

behaviour. An important example of that is placement new,

which is the official way of explicitly calling the constructor

on a previously allocated memory area:

char Mem[sizeof(std::vector<int>)];

new (Mem) std::vector<int>();

((std::vector<int>*)Mem)->push_back(42);

With the first version of our new macro, this code would

compile, but the construct would be treated as an allocation

and would silently result in corrupt allocation administration.

The current version, however, produces the following code:

new NewTrick() * new (UseNew_::st) (Mem)

std::vector<int>();

which is ill-formed [7]. In fact in these cases we should not

use our macro. The proper solution is turning it off for these

special lines:

#pragma push_macro("new")

#undef new

new (Mem) std::vector<int>();

#pragma pop_macro("new")

The undefinition of new must be as limited as possible. Even

undefining it only for that single line can lead to administration

errors if the parameter expressions of the constructor call

contain another new. The recommended style breaks these

calls into two lines:

#pragma push_macro("new")

#undef new

new (Mem2)

#pragma pop_macro("new")

std::auto_ptr<int>(new int(42));

push_macro and pop_macro are not part of the C++

standard [7], but most compilers support them. The simplest

standard compliant solution would simply undefine the macro

and redefine it afterwards. That is, however, against the DRY

principle as the definition of new would be repeated at

each location. We recommend putting its definition and the

corresponding undefinition to dedicated headers:

#include "undef_new.h"

new (Mem2)

#include "define_new.h"

std::auto_ptr<int>(new int(5));

It is important for these files not to contain header guard as

they can be used multiple times in the same compilation unit.

Having all these implemented, we started using our heap

profiler and the type information seemed correct. Sometimes,

however, the occupied memory was not matching our knowl-

edge about the software. It turned out that allocations of STL

containers [8] were all typeless, because they internally used

malloc. To solve the problem either std::allocator

should be modified, or a custom allocator should be used.

The first is simpler if a custom STL implementation is already

part of the code base, but sometimes not possible. The custom

allocator probably produces another syntactic overhead when

using STL containers. STL is only an example, in fact each

generic data structure probably uses malloc for allocation.

Similarly, even at places outside of templates, we can

encounter usage of raw allocation routines, typically to-

gether with placement new. Such behaviour is mainly driven

by efficiency claims. In these situations our framework

will not be able to produce relevant type information.

We can get around this problem by adding explicit calls

to SetAllocationType/SetAllocationTypeCount

manually directly after the raw memory allocation. Moreover,

even defining new pseudo types only for type identification

makes sense. That way symbolic names can be used at places

where buffers of built-in types are allocated:

struct MEM_TYPE_IMGBUF {};

int* ImgBuf =

New_<int,MEM_TYPE_IMGBUF>(w*h);

// or

int* ImgBuf = LogMemoryType

((int*)malloc(w*h*sizeof(int)));

where LogMemoryType is a template function:

template<class T>

T* LogMemoryType(T* Ptr) {

SetAllocType(Ptr,

&TYPE_IDENTIFIER<T>::mDummy);

return Ptr;

}

D. Call stack

With the method we described in the previous section we are

able to keep track of all the heap operations of the software and

maintain a database of the actually used memory areas. The

entries by now can contain type, size, count and time stamp.

In this subsection we describe how we can collect information

about the call stacks. Unfortunately there is no standard way

in the C++ language to obtain the actual call stack. Thus we

have only the following suboptimal solutions:

• Use a platform dependent system routine. Quite often

such a function simply does not exist. If we have luck

and it does, usually its slowness makes it unusable for

our purposes.

• Write an own version of such a function. This is not

impossible, but it is very sensible for special optimisation

techniques, and requires deep knowledge of the actual ar-

chitecture. This solution is definitely against our platform

independent intentions as it introduces a huge number of

platform dependent techniques.

• Continuously maintain a vector of code addresses repre-

senting the call stack utilizing instrumentation functions.

The last option can be implemented so as to fulfil the necessary

speed requirements while keeping the compiler dependent

parts on minimum.

Many compilers provide options for generating instru-

mented code for profiling purposes. If the given compilation

option is set then dedicated enter and exit functions are

called at the beginning and end of each function respectively.

Table I shows the signatures of these special functions in

different compilers [9]. We should avoid calling any instru-

mented function from within these hooks to avoid recursion.

Some compilers provide syntactic elements for disabling the

instrumentation of particular functions.

In case of Visual C++ we can choose from two instrumen-

tation methods: to place the special calls inside the called

functions (callcap), or around the call instruction at call

site (fastcap).

We can maintain the call stack of each thread by adding or

removing an entry to/from a thread local array in the enter

and exit functions respectively. In normal operation simple

push and pop procedures are performed, but there are some

rare scenarios when special handling is needed. In case of

longjmp or exceptions the caller address passed to the exit

function may differ from the one passed to enter. In case of

exceptions we will find the address in lower positions of our

array and should pop the unwound elements.

Utilizing the instrumentation technique we can have an

always up to date call stack information for each thread.

The next question is how these call stacks are associated

to the allocation entries. Copying the whole array into the

entry would consume too much memory. Once entered into

a function, all allocations from within that call will have the

same call stack prefix. We can optimize our data structures

to exploit this property. It is a good trade-off between speed

and storage if we store the unified call graph (call trees of

each individual thread) instead of independent arrays. Each

node of the graph represents a function that is called on a

specific path starting from the thread’s main entry. The relation

is not injective, there can be multiple graph entries referring

to the same function, provided that the function has been

called on different paths. The path to the thread root clearly

identifies the call stack, thus it is enough for an allocation

entry to refer to the corresponding graph node of the given call

stack. For simplicity we use an ever-growing data structure,

the unused nodes are not removed from the graph. With a

reference count technique this can be easily added though.

When a new allocation entry is registered, the functions of

the actual call stack array are looked up in the call graph and

the missing nodes are created if needed.

A reference to the node representing the last function of the

call stack is stored in the newly registered allocation entry.

The operation that finds the graph nodes matching the call

stack is invoked at each heap allocation, therefore it has to be

fast. Once a graph node is found for a call stack element, it

is worth memorizing it in the given call stack element. That

data is valid until the entry is removed from the stack. This

way the lookup can remain relatively fast even when the call

paths tend to be long.

The described structure is called calling context tree [10].

A leftmost-child-right-sibling representation can keep memory

footprint low, while remaining fast.

Our framework has been implemented along the above lines,

and has been successfully compiled and is actually being used

on the following compiler/platform pairs:

• Visual C++ 8.0, 9.0 / Windows XP, 7

• Visual C++ 8.0 / Windows CE

• g++ 4.2 / iPhone OS1

• g++ / QNX

1Though the applications for iOS are usually written in Objective C, in our
case the bulk of the code is in C++, only a thin platform layer deals with the
native API.

enter function
Compiler exit function

how to disable

g++ void __cyg_profile_func_enter(void *this_fn, void *call_site);

Intel C++ on IA-32 and Intel R©64 void __cyg_profile_func_exit (void *this_fn, void *call_site);

PathScale __attribute__((__no_instrument_function__))

PGI

void __cyg_profile_func_enter(void **this_fn, void *call_site);

Intel C++ on IA-64 void __cyg_profile_func_exit (void **this_fn, void *call_site);

__attribute__((__no_instrument_function__))

void _CAP_Start_Profiling(void *call_site, void* this_fn);

Visual C++ void _CAP_End_Profiling (void *call_site);

N/A

TABLE I
SIGNATURES OF enter AND exit FUNCTIONS IN DIFFERENT COMPILERS

III. USING OUR FRAMEWORK

In the previous section we discussed our method for col-

lecting stack trace and detailed type information on heap

operations. We also got familiar with the data structures our

framework uses. Now let us see how we can extract the

gathered data from the running application.

The profiling process consists of the following steps:

1) Profiler integration

2) Profiler configuration

3) Compile the profiling enabled application

4) Run the application, test different scenarios

5) Convert resulting profiler output dump files

6) Analyse/visualize results

We have discussed the tasks of step 1 in section II.

In most cases we do not want to measure the whole run of

the application, instead we may want to restrict the scope of

profiling into a time interval. To be able to define this range

either at compilation time, or initiated by user actions at run

time, we have to add necessary support code. There are three

different approaches:

• Profile the whole run.

• Start and end profiling programmatically with explicit

calls to the framework from client code. The free op-

erations should handle the cases when the allocation is

not yet present in the administration.

• Start and end profiling at run time. For this we have to

add the trigger functionality to the client code. It can be a

keyboard shortcut, a special mouse gesture, the presence

of a file with a specific name (non-gui applications), a

special http request (network server application) etc.

Every feature of the profiler has its own cost. We pay

for them in seconds and/or kilobytes. It is rare that for our

specific measurement we need all the data the profiler can

collect. We recommended implementing them as orthogonal

as possible to let the user freely select the desired com-

ponents. Sometimes different measurements require different

categorisations of object types. In a software environment that

uses garbage collection techniques one may want to perform

garbage collection right before creating the dump not to be

misled by already (logically, not physically) freed elements

in the dump. On the contrary, one may specifically want

to dump a state right at the point when garbage collection

is to be performed to see what memory state has triggered

it. These alternatives are usually controlled by preprocessor

directives and/or configuration files which are read typically

at program startup. In the configuration step these defines

and configuration files are set up according to the needs of

the given measurements. Do not forget to enable map file

generation for the build process, we will need it later for the

types and call stacks.

Once we have our application armed with the configured

profiler code we can perform the test scenarios. They vary

from simple ad hoc operations driven by curiosity to well de-

fined test cases of scalability, a concrete bug of out of memory

condition etc. Sometimes dumps of separate runs are brought

under comparative analysis. Depending on the components

chosen the following types of dumps are generated:

• Regular dumps of freed elements. Whenever the frame-

work exceeds its limit of storing freed allocation entries,

it flushes them to a file.

• Full dump of the allocation entries, the freed elements

and the call graph at exit. Non-freed elements of this

dump correspond to leaked memory areas.

• On demand dump of the call graph, the allocation entries

and optionally the freed elements.

The naming of profiler output files follow a numbering conven-

tion to handle multiple dumps properly. In our implementation

all these files are plain text files. A fragment of a freed dump:

HeapLog|version=4|address|size|count|

type_id|tick|freed_tick|callgraph_node

22A19EC8,32,8,0073D411,132,132,022B7864

0212DF10,30,30,0073D3AD,132,132,022C68C4

298D0B58,30,30,0073D42E,132,132,022C68DC

22A19E30,124,31,0073D411,132,132,022C68F4

...

Once we went through our test cases we have dozens of

these dump files. Their format is suitable for being dumped

from the application easily, but they are not appropriate for

direct analysis. We have to apply our converter tool to generate

one or more .muar file(s) from these dumps. The extension

Fig. 2. A complete filter graph, each box has its inputs on the left, and
its outputs on the right. Straight lines between input and output pins denote
connections.

stands for memory usage analyser result, it is the base format

of our visualiser application, see section IV.

allocation entry dump

freed entry dumps

call graph

convert
+3 .muar file

IV. VISUALISATION

Profiling industrial sized applications can produce enormous

amounts of data. Understanding this raw information is often

very time consuming and can leave crucial connections unre-

vealed. In the last decade visualisation tools proved to be key

tools for program comprehension. These tools can provide an

extremely good overall picture about the internal processes of

applications. Quite often, however, we want to examine only

a special subset of the data. Such subset can be the memory

usage associated to a certain data structure, type or thread for

example. Users would prefer to define their own specific views

of profiling information. To support this request we provide

elementary processing steps (filters) on the allocation entries

and a way to combine these elements into complex queries as

filter graphs.

Our visualiser tool (memory usage analyser) works with an

ordered sequence of coloured allocation entries. These entries

can have the following properties: address, size, count, type

(address of TYPE_IDENTIFIER<type>::mDummy), call

stack (function addresses), time at allocation, time at free,

freed flag, thread id, colour.

Some of the fields may be missing from our input data

depending on the configuration. For the type and call stack to

appear properly we always need the corresponding map file.

To construct the filter graph we provide a visual language,

where boxes represent filters, and edges represent data flow.

The user can define complex queries using graphical interface

via drag and drop technique. These graphs represent different

measurement patterns and can be stored and reused later.

Figure 2 shows how a filter graph appears in our tool.

Boxes in these filter graphs can execute input or output

actions, filter on the values of given fields (including time

stamps, call stack, type etc.). Usual functions like averaging

or summarizing field values can also be performed with boxes.

The colouring box changes the colour property of the passing

entries to customize visual appearance.

With this general approach we can build the following

queries, for example: (1) keep allocation entries initiated from

Fig. 3. Timeline view

Fig. 4. Memory view in Memory Usage Analyser

some std::vector instance, (2) colour entries of which

type begins with std:: to blue, (3) keep the allocations which

lived (no) longer than a given time, (4) keep allocations only

of a given thread.

Allocation entry sequences (possibly already processed with

filter graphs) can be visualized graphically in different views.

The timeline view can give a quick overview on how total

memory usage changes over time, see figure 3. If the entries

have different colours, we see them stacked. By hovering over

the chart the details of the actual time slot are presented.

In memory view we can explore a grid representation of

the physical memory. By choosing alternating colours we can

easily differentiate separate entries, otherwise the colour tags

of the entries determine pixel colours. We can define how

many bytes one pixel represents. Hovering over the pixels the

details of the actual allocation entries appear.

Text view is useful for going through the allocations one

by one, typically after a filter procedure. Some additional

operations we can perform on our data set:

• join entries of same type/call stack

• unify the leafs of the call graph until the sum of allocation

size reaches a specified limit

• sort entries by one of their fields

• calculate the differences and common parts of two sets

Some of the frequently used operations:

• keep entries allocated or deallocated in a given time range

(sometimes as the difference of two separate memory

snapshots)

• join by type, then sort descending by occupied memory

• colour entries of a given type, or instances of a given

template, then consult timeline view

• switch to memory view with alternating colours to check

fragmentation and pool behaviour

V. USAGE EXAMPLES

One could say type information is not that necessary, we

have been working with our good old profilers for decades.

Let us show an example where type had an important role.

On PDAs and mobile phones there are much stricter memory

limitations than on PCs. However, even these platforms have

complex applications, like a real time navigation software for

example. In our case the software had some special interactive

visual elements that tracked mouse movements (actually touch

movements) for processing the sequence at the end of or

during the motion. These controls used std::vector to

store touch coordinates, then called clear on them when the

data was no longer needed. At first glance this seems correct,

but the clear operation of std::vector did not free its

allocated buffer, it remained reserved. After using the software

for a while these buffers could accumulate hundreds of mouse

events for each such interactive component. When grouped

the allocations by type, this event type was among the top

10 most memory consuming types of the whole application.

It was responsible for ∼400kB of the 12MB total memory

consumption (∼3.3%), which was too much for being an

unused reserve area. If we had not had type information about

the allocations, the memory wasted by these events could have

been easily treated as necessary costs of the visual component.

For demonstration purposes we have selected an open

source C++ application, the Notepad++ free text editor and

profiled it. This editor integrates Scintilla, a complex text

editor component.

After integrating our framework to the Scintilla library

first, then to Notepad++, we could get dumps at the end

of each run. We opened some smaller and bigger files in

Noteped++, and loaded the generated dumps in the visualiser.

The timeline view showed that the memory was allocated

in bigger blocks as the file was being loaded. To determine

what types are involved in the loading process and in storing

the contents of the file, we applied the following operations:

join by type, then sort descending by occupied memory.

The result immediately showed that SplitVector<char>,

char and SplitVector<int> are the major ones. To see

the dynamic behaviour, we assigned different colours to these

types with a filter graph. Figure 5 shows the resulting timeline

Fig. 5. Timeline view of loading a text file in Notepad++. One pixel repre-
sents 1 msec time horizontally and 320kB memory consumption vertically.

Fig. 6. Timeline view of loading a text file in Notepad++ after optimisation.

view. The light gray area represents allocations of type char.

It is strange that they are present during the loading process,

but then they are deallocated. We restricted the view to a

small time slice and from the call stack information we found

which part of the code was responsible for these allocations.

It turned out that this was the undo history. During loading

each added buffer creates an insert operation, that copies the

string to the undo queue. This is done internally in Scintilla.

After loading the file, the Notepad++ component clears the

undo history. This is why the light gray area disappears. It

is clear that maintaining the undo history when the insertions

come from file loading wastes speed and memory. As a quick

check we introduced a global flag that is on during file loading

and turned off undo handling for this case. The resulting

timeline view (Figure 6) shows that we could eliminate the

unnecessary allocations. Without knowing the internal details

of the code, we could easily pinpoint a performance issue and

could reduce peak memory usage by 15%. This peak usage

determines how big files we can open in Notepad++. With this

little modification we raised that limit by 18%.

VI. RELATED WORK

The idea of adding extra arguments to new by defining it as

a macro appears in [11]. There __FILE__ and __LINE__

are passed to the custom overload, allowing for associating

source code locations to allocations. With this technique a

useful memory leak finder tool can be easily implemented.

Note that the file and line information does not necessarily

identifies an allocation precisely:

vecA.AddA(new A(new B(a,b), new B(c,d)));

There are many heap profilers on the market, providing a

wide variety of features from bound checking, memory leak

hunting, call graph analysis etc. Most of them are designed to

be used on desktop computers, for middle sized applications.

When applied one of them to a strategic game with around

1GB memory usage, the profiled version failed to launch.

There were many heap allocations in the software and their

administration took more memory than the heap the program

used. Exceeding the 2GB heap allocation limit on the given

platform heap analysis was not possible. Though this limit

could be raised to 3GB, one of the 3rd party components did

not handle pointers with highest bit set correctly. We had to

give up using that tool for profiling.

For languages, where a reflection model is built into the

language, retrieving heap related type information is easier.

Sometimes such profilers are part of the platform SDK [12],

[13], [14], [3]. [4]). We have also a wide range of third-party

solutions, like [15], [16], [17], [18].

The Memory Validator tool [19] of Software Verification

Ltd. provides some type information corresponding to C++

memory allocations. However, it prints the type information

looked up from source code, rather than utilizing the type

system of the language itself. This approach requires debug

information during runtime execution and may fail in case

of complex preprocessor macro definitions or intense code

optimisations.

Valgrind is an instrumentation framework [20] for building

dynamic analysis tools. It has a heap profiler module called

Massif which does not provide type information on alloca-

tions. As the Valgrind framework is widely used an alternative

approach could be based on modifying Massif. However,

Valgrind officially supports only the Linux and Mac OS X

platforms.

GPTL [9] utilizes instrumentation functions to perform

performance analysis on different platforms. In [21] different

visualisation methods of dynamic memory allocations are

presented, including a similar one to our timeline view. In

[14] stacked timeline views differentiating allocations by type

are presented as an everyday profiling technique. Heapviz [4]

visualises heap usage of Java programs as a graph. The idea of

defining queries is envisioned in the future work section of that

paper. The Leaks component in the Instruments profiler tool

of the iPhone SDK[3] provides type preserving heap profiling

for Objective C.

VII. CONCLUSION

Memory profilers are key tools to understand modern object-

oriented programs. Although languages like C++ are strongly

rely on types and classes, most memory profilers fail to

provide sufficient information on actual types of memory

allocations. We implemented a type preserving heap profiler

for C++. The main contribution of our framework is the ability

of providing detailed type information of each heap related

operation additionally to usual profiling features. To support

program comprehension we defined a visual language (filter

graph) to allow the user to construct arbitrary queries in a

fairly convenient way. Various visualisation possibilities are

available to examine profiling result. Our solution is highly

platform independent and has moderate memory and speed

footprint. As a case study we used our framework to find and

fix a performance issue in a code base what was new and

unknown to us.

ACKNOWLEDGMENT

The Project is supported by the European Union and co-

financed by the European Social Fund (grant agreement no.

TAMOP 4.2.1./B-09/1/KMR-2010-0003). Thanks for Gergely

Herendi for designing and working out the details of the

generic multithreaded call graph monitoring engine.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software. Addison-Wesley Pro-
fessional, 1995.

[2] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimiza-

tion (Engineering Design and Automation). Wiley-Interscience, Dec.
1999.

[3] I. Piper, Learn Xcode Tools for Mac OS X and iPhone Development,
1st ed. Berkely, CA, USA: Apress, 2010.

[4] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and
S. Z. Guyer, “Heapviz: interactive heap visualization for program
understanding and debugging,” in Proceedings of the 5th international

symposium on Software visualization, ser. SOFTVIS ’10. New York,
NY, USA: ACM, 2010, pp. 53–62.

[5] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley Professional, December 2004.

[6] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman

to master. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999.

[7] International Standards Organization, “Information technology – Pro-
gramming languages – C++,” ISO/IEC 14882:2003, 2003.

[8] N. M. Josuttis, The C++ standard library: a tutorial and reference.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[9] J. Rosinski. (2008) Gptl timing library. [Online]. Available:
http://www.burningserver.net/rosinski/gptl/

[10] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” SIGPLAN Not.,
vol. 32, pp. 85–96, May 1997.

[11] P. DiLascia, “Performance monitoring, managed extensions, and lock
toolbars,” MSDN Magazine, September 2004. [Online]. Available:
http://msdn.microsoft.com/en-us/magazine/cc163931.aspx

[12] S. Ramaswamy and V. Morrison, “Profiling the .net garbage-
collected heap,” MSDN Magazine, October 2009. [Online]. Available:
http://msdn.microsoft.com/en-us/magazine/ee309515.aspx

[13] K. O’Hair, “Hprof: A heap/cpu profiling tool in j2se 5.0,”
Sun Developer Network, vol. Developer, 2004. [Online]. Avail-
able: http://java.sun.com/developer/technicalArticles/Programming/
HPROF.html

[14] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[15] G. Barnett, “Review: Ants profiler 4,” dotnetslackers, November 2008.
[Online]. Available: http://dotnetslackers.com/articles/net/Review-Ants-
Profiler-4.aspx

[16] “Jprofiler from ej-technologies gmbh.” [Online]. Available:
http://www.ejtechnologies.com/products/jprofiler/overview.html

[17] “Yourkit profiler from yourkit, llc.” [Online]. Available:
http://www.yourkit.com

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluating
the accuracy of java profilers,” SIGPLAN Not., vol. 45, pp. 187–197,
June 2010.

[19] “Memory validator from software verification limited.” [Online].
Available: http://www.softwareverify.com

[20] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, J. Ferrante and K. S. McKin-
ley, Eds. ACM, 2007, pp. 89–100.

[21] S. Moreta and A. Telea, “Visualizing dynamic memory allocations,” in
VISSOFT, 2007, pp. 31–38.

